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Abstract: 
     This paper presents a new approach to calculate dislocation Love numbers using observations of a satellite 
gravity mission (e.g. GRACE). The necessary condition is that the co-seismic potential change be sufficiently 
large to be detected by the gravity mission. Co-seismic deformations for each spherical harmonic degree n are 
decoupled. Therefore, dislocation Love numbers of degree n can be determined independently. The determinable 
maximum harmonic degree n depends on the seismic size, source type, magnitude, and the accuracy of a satellite 
gravity mission. For an arbitrary seismic source, all four types of dislocation Love numbers can be determined 
using data from only one seismic event because all deformation components are involved together. Only the 
concerned dislocation Love numbers can be computed for any one of the four types of sources.  
 
 
1. Introduction 
 

Dedicated satellite missions, such as The Gravity Recovery and Climate Experiment (GRACE) [NRC, 1997], 
are now available for gravity field determination from space. They provide an extremely accurate, global, and 
high-resolution estimate of constant and time-variable components of the earth’s gravity field every 30 days over 
a 5-year period [Wahr et al., 1998]. It is anticipated that the gravity missions will yield extremely wide 
geophysical applications in geosciences, with measurement of temporal gravity variations caused by various 
geophysical processes including atmospheric mass redistribution, ocean circulation, polar ice melting or 
aggregation, visco-elastic response of the Earth’s lithosphere to past and present loads, and others [Chao et al., 
2000; Chao, 2003]. In addition to these processes, earthquakes can produce large global gravity perturbations that 
are detectable through analysis of gravity mission data. Gross and Chao [2001] investigated gravity perturbations 
using normal mode technique based on Chao and Gross [1987]. Comparing the degree amplitude spectra of some 
earthquakes with expected GRACE sensitivity, they concluded that co-seismic effects of great earthquakes such 
as the 1960 Chilean or 1964 Alaska events can cause global gravitational field changes that are sufficiently large 
as to be detectable by GRACE. Sun and Okubo [2004a, b] approached this problem from two perspectives. They 
derived theoretical formulations of co-seismic geoid and gravity changes and their degree variances, expressed by 
dislocation Love numbers. These expressions are achieved using the dislocation theory of Sun and Okubo [1993], 
for a spherical earth as it is expressed in the form of spherical harmonics. They investigated co-seismic geoid and 
gravity changes by observing the distribution of their degree variances in comparison to the expected sensitivity 
of satellite gravity missions. Co-seismic deformations for large earthquakes are discussed with respect to their 
detectability. Results indicate that both the gravity and geoid changes are near two orders of magnitude larger than 
the precession of gravity missions in low harmonic degrees. Based on those results, they derived the minimum 
magnitudes of earthquