東海地域推定固着域内に発生する地震活動とその変化

松 村 正 三* 防災科学技術研究所

Spatio-Temporal Features of the Seismicity Occurring in the Assumed Locked Area of the Next Tokai Earthquake

Shozo Matsumura*

National Research Institute for Earth Science and Disaster Prevention

Abstract

The Tokai district is one of the most intensely monitored places in Japan with respect to seismic risk due to the anticipated Tokai earthquake. We have been performing continuous observations of microerathquakes in this region for more than two decades. The GPS observations to monitor ground surface deformation have been performed by the Geographical Survey Institute since 1997. Recently, unusual signal changes have been found nearly simultaneously by both monitoring operations. First, a small but significant quiescence was detected in seismicity within the subducted Philippine Sea slab, which commenced in August 1999. A similar quiescence was also detected in other regions, such as seismicity within the overriding plate and seismic clusters beneath Lake Hamana. All of these activities are considered to be caused by the interaction of two plates, i.e., due to the locked subduction of the Philippine Sea slab. The seismicity change was represented by a spatial pattern with a decrease/increase of earthquakes compared to the standard one. We recognized that the characteristic pattern appears at the present. Following this seismic event, GPS monitoring found a gradual movement of the ground surface, which deviates from the previous trend, and was analyzed to be due to a slow-slip occurring on the plate interface beneath Lake Hamana. All of these anomalous events happened in the period from the late 1990s to 2000, and have continued to date. Such slow and small changes in crustal activity seem not to be directly bound up with the forthcoming megathrust, that is, the next Tokai earthquake, but lead us to imagine a progress of change in the locked state as follows. In the early or middle stage of locked subduction, the plate coupling should be sustained in the entire locked region. In the later or critical stage, the inhomogeneity in the strength of locking may emerge explicitly. The latter will result in a situation in which the stress sustained at a relatively weakly locked zone is released, and be concentrated. The pattern change in seismicity may agree with this interpretation. If this is the case, it means there is steady progress being made toward the final failure. It is indispensable not only to carefully monitor crustal activities, but also to build a consistent model to interpret all of the unusual evidence detected to forecast the next Tokai earthquake.

Key words: Tokai earthquake, Earthquake prediction, Seismic quiescence, Locked subduction

1.	はじめに			動が起きて	いる.	防災科学技術研究所では 1979 年後半
	静岡県西部下,	次期東海地震	この震源域になるだろうと	から 20 数年	手にわ	たってこの地震活動を観測し続けてき
目	されている地域	では,現在,	比較的活発な微小地震活	たが,近年	になっ	て活動に微妙な変化が見られるように

*e-mail: shozo@bosai.go.jp (〒305-0006 茨城県つくば市天王台 3-1)

なった.変化の程度は異常というには小さすぎるが、も ともと非常に安定した活動状況の中で起きたため、変化 が存在すること自体は疑いようのないものであった.微 小地震活動の発生率はその場の応力蓄積の度合いを表す 指標となる、という考えがある(Dieterich, 1994). この 考え方に従えば、固着域の周辺における地震の発生率変 化は固着状況の変化によって応力パタンが変ったことを 示すことになる.現実には、地震活動変化だけからそう 結論することにはかなりの抵抗があった. 地震活動の変 化要因は決して単一ではないからである. ところが, 地 震活動変化が検知されてしばらく後、今度は地殻変動に 異常が現れた. 国土地理院の GPS 観測から, 最近になっ て,想定震源域の後方のプレート境界面上でスロース リップの進行していることが確認されたのである. 地震 活動の微妙な変化,そして、ゆっくりとした地殻変動, 時を同じくして現れた別々の動きを併せ判断すると、次 のような推論に達する.

想定震源域におけるプレート間固着は、基本的には現 在もなお保持されており、東海地震に向けての応力蓄積 は持続している.しかし外縁部では、それまでのプレー トの引きずり分を解消するような緩やかな滑りが生じて おり、併行して固着域の内部では、応力の均衡を破るよ うな微小な変化が進行しつつある.ただし、固着域内部 における変化は応力の一部を解消するに過ぎず、地表に おける地殻変動として検出されるほどには到っていな い.この変化は、もともとあったはずの固着の不均質性 を、より際立たせる方向に進行している.

本論では、固着状況変化を推測する源となった微小地 震活動を紹介し、この地震活動の発生要因をあらためて 検討、考察する.そして、その変化状況を見直すととも に、それが示唆する固着状況変化についての解釈を試み る.

