北上低地帯西縁断層系における浅層反射法地震探査

蔵下英司¹⁾*・佐藤比呂志¹⁾・越谷 信²⁾・野田 賢²⁾・加藤 一³⁾・荻野スミ子¹⁾・武田哲也⁴⁾・ 平野信一⁵⁾・池田安隆⁶⁾・井川 猛⁷⁾

¹⁾東京大学地震研究所・²⁾岩手大学工学部・³⁾山梨大教育人間科学部・⁴⁾東京大学地震研究所(現在:防災 科学技術研究所)・⁵⁾東北大学理学部・⁶⁾東京大学理学部・⁷⁾(株)地球科学総合研究所

Shallow seismic reflection profiling across the western marginal faults of Kitakami Lowland, northern Honshu Island, Japan

Eiji Kurashimo¹⁾*, Hiroshi Sato¹⁾, Shin Koshiya²⁾, Masaru Noda²⁾, Hazime Kato³⁾, Sumiko Ogino¹⁾, Tetsuya Takeda⁴⁾, Shin-ichi Hirano⁵⁾, Yasutaka Ikeda⁶⁾ and Takeshi Ikawa⁷⁾

¹⁾ Earthquake research institute, the University of Tokyo, ²⁾ Faculty of Engineering, Iwate University, ³⁾ Faculty of Education and Human Sciences, University of Yamanashi, ⁴⁾ Earthquake research institute, the University of Tokyo (Present, National Research Institute for Earth Science and Disaster Prevention), ⁵⁾ Faculty of Science, Tohoku University, ⁶⁾ School of Science, the University of Tokyo, ⁷⁾ Japex Geoscience Institute Inc.

Abstract

In 1997–1998, integrated passive and active seismic experiments were conducted in northern Honshu, Japan. These experiments aimed at understanding the relationship between earthquake occurrence and deformation process of the intra-island-arc crust. In the summer of 1998, a shallow seismic reflection survey was conducted to obtain the fault's detailed geometry to depths of 1 km across the western marginal faults of Kitakami Lowland, Iwate Pref., Japan. The seismic source was a mini-vibrator. The data set recorded by the digital telemetry system was processed using seismic reflection technique. Imaging was preformed using conventional common mid-point processing steps, including post-stack migration and depth conversion. A reflection image shows the deep geometry of the Uwandaira fault, which is positioned at the eastern edge of the Ou Backbone range.

Key words: shallow seismic reflection profiling, reverse fault, western marginal faults of Kitakami Lowland, northern Honshu

1. はじめに

内陸地震の発生様式を理解するためには、地震発生に いたる地殻活動に関する知見を得ることが重要である. そのためには、地震発生層である上部地殻の構造・断層 の幾何学的形状に関する情報は必要不可欠である. 1997 年から 1998 年の 2 年間にわたり、代表的な島弧系をな す東北日本弧において合同地震観測・構造探査実験が実 施された(Iwasaki *et al.*, 2001, Sato *et al.*, 2002, Matsubara *et al.*, 2004). 構造探査実験のうち、制御震源と して火薬とバイブレータ震源を用いた深部地殻反射法地 震探査が、とりわけ変形が集中していると推定される奥 羽脊梁山地の構造とその周辺の活断層の深部形状を把握 する目的で実施された(Sato et al., 2002). 1998 年の深 部地殻反射法地震探査は、岩手県石鳥谷町葛丸川沿いの 15km で実施され、北上低地帯西縁断層系の深部構造が 明らかになった(Sato et al., 2002). 深部地殻反射法地震 探査測線と交差する北上低地帯西縁断層系には、ほぼ南 北走向の逆断層系が存在し(活断層研究会, 1991),奥羽

*e-mail: ekura@eri.u-tokyo.ac.jp(〒113-0032 東京都文京区弥生 1-1-1)

Fig. 1. Map showing the location of the shallow seismic reflection survey line and stacking line. Base maps are parts of 1: 25000 topographic map 'Shiwa', 'Hizume', 'Hanamakionsen' and 'Ishidoriya' of Geographical Survey Institute.