2. 地震活動とその特徴

Fig. 1 は,防災科学技術研究所(以下,防災科研)で観 測された東海地域の微小地震の震央分布とその断面図で ある(データ期間は 1986 年 6 月から約 14 年分).断面図 には上下 2 層の地震分布が描かれ,下層の分布はフィリ ピン海プレートの沈み込みを鮮明に映し出している.沈 み込みを示す下層の地震の発震機構解は概ね南北圧縮・ 東西伸張のストライクスリップ型であり,これらの地震 はプレート境界ではなく,スラブの上面を形成する海洋 性地殻内部に起きているものと考えられている.静岡県 西部の下(図で網掛けをした部分)では,2層の分布が薄 い空白域をはさんで相対しているように見える.沈み込

みに垂直な軸上で見た地震個数分布を Fig. 2 に示した. 10 kmの間隔を置いて2層の分布のあることが分かる. また,発震機構解も空白層を境に急変している. これら の状況を総合すると、プレート境界はこの空白層の中を 通っていると見るのが自然である(Ishida, 1995). 筆者 は、スラブの沈み込みに沿って P 軸の向きが系統的に変 化して見えることから、固着部分の範囲を特定し、その 平面的な広がりを描いた. Fig.1 で網掛けを施したエリ アがそれである(ここでは固着範囲のきり方の詳細は省 略する. Matsumura, 1997, Matsumura and Kato, 1999, を参照されたい). 固着域のプレート接触面には大きな せん断歪が載荷されているはずにもかかわらず、地震は ほとんど起きていない、かわりに、その周辺に活動が集 中する. このような応力状況を単純にイメージ化したも のが Fig. 3 である. プレート境界の固着域とした部分 (図の太実線)に地震が起きない理由は分からないが、固 着域周辺の発震機構解パタンと後述する歪エネルギー量 の整合性から、周辺に起きる地震の起震応力は、この部 分の固着に起因するものであるだろうとの推測が成りた つ. そこで, この推定固着域をやや拡張した長方形エリ アについて,空白層を境に上盤側領域 (a: 地殻内),およ び下盤側領域(b:スラブ内)に分離してその活動状況を 追うことにする.後節では、この2領域を主なモニタリ ングエリアとして、そのほかに浜名湖北東岸を囲う小さ な長方形領域(c:スラブ内),および浜名湖から北西方 向に延びるいびつな短冊型領域(d:スラブ内)を加え, 合計 4 領域(Fig. 1 の破線による囲み, または Fig. 6 を 参照)の活動に焦点をあてて分析し,推論を進める.

ところで我々は20余年におよぶ観測を続けてきてい ながら、そこで観測した最大の地震はせいぜい M5級で しかない.過去に遡れば、この推定固着域では、1935年 の静岡地震に代表される M6級の地震が起きている.現 在観測される微小地震が、100年を超える大地震間の応 力蓄積過程を反映するものであると仮定できるために は、それが過去の活動の延長上にあると言えなければな らない. Fig.1 (a), (b) のモニタリングエリア内では, 1854年の安政東海地震以後,M6級の地震が4回起きて いる (1857年M6.4, 1917年M6.3, 1935年M6.4, 1965 年 M 6.1). そのように比較的大きかったイベントと現在 の微小地震活動を関連づける唯一の方法は、両者のマグ ニチュード分布を対比することである. そこでまず, 気 象庁の震源ファイルからモニタリングエリア内(60km 以浅)でM5.5以上の地震を,安政東海地震から近年ま で(1854年12月~2001年4月)の146.4年分について 抜き出し、マグニチュード分布を描いた. この中には、

Fig. 1. Hypocentral distribution of microearthquakes in the Tokai district for about 14 years since June 1986 observed by the Kanto-Tokai observational network of the National Research Institute for Earth Science and Disaster Prevention. The attached section is a vertical projection of the thick solid rectangle area. The shaded area is the locked zone between two plates inferred by Matsumura (1997). Four areas are selected for monitoring seismicity change. (a) the upper layer above the locked zone (within the crust), (b) the lower layer beneath the locked zone (within the slab), (c) the narrow clusterized zone just beneath Lake Hamana (within the slab), and (d) the tail-like seismic zone extending from Lake Hamana (within the slab). These four samples are shown again in Fig. 6.

宇津による震源データ(1885~1925年)も含まれてい る.一方,微小地震に対しては,防災科研カタログから M 1.5 以上の地震を1986 年 6 月~2003 年 3 月の16.8 年 分について抜き出し,同様の分布を描く.双方の結果を, 期間長比で校正して重ねたものが Fig. 4 である.黒丸, 白丸はそれぞれ、気象庁データ、および防災科研データ で、縦軸の数値は16.8年分に換算した値を示す.また、 気象庁マグニチュードと防災科研マグニチュードの間に は系統的な差が存在し、前者は後者よりも平均で 0.2 大 きいという分析結果(増子・野口, 2003)に基づいて, 横軸についてもその差を調整した. 横軸の数値は気象庁 マグニチュードである(ただし,2003年9月の改訂以 前). 黒丸, 白丸のそれぞれが GR 式に乗ることが分かる が、重要なことは、双方が共通の直線上に乗ることであ る. 図の破線は、双方を1個のGR式で代表させた結果 であり、これは、 $N(M) = A \cdot 10^{-bM}$ (マグニチュード M

以上の年間地震数),あるいは,n(M)dM=A・b・ ln10・10^{-bM}dM (M~M+dMの年間地震数)のGR式 で,A= $6.2 \times 10^{3}/$ 年,b=0.89,に相当する.このように 双方が1個のGR式でつながるということは,M6級の 静岡地震が決して特別なイベントではなく現在の活動の 延長線上にある,ということを想像させる.仮に東海地 震の1周期(T)を150年とすると,その間に起きる最大 地震は前式で,N(Mmax)・T=1.0,とおいて,Mmax =(1/b)log(AT),からM6.7と見積もられる.さら に,これを最大地震として150年間に起きる全ての地震 による解放モーメントを積分すると,

 $Mo(total) = T \cdot \int_{-\infty}^{Mmax} n(M) Mo(M) dM, logMo(M) = 1.5 M+9.05 (Kanamori, 1977 <math>\sharp b$),

から、 $Mo(total) = (1/c)(A \cdot T)^{(c+1)} \times 10^{9.05}$ である(ただし、c = (1.5-b)/b = 0.68)。前述の数値を入れるとこの値は、 1.8×10^{19} Newton・mであり、その内M6.0以

Fig. 2. Distribution of earthquake frequency projected on an axis perpendicular to the assumed plate boundary that dips 11.4 degrees. The ordinate D (km) is the vertical distance from the assumed boundary. It is recognized that there are two seismic layers separated with a 10 km offset.

Fig. 3. Model of a partially locked subduction. The plate boundary is locked along the thick solid line, while creeping in the broken part. The combinations of arrow pairs indicate the stress pattern induced due to partial locking.

上に限ると、 1.1×10^{19} Newton・m となる. 一方、実際 に起きた M 6 以上の地震モーメントの積算値は 1.4×10^{19} Newton・m である. モーメント積算値の大部分は この4 個の静岡地震の寄与によるが、これらの地震が GR 式に従って過不足なく起きてきたものであることが 分かる.

次に、この積算値が想定東海地震に対してどの程度の 寄与になるかを評価してみよう. Seno *et al.* (1993) のプ レート運動モデルによると、静岡県付近におけるフィリ ピン海プレートの収束速度は約4 cm/年ということにな る. しかしその後, Sagiya (1999) や Heki and Mi-

yazaki (2001) らにより伊豆マイクロプレート説が提唱 され、駿河湾西方下でのプレートの動きは本体とは独立 したものであるとの主張がなされた. これが正しいとす ると、この位置での相対ずれ量は4cm/年よりも小さい と推定されることになる. この説を契機として、今では、 固着域における平均の相対ずれ量を評価することが、む しろ新たな課題として浮かびあがっている. 例えば,相 対ずれ量を評価する具体的なデータとしては, GPS 測 量に基づいた back-slip 解析が有効である. Sagiya (1999)の解析によれば、固着域中心部における backslip量は3cm/年を超えるが、実はその大部分が海域に はみ出ている. 仮に, Matsumura (1997)の主張のよう に固着域の主要部が陸域にあるものとして計算し直すと すると, back-slip 量はおそらくこれよりも小さくなる はずである.木股(2002)は、水準測量に基づいての back-slip 解析を行い,およそ2cm/年という値を得た. 以上を勘案し、また、後節で紹介する山本(2002)の結 果を参考にして,ここでは,平均的相対ずれ速度として 2.5 cm/年という値を採用する. Fig. 1 から、 プレート進 行方向に沿う固着域の幅は約 40 km と見積もられるの で、モニタリングエリア内の固着域面積(S)は40km× 80 km=3,200 km²である.150 年分の相対ずれ量(U)は 3.75 m, また, 剛性率 (μ)を 5.0×10¹⁰ Newton・m⁻² と すると、モーメント (Mo) は、 $Mo = \mu US$ から 6.0×10^{20} Newton・mとなる.従って、静岡地震も含めて推定固 着域内で起きる地震によって解放されるモーメント量 1.8×10¹⁹ Newton・mは、プレート間固着に起因する モーメントのたかだか3%程度でしかなく、大部分は将 来の地震のために溜め込まれていると考えるべきであ る.

同様のことをエネルギーの見地から見てみよう.モー メントの場合と同様に、logE(M)=1.5M+4.8を用いて 150年間に地震波として放出されたであろうエネルギー の総量を評価すると、E (total)=1.0×10¹⁵ Joule であ る.Fig.5は、Okada (1992)のプログラムを使って、40 km長の断層に 3.75m (=150年分)の相対ずれを与え た時に周囲に発生する最大せん断歪の(二次元)分布を 描いたものである.上下盤内で地震の発生している領域 は、Fig.2からプレート境界固着域をはさんで上下に約 5kmのオフセットを持つ.このくらい離れた位置での せん断歪は図からおよそ 5.0×10⁻⁵ であることが読み取 れる.地震発生層の厚みを上下それぞれ 5km、面積は先 ほどと同じく 40 km×80 km とすると、この領域内に見 込まれるせん断歪エネルギーは、E=(1/2) μr^2 ×体積 (V)から 2.0×10¹⁵ Joule となり、これは上記の放射エネ

Fig. 4. Magnitude distributions of earthquakes observed in the monitored area of (a) and (b) in Fig. 1, which are considered to occur just above and beneath the current locked zone between two plates. The open circles are the results obtained from microearthquake observations 1986/6-2003/3. The solid circles are sampled from the JMA catalogue 1854 / 1 - 2001 / 4. Both results are superposed on the logarithmic ordinate normalized by the ratio between data durations. The number on the ordinate corresponds to the earthquake frequency for 16.8 years. The magnitude scale on the abscissa is also adjusted with a 0.2 offset between NIED magnitude and JMA magnitude. The number on the abscissa is JMA magnitude. The broken line is drawn by fitting a common GR relationship to both distributions.