脊梁山地との間に明瞭な地形・地質境界が形成されてい る(渡辺・溝田, 1991).地表近傍で得られる活断層の活 動性(平均的なすべり速度,活動履歴など)から震源断 層の活動を推定するためには,深部地殻反射法地震探査 で得られた地震発生層における断層の形状と地表で確認 できる活断層群との関係を明らかにすることが必要であ る.そのためには,浅層におけるこれら断層の幾何学的 形状を高分解能で明らかにする必要がある.そこで,浅 層反射法地震探査を深部地殻反射法地震探査と同様の測 線上で行なった(Figs.1 and 2).本稿では,浅層反射法 地震探査の概要とデータの処理結果について報告する.

2. 観測とデータ

浅層反射法地震探査は主として東京大学地震研究所の システム(佐藤,1996)を使用し,1998年8月24日から 8月28日まで実施した.本探査のデータ取得に関する仕 様をTable1に示す.測線は岩手県石鳥谷町大瀬川から

葛丸川ダムの手前までの約3kmで,深部地殻反射法地 震探査測線の東側部分と重複している(Fig. 1). 受振器 は固有周波数10Hz(9個組)の上下動地震計を使用し, 測線上に 12.5 m 間隔で設置した. 総受振点数は 240 点 である. 探鉱器はデジタルテレメトリーシステム方式 (岩城・他, 1991)の GDAPS-4 を使用した. 収録は 130 ch, サンプリングは 500 Hz で行い, コリレーション後の 記録長は 3 sec とした. 震源は米国 Industrial Vehicles International (IVI) 社製の油圧バイブレーター震源(佐 藤, 1996)を使用し、スイープ周波数は10-80 Hzの線形 アップスイープ,スイープ長は15秒で発震を行った.発 震点間隔は 25 m で, 1 地点で 5 回の垂直重合を行った. 総発震点数は 120 点である.得られた記録を用いて作成 した距離時間軸断面図の例を Fig. 3 に示す. Fig. 3 は北 上低地帯に位置する受振点番号 (RP) 41 での発震によ り得られた記録である. 初動は, 設置した受振点の全て で観測され、初動到達後も明瞭な反射波が確認できる.

Fig. 2. Geological map around the study area.

Table 1. Data acquisition parameters for the present seismic reflection survey.

Survey date	Aug. 24 - Aug. 28. 1998
Length of seismic reflection line	3 km
Source parameters	
Source	Mini-vibrator (IVI, T-15000)
Sweep frequency	10 – 80 Hz
Number of sweeps	5
Number of shot points	120
Shot interval	25 m
Receiver parameters	
Natural frequency	10 Hz
Receiver interval	12.5 m
Number of receiver points	240
Recoding parameters	
Recoding system	GDAPS-4
Sampling interval	2 ms
Number of channels	130 ch
Recording length	3 sec

3. 解析

反射法地震探査データ処理は、Fig.4に示す通常の共 通反射点重合法によった.処理には、米国 Mercury International Technology (MIT) 社のソフトウェアー iXL を使用した.以下に処理の流れに沿って主なデータ 処理の概略を説明する.

(1) ジオメトリーの設定 (Geometry Set)

測量データに基づいた震源・受振点の座標から共 通反射点,共通反射点分布,重合数を算出し,重合測 線を設定した.設定した重合測線を Fig. 1 に示す. CMP 間隔は 6.25 m であり,重合測線に沿った重合数 の平均は約 50 となった (Fig. 5).

(2) 屈折初動解析 (Refraction Analysis)

各ショット記録の初動走時を読み取り,発震点及 び受振点におけるタイムターム値と第2層目の速度 (表層基底速度)をインバージョンによって求めた (Fig. 6).解析には,(株)地球科学総合研究所製のソ フトウェア iRASを用いた.ここでは,第1層目の速 度(表層速度)を,距離時間軸断面図から読み取った 見かけ速度より 0.5 km/s とした.