ルギーに見合う数値である.ただし後述するように、こ の場の起震応力としては、固着による歪みのほかにスラ ブ全体にかかる張力 (lateral stretching) も考慮に入れ るべきであり、量的評価の妥当性を確保するためには本 来、さらに多くの仮定が必要となる。従って、あくまで も大雑把な推論の枠内でしかないが、オーダーレベルで の評価として上記は、静岡地震をはじめとするこの地域 の地震が、固着に起因してそれぞれの発生場に生じた歪 みをエネルギー源として起きてきたものであろうとする 推測に導く. 結果的に、中心部の空白層に貯められた歪 をエネルギー源とする東海地震は、静岡地震を含む地震 系列には属さず、上記 GR 式から外れた固有地震として 発生するものであろう、と結論づけられる.なお、過去 の全ての静岡地震がプレート境界地震でなかったかどう かを検証することは難しいが、1935年の地震(M6.4)に 関しては武尾ら (1979) および Ichikawa (1971) がその 発震機構解を求めており、その結果によると、やや回転 した南北圧縮のストライクスリップ型とされている. 1965 年の静岡地震 (M 6.1) も, Ichikawa (1971) の発震 機構解によれば同様にストライクスリップ型と判定される. これらが上下盤のどちらであったかの識別は難しい としても,少なくともプレート境界地震でなかったこと は確かであろう.

3. 地震の発生率変化

前節では、推定固着域内に発生する地震活動に抱いた 筆者のイメージを紹介した.本節では、これらの活動の 時間変化をとらえ、そうした変化が固着状況の変化をど う反映したものであるかについての筆者の解釈を提示す る. まず, Fig.1 で示した4つのモニタリングエリアに ついて地震の発生率変化を見ることにする. Fig. 6 は, 1986年6月以来の地震活動積算図を示す. ここでは M 1.5 以上の地震を選び, さらに declustering 処理によっ て, 群発地震等によるステップ状の変化を抑えている (松村, 2002を参照). 4つのエリアのうち, 上盤(a:地 殻内), 下盤 (b: スラブ内), 浜名湖直下 (c: スラブ内) の3つでは、近年になっての静穏化が見られる.一方、 スラブ内延長部の(d)では変化が見られない.前3者は 全てプレート間固着に関わると推定されるエリアである 一方,後者は固着域の外にある.もともと,沈み込んだ フィリピン海スラブには、Fig.3でイメージしたような 部分固着による応力のほかに、沈み込みに伴うスラブの 幾何学的変形による張力 (lateral stretching) が作用し ていると考えられていた (Ukawa, 1982). (d) の発震機 構解は、概ね東西伸張の正断層型を示し (Matsumura, 1997)、この張力を起震応力とする地震であると考える ことができる.この考えによれば、(d)の発生率が一定 であったことは、この間のフィリピン海プレートの沈み 込み速度そのものが変化しなかったことを示唆する.対 照的に、(a)、(b)、(c) に見られた静穏化は、プレート 運動の停滞によるものではなく,固着状況の変化に密接 に関わったものであろうとの推測が導かれる.ただし, 上盤(a)と浜名湖(c)で静穏化が始まったのは1996年 末ないしは 1997 年始め頃であるが、下盤での静穏化開 始は1999年8月からとやや遅れる. そしてちょうどこ の頃から、GPS に代表される地殻変動データの変化が 報告されるようになった、このあたりの時間軸を拡大し て地殻変動と対比した図が Fig. 7 である. 図には、(a)、 (b), (c), 3エリアの地震回数積算図, および GPS によ る浜北観測点の東西変位 (A:国土地理院, 2003 a),新 島-神津島の基線長変化(B:国土地理院, 2003b)を並べ て示した. この図で最も注目される時期は, 縦破線で示 した 2000 年 9 月から 10 月にかけてである. Fig. 6 (c) で紹介したように、浜名湖直下の静穏化は 1997 年頃か 松村 正三

Fig. 5. Spatial pattern of the maximum shear strain induced by a strike slip fault. A relative slip of 375 cm is given to the fault 40 km in length, and with enough width (vertical to the space). The pattern is derived using Okada's program (1992). Those enclosures drawn in the thick broken lines correspond to the seismic layers above and beneath the assumed locked zone.

ら既に始まっていたが、破線の時期になってその程度が 極端化した. さらに、上盤(a)、下盤(b)でも同時期, 積算カーブの折れ曲がりが見える. 図には示されていな いが、富士山直下の低周波地震が急増したのもこの時期 である.静岡県西部一帯にわたっての応力分布図が、こ の時に一斉に変わったことが示唆される.そして,変化 が一斉に起きたことは、その要因が弾性変形によるもの であろうとの印象をもたらす.浜北(A)が大きく動き 出したのも概ねこの時期に一致するが、実はこの少し前 に、三宅島の噴火を伴う銭洲海嶺周辺の活発な地殻活動 が起きていた.新島-神津島間基線長変化(B)から、そ の活動は 2000 年 6 月末に始まり, 9 月にはほぼ収束して いたことが分かる. 銭洲海嶺周辺の活動は, 浜北の変位 にも影響を及ぼしているが, 前述した一斉変動の時期 は、この活動の始まりではなく、むしろ収束期に対応し ていることに注意を払いたい.

浜北に代表されるこの地域の GPS の動きは,浜名湖 直下のプレート境界におけるゆっくりとした動き-ス ロースリップーによるものであると解釈されている. Ozawa *et al.* (2002)の解析では,平常時の back-slip か ら逸脱した分がスロースリップとして提示されている が,ここではもともとの back-slip も込みで解析した山 本 (2002)の結果を引用する.Fig. 8 の 3 枚の図は,それ ぞれ,(I) 1998 年 1 月-1999 年 12 月,(II) 2000 年 11 月-2001 年 11 月,(III) 2001 年 11 月-2002 年 11 月,の 3

期間に対する back-slip (および forward-slip) 分布を 示す. 図中のなす型は, 中央防災会議が 2001 年に公表し た東海地震の想定震源域である.(I)の期間では,想定 震源域内に 2-3 cm/年の back-slip が分布していること が読み取れる. ところが(Ⅱ)の期間に入ると、浜名湖 直下から北西域にかけて逆向きのスリップ (forwardslip) が生じ, さらに (Ⅲ) の期間には, forward-slip の 中心が北東域へと移動したことが分かる. 地震活動に戻 ると, Fig. 7 (c) の浜名湖直下では, 2000 年 9-10 月にか けて静穏化が極度化しており、浜名湖下のスロースリッ プとうまく符号する. 前述したように, GPS 観測では 2000年6月に始まる三宅島噴火とそれに続く銭洲海嶺 周辺の活動による地殻変動の影響が重畳しているため、 浜名湖下のスロースリップがいつ始まったかという時期 を特定することはできていない. そこで、地震活動の静 穏化がスロースリップによる応力解放の結果だと仮定す るならば、スロースリップの始まりは、2000年9-10月 であったということになる. 結果的に, Fig.7の破線の 時期は、地震活動と地殻変動の双方が共通して動きを示 す大きなエポックであった、ということになる. ただし、 浜名湖下のスロースリップだけでは、全体の変化を合理 的に説明することはできない. 固着域全体に関わる広域 の動きを想定することが必要である. この問題について は、次節および議論の節において再度検討を行う.

さらに、浜名湖下の静穏化をスロースリップと関連づ

Fig. 6. Graphs of accumulated earthquake frequency for four monitoring areas selected in Fig. 1. (a) the upper layer above the locked zone (within the crust), (b) the lower layer beneath the locked zone (within the slab), (c) the narrow clusterized zone just beneath Lake Hamana (within the slab), and (d) the tail-like seismic zone extending from Lake Hamana (within the slab). Seismic quiescence is commonly recognized in (a), (b), and (c), while it is not recognized in (d).

Fig. 7. Seismicity changes and crustal movements. (a), (b), and (c) are parts of Fig. 6, expanded in time axis. (A):East-west displacement at the Hamakita GPS station (see the inset) operated by the Geographical Survey Institute (GSI). (B): basement length change between Niijima and Kohzusima, also observed by GSI. The vertical broken line indicates the epoch when a significant change was widely detected both in seismicity and in crustal movement.

Fig. 8. Results of the back-slip inversion analyses by Yamamoto (2002). The arrows indicate the moving vectors of the overriding plate, which is usually dragged toward the NW direction by the subduction of the Philippine Sea slab. (I) 1998/1-1999/12, (II) 2000/11-2001/11, and (III) 2001/11-2002/ 11. The egg-plant shape is the focal area assumed for the next Tokai earthquake, issued by the government committee of Japan.

けるとするならば, Fig. 6 (c)を振り返って, 微弱なス リップが 1997 年頃から始まっており, しかしそれは GPS 観測の開始時期と重なっていたため, あるいは, そ の程度が微弱であったため検知できなかっただけだろう と考えることもできる. 同図では, 1988~1989 年にも浅 いくぼみが見られ, 木股ら(名古屋大学, 2002)の言う 過去におけるスロースリップの繰り返しの可能性にも思 いが至る. 最近の防災科研の報告によれば(山本ほか, 2003), 浜名湖近傍の三ケ日町に置いた同所の傾斜計は, 今回のスロースリップと同様の変化を 1988~1990 年に も示していたということである. ただしスロースリップ の繰り返しが事実だとしても, 今回の変化の程度は甚だ しいものがあり, 過去からの単純な繰り返しの一環と断 じることはできない.