- (3) 初動ミュート(First Break Mute)
 読み取った初動走時データを用いて、初動付近の 大振幅を除去した.
- (4) バンドパスフィルター(Bandpass filter) ショット記録に見られるノイズを除去するために, 以下のバンドパスフィルターを適用した. Low Cut: 5 Hz, Low Pass: 10 Hz, High Pass: 80 Hz, High Cut: 85 Hz
- (5)振幅回復(Gain Recovery)自動振幅調整(Automatic Gain Control; AGC)
 - を用いた.AGC のゲート長は 200 ms とした.
- (6) \vec{r} = $\nu = \nu = \nu = \nu = \nu = \nu$ (Deconvolution

Fig. 3. Example of the observed seismograms. Location of shot point is RP 41. The horizontal axis represents the source-receiver offset. A band-pass filter of 5-85 Hz and a 200 ms automatic gain control are applied.

Fig. 4. Flow chart of data-processing.

以下のパラメータを用いて,デコンボリューショ ンフィルターを適応した.

ゲート長:1500ms, オペレータ長:150ms, 予測距離:

4ms, プレホワイトニングファクター: 3%

(7)静補正(Static Correction)浮動基準面に対する静補正を実施した.補正値は、屈折初動解析による結果を用いて計算した.

- (8) NMO 補正 (Normal Move-out Correction) と速 度解析 (Velocity Analysis)
 定速度重合法を用いた速度解析を行い,得られた
 重合速度 (Fig. 7)を用いて NMO 補正を行った.速
 度解析は, CMP 40, 90, 130, 170, 200, 230, 260, 300, 340, 400 で行った.
- (9)残差静補正(Residual Static Correction) 補正値の許容範囲を2msまでとし、NMO補正後のCMPアンサンブルデータの反射波に対して相関 解析を行うことでトレース間のラグ値を求め、統計的に発震点及び受振点固有の誤差に仕分けをして、 残差静補正を行った。
- (10) 共通反射点重合(CMP Stack) 速度解析により得られた重合速度(Fig. 7)を用い て NMO 補正を行った後,CMP アンサンブル記録を 水平方向に加え合わせた。
- (11) マイグレーション (Migration)差分方程式マイグレーションを適応した.使用し

Filter)

Fig. 5. Distribution of number of folds along the CMP stacking line.

Fig. 6. Surface structure determined by time-term analysis. (a) time-terms (b) velocities of second layer (c) topography and geometry of first layer.

Fig. 7. Stacking velocities determined by velocity analysis. Velocities are shown using a gray scale. Solid counter lines indicate velocity in km/s. The counter interval is 0.2 km/s. Numerals indicate P-wave velocity in km/s.

た速度構造は、NMO 補正時に与えたものと同じもの である.

(12) 深度変換(Depth Conversion)
 重合速度構造を基にした区間速度を用いて深度変換を行った。

4. 結果と解釈

Fig. 4 で示したデータ処理によって得られた重合断面 図(マイグレーション前)をFig. 8 に,深度断面図を Fig. 9 に示す.深度断面図(Fig. 9)では,RP 70 付近か ら西に傾斜する反射イベントが深度 0.7 km 程度まで確 認できる(Fig. 9 の矢印).その面を境に東側では深度 0.4 km 以浅で水平方向に連続性の良い反射面が見られ る.また,RP 1-RP 70 の深度 0.8 km から1 km 付近に も水平な反射面を持つ層が確認できる.RP 70-130 付近 では東側に比べ反射面が乏しく,反射層が乱れたパター ンを示している.RP 160 付近から西側では,深度 0.3 km 以浅で水平な反射面を持つ層が見られる.この層は RP 160 付近を境に東方では徐々に東傾斜に変化している.