4. 地震活動パタンの変遷

次に、活動変化を空間パタンの推移として時系列的に 追ってみる. ここで扱うデータは, Fig.6 (b) の下盤側 (スラブ内)の活動である.まず,変化が検知される以前 である1986年6月-1995年5月の10年間を選び,11 km 角の正方枡内の地震数をカウントしてその中心位置 にプロットした分布図を作成し (Fig. 9), これを基準分 布とする.一方で,解析期間として1年間の幅をとり, 同様に地震数をカウントして基準分布と対比し、その比 によって静穏化域(50%以下,黒塗り部),活性化域 (150%以上, 白抜き囲い)を塗り分ける. このようにし て1998年以降の活動について2ヶ月おきに解析した結 果が Fig. 10 である(図に付した年月±6 ケ月が解析期 間). 注意したいのは、1年間程度のサンプルでは地震数 が少ないため、出現した白黒パタンの内の4割程度が統 計的なゆらぎによるノイズとなってしまうことである. 例えば第 i 列 (1998 年 3 月-1999 年 12 月) ではまだ変化 が始まっていないにもかかわらず白黒のパタンが出現す るが,これらは概ねノイズとみなければいけない.図を 見る際には、この程度のノイズが重畳していることを意 識した上で,そこに浮かび上がる意味のありそうな変化 を抽出する必要がある.静穏化パタンは、第ii列(1999 年3月-2000年12月), 第iv列 (2001年3月-2002年12 月)に現われる. 第前列(2000年3月-2001年12月)で は浜名湖東岸での静穏化の発達が目立つと同時に、活性 化域が北東方向に成長していくように見える. この時期 は、浜名湖下のスロースリップが始まったと推測されて いる時期(Fig.8(Ⅱ))に対応する. 浜名湖下の静穏化 は、スロースリップによる応力緩和によると考えられ る. 北東側の活性化はスロースリップに連動する固着域

Fig. 9. Contour map of seismicity in the slab for the standard period from June 1986 until May 1996. The number is the earthquake frequency for magnitude 1.5 and greater, counted within $11 \times 11 \text{ km}^2$ per one year.

内部の状態変化が伸展し、内部の応力分布図が再編成された結果、つまり、一種のしわ寄せである、と解釈することもできる。その後、第 iv 列の期間は、Fig.8(Ⅲ)でスロースリップの中心が浜名湖から北東側に移動した時期に対応する。ここでは、地震活動パタンは明らかに第 iii 列とは異なり、再度、静穏域が全体を支配することになる。この時期のパタン変化も、スロースリップの移動、及びこれと連動する固着域内部における状態変化の結果としての応力の再編成で解釈すべきであろうが、第 iii 列の場合ほど単純ではない。具体的なモデルをここで提案するまでには至らないが、次節でも議論するように地震活動と地殻変動とでは現象の見え方が異なるものの、本来、全ての動きは固着状況の変化から派生したものであると考えたい。

5. 議 論

前節で紹介した観測データの変遷から,GPSで検知 された地殻変動と地震活動のパタン変化は、ともに同じ 要因、すなわち固着状況が変化しつつあることを表現し ているのであろうと推察される。しかしながら双方の関 係は単純ではなく、空間パタンを一意的に解釈すること は難しい、Fig.8を見直すと、スロースリップは想定震

源域,すなわち固着域の外縁をなぞっていることが分か る. これに対して、地震活動変化の対象は、固着域の内 部である. すなわち, 現時点で動きの見える場所は, 地 震活動と地殻変動の双方でずれていると言わざるを得な い.これを説明するために、簡単なモデル実験を行って みた. Fig. 11 において長方形を上盤プレートとみなし, スラブの固着沈み込みを模す.上下辺はフリー,左右の 側辺は固定とし、固着による応力として底辺に左向きの せん断応力を作用させる. 上図では, 底辺の3ポイント に加えた応力の内、中央のひとつを解放してその分を左 右の2ポイントに再配分する.この時,地表(上辺)変 位がどのように動くかを有限要素法により求めたものが 矢印の結果である (実線→破線). 下図では, 同様の応力 解放を左端の1ポイントに適用する. 上図と下図とでは 応力解放の位置が異なるだけであるが、地表変位に与え る影響はまるで異なる、上図では、中央の力が抜けても 左右のポイントで支えるため、結果的に地表での変形は ほとんど見られない.一方,下図のような状況であれば, 応力が解放された部分の直上の地面は大きく変形する. 従って、地表の GPS 観測では下図のような動きは検知 できても、上図のような状況は検知し難いということに なる.現在観察されている変化は,双方の図で示される

Fig. 10. Sequential pattern change of the seismicity in the slab, where the solid parts correspond to the quiescent region (less than 50% compared to the standard seismicity), and the open parts to the activated one (greater than 150%). The time span of one year is shifted every two months. The year/month in each figure indicates the center of the time span.

Fig. 11. Models showing the relationship between the locked subduction and the ground surface deformation. The boxes are the overriding plate. The bottom is dragged with share stresses expressed by the short arrows, while the top is free. Both sides are fixed. The surface deformations calculated using a FEM program are expressed by the long arrows. In the upper case, the middle arrow among the three stressing arrows is released, then the ground surface is transformed little from solid long arrows into broken ones. In the lower case, the left one among the three arrows is released. The deformation on the surface is distinct only in the lower case.

状況が同時に発生することによるものと想像される. つ まり,固着域の外縁部でスロースリップが進行すると同 時に,固着域の内部では応力の緩和と再編成が進行して いると考える. この場合,将来の大規模破壊に向けて問 題となる動きは後者,すなわち固着域内部での状態変化 であって,それは地表の地殻変動観測では捉え難いと予 想される. こうした意味で,プレート境界面の直上,あ るいは直下で起きている地震活動変化をモニターするこ とは,固着状況変化を把握する上で他に代え難い手段で ある.

上記の考え方に従って、地震活動パタンの変遷をどう 見るかに関しての筆者の解釈をまとめてみる. Fig. 12 に静穏化が始まって以来の全期間(1999年8月-2002年 12月)を平均化した白黒パタンを示した.対象は, Fig. 10と同様、スラブ内の地震活動であるが、静穏化域の描 き方は Fig. 10 とは異なり、基準期間のレベルを少しで も割り込む範囲(100%以下)全てを黒く塗りつぶして いる. 図中には推定固着域の輪郭も表示したが, 固着域 の内部に3箇所の白抜き部(図の A, B, C)を残して, 静穏化域がその周囲を取り囲んでいることが分かる.こ の図,あるいは Fig. 10 に描いた白黒パタンは何を意味 するのだろうか. ここでは、固着面における固着の強さ が、直下の地震活動に投影されていると考える、すなわ ち、黒色部は、直上の固着面で固着の緩みがあり若干の 応力解放があることを意味し、白色部は、直上の固着が まだ健全であって、黒色部で解放された応力のしわ寄せ のために活性化したことを示すと解釈するのである. Fig. 10 で, 時期の異なる第 ii 列と第 iv 列のパタンには, ある程度の類似性が見られる. それは、パタンに共通の 下地があったのではないか,ということを想像させる. おそらくその下地は、固着の不均質としてもともと存在 したものであろう. 安政東海地震後, 固着の回復過程で は不均質の存在はまだ顕わにはなっていない. 時を経て 蓄積された応力の絶対値が臨界に近づくにつれ、不均質 分布の中の最も弱い部分から滑りが始まり、同時に、強 い部分へのしわ寄せが始まる. Fig. 10 に描かれたまだ ら模様の変遷は、隠されていた不均質分布が顕わになる 過程を見せているのではないだろうか. そうだとする と,現在,実質的に滑りに抵抗して全体の応力を支えて いるのは,残された白抜き部 (Fig. 12 の A, B, C) とい うことになる. そしてこれらは, 最終破壊の時点で asperity として認識される部分になるものと推測される.

再度, Fig. 6, 及び Fig. 7 の時系列図に戻ってさらな る考察を進める.地震活動と地殻変動の双方に顕著な変 化が出現したのは, 1999後半から 2000 年半ばにかけて である.しかし,3節でも議論したように,地震活動の微 弱な変化は 1997年初めには既に始まっている.この少 し前,1996年10月には,静岡県川根町の直下に M 4.3 の静岡県中部地震が起きている.この地震は,この付近 ではきわめて珍しい発震機構解を持ち,プレート境界の 固着のはがれを示唆するものであった(松村,1998).筆 者としては,現在,我々が観察している全ての固着状況 変化の発端はこの地震にあったのではないか,との仮説 を提示しておきたい.また,この地震は,Fig. 12 の 3 個 の想定 asperity の内, A の中で起きたものであること

Fig. 12. Spatial pattern of the seismicity change in the slab, where the solid parts correspond to the quiescent region (less than 100% compared to the standard seismicity of Fig. 9), and the open parts to the activated one (greater than 150%). The period of the anomaly compared to the regular one is 3.4 years from 1999/8 until 2002/12. Three open parts marked A, B, and C inside the inferred locked zone are considered to be current stress-concentrated areas, which are assumed to form asperities at the time of the entire failure.

に注意を喚起し,この asperity の今後の動向に注目す ることを提案したい.

6. おわりに

スロースリップの出現を契機に、東海地震への警戒感 が高まっている.スリップがスタートしてから3年近く を経過するが、現状では加速する傾向は見られず、また その範囲も、固着域の外縁をなぞるだけのように見え る.スリップそのものはいずれ一旦停止するだろう、と の推測が濃厚である.他方、GPSでは検知されないもの の、固着域内部では応力分布の再編成を促すような状態 変化がスリップと併行して進行しつつある.最も重要な 問題は、現在の状況が"一過性のゆらぎ"なのか、"破局 への方向性を持った過程"なのかを識別することであ る.これは、現在が"既に臨界"にあるのか、"未臨界" にあるのかを認識することとも関係する.問題の解決に 向けて二つの課題が浮かび上がる.ひとつは、現在の動 き一地震活動と地殻変動の時空間変化一を統一的に説明 できるモデルを作り上げること、そしてもうひとつは、