表層地質 (Fig. 2) と対比させると、本探査測線は上平 断層群と RP 70 付近で交差する. この位置は、測線東側 の浅層部で良好な連続性のよい反射面が得られる部分と 反射層が乱れたパターンを示す部分との間にほぼ一致し ており、この構造上の不連続をなしている箇所を断層と 判断できる. また、 RP 80 から RP 150 にかけての深度 0.3-0.7 km に,西に傾斜した反射イベントが存在する が,これは,本断層の延長部と推定される.上平断層の 上盤側では,上部中新統のカルデラ充填堆積物が幅広い 急傾斜帯をなし,断層近傍では逆転 40°までの変形を示 している (Fig. 2).この急傾斜帯の影響で,断層近傍の 上盤側の浅層部では層理面からの反射波が検出されず, 重合断面では乱れたパターンが得られていると考えられ る.また,断層の低下側にはより上位の鮮新統の堆積層 が分布することから,本断層は東側低下の逆断層と判断 できる.

5. まとめ

1998 年 8 月,北上低地帯西緑断層系の深部構造の把握 を目的とした深部地殻反射法地震探査が実施された.地 表で確認できる活断層と深部地殻構造とを合わせて議論 するためには,浅層におけるこれら断層の幾何学的形状 を高分解能で明らかにする必要がある.そこで,ミニバ イブレータを用いた浅層反射法地震探査を,深部地殻反 射法地震探査と同様の測線上で実施した.共通反射点重 合法による処理によって,深度1km程度までの反射法 断面図を得ることができ,上平断層に対応づけられる西 傾斜の反射イベントが深さ 0.7 km 付近まで確認するこ とが出来た.

北上低地帯西縁断層系における浅層反射法地震探査

-146-

謝 辞

浅層反射法地震探査を実施するにあたり, 岩手県石鳥 谷町役場の方々には各種の便宜を図って頂きました. 探 査データの取得に際して,東京大学地震研究所(当時)の 新井慶将,岩手大学工学部(当時)の加藤貴史,森下裕 介,福井啓人,阿部嘉貴,後藤由雄,堀内千香,越中大介, 三田地喜之,長岡亜冬子,奥寺勇樹,佐藤寿正,嶋守真 紀,滝口真一,高橋香子,辻真人,村上慎二の諸氏に御協 力を頂きました. 東京大学地震研究所の篠原雅尚助教授 からのコメントは,本原稿を改善する上で大変参考にな りました.ここに記して深く感謝の意を表します.

参考文献

Iwasaki, T., W. Kato, T. Moriya, A. Hasemi, N. Umino, T. Okada, K. Miyashita, T. Mizogami, T. Takeda, S. Sekine, T. Matsushima, K. Tashiro and H. Miyamachi, 2001, Extensional structure on northern Honshu Arc as in-

feered from seismic refraction/wide-angle reflection profiling, Geophys. Res. Lett., **28**, 12, 2329–2332.

- 岩城弓雄・橋田功・多田正明・井川猛・八木章, 1991, 高精度 多チャンネル地震探査システム,物理探鉱, 44, 232-240.
- 活断層研究会,1991,新編 日本の活断層一分布図と資料,東京 大学出版会,437pp.
- Matsubara, M., N. Hirata, H. Sato and S. Sakai, 2004, Lower crustal fluid distribution in the northeastern Japan arc revealed by high-resolution 3D seismic tomography, Tectonophysics, **388**, 33-45.
- 佐藤比呂志, 1996, 東京大学地震研究所に導入された反射法地 震探査システム, 活断層研究, 15, 100-105
- Sato, H., N. Hirata, T. Iwasaki, M. Matsubara, and T. Ikawa, 2002, Deep seismic reflection profiling across the Ou Backbone range, northern Honshu Island, Japan, Tectonophysics, 355, 41–52.
- 渡辺満久・溝田健志,1991,北上低地帯西縁・花巻市西方の活 構造,活断層研究,9,19-25.

(Received November 14, 2006) (Accepted January 19, 2007)