現在の地殻活動と過去の活動との対比を行うことであ る. 我々の観測はたかだか 20 年余りでしかなく, 安政東 海地震以来150年近くを経過した過程のほんの一部をか いま見たに過ぎない。激しく変動したかもしれない過去 の過程を知らないままに現在のデータだけでその位置づ けを推し量ろう、ということはそもそも無理な算段とも 言える、過去と現在では観測の質・量ともに大きな隔た りがあるため、単純に同一線上での議論を進めることは できないからである.しかし,過去とのつながりを推量 するすべが全く無いわけではない.本稿の初節で紹介し たようなマグニチュード分布の対比は、ひとつのヒント である.現在と過去,双方のGR 式上での連続性は定量 的な意味での地震活動の安定性、継続性を示唆してい る. そしてそのことは、現在の地震活動のモニタリング に対して、それが100年を超える過去の過程の延長を見 ているはずである、という推量に対しての一定の根拠を 与えてくれる. 地殻変動の場合も同様であろう. GPS 観 測によって検知されたスロースリップが過去において繰 り返したかどうか、という観点に立って過去の測地測量 との量的な対比を試みることは、現在の動きの位置づけ を行う上で重要な視座をもたらすものと考える.

謝 辞

気象研究所山本剛靖氏には、同氏の解析結果の図面を 使用することを快く了承いただきました.東大地震研究 所の加藤尚之氏には、研究集会への誘い、さらには、本 論文作成に関わる諸事への便宜を図っていただきまし た.また、査読いただいた匿名の二氏の助言により、有 意義な改訂を行ことができました.ここに記して、これ らの方々への感謝の意を表します.

参考文献

- Dieterich, J.H., 1994, A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601–2618.
- Heki, K. and S. Miyazaki, 2001, Plate Convergence and Long-Term Crustal Deformation in Central Japan, Geophys. Res.Let., 28, 2313–2316.
- Ichikawa, K., 1971, Reanalyses of Mechanism of Earthquakes which Occurred in and near Japan, and Statistical Studies on the Nodal Plane Solutions Obtained, 1926–1968, Geophys. Mag., 35, 207–274.
- Ishida, M., 1995, The Seismically Quiescent Boundary between the Philippine Sea Plate and Eurasian Plate in Central Japan, Tectonophys., 243, 241–253.
- Kanamori. H., 1977, The energy release in great earthquakes, J. Geophys. Res., 82, 2981–2987.
- 木股文昭,2002,東海地域で繰り返し発生しているスローイベント(1978-1996年),地震予知連絡会会報名古屋大学大学院理学研究科資料,67,238-244.
- 国土地理院,2003a,東海地方の地殻変動,地震予知連絡会会 報,69,303-396.
- 国土地理院,2003b,伊豆地方の地殻変動,地震予知連絡会会 報,69,223-260.
- 増子徳道,野口伸一,2003,防災科研関東・東海地殻活動観測 網と Hi-net 及び気象庁の震源データの比較 (その2),日

本地震学会講演予稿集 2003 年度秋季大会, A049.

- Matsumura, S., 1997, Focal zone of a future Tokai earthquake inferred from the seismicity pattern around the plate interface, Tectonophys., 273, 271-291.
- 松村正三, 1998, 1996年10月5日静岡県中部地震が示す東海 地域のプレート間固着状況変化の可能性, 地震2,50,251-261.
- Matsumura, S. and N. Kato, 1999, Recognition of a Locked State in Plate Subduction from Microearthquake Seismicity, Pure and Applied Geophys., 155, 669–687.
- 松村正三,2002, 東海の推定固着域における 1990 年代後半の地 震活動変化, 地震 2,54,449-463.
- Okada, Y., 1992, Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018-1040.
- Ozawa, S., M. Murakami, M. Kaidzu, T. Tada, T. Sagiya, Y. Hatanaka, H. Yarai and T. Nishimura, 2002, Detection and Monitoring of Ongoing Aseismic Slip in the Tokai Region, Central Japan, Science, 298, 1009–1012.
- Sagiya, T., 1999, Interplate coupling in the Tokai District, Central Japan, deduced from continuous GPS data, Geophys. Res. Let., 26, 2315–2318.
- Seno, T., S. Stein and A.E. Gripp, 1993, A Model for the Motion of the Philippine Sea Plate Consistent with NUVEL-1 and Geological Data, J. Geophys. Res., 98, 17941–17948.
- 武尾 実・阿部勝征・辻 秀昭, 1979, 1935 年 7 月 11 日静岡 地震の発生機構, 地震 2, 32, 423-434.
- Ukawa, M., 1982, Lateral stretching of the Philippine Sea plate subducting along the Nankai-Suruga trough, Tectonics, 1, 543–571.
- 山本英二・松村正三・大久保正,2003,傾斜及び地震観測で捉 えた東海地域におけるスロースリップイベントー繰り返し 発生している可能性一,日本地震学会講演予稿集2003年 度秋季大会,C097.
- 山本剛靖,2002,定常変動も含めて求められたプレート間すべ り分布,第203回地震防災対策強化地域判定会気象研究所 提出資料,13pp.

(Received June 13, 2003) (Accepted October 21, 2003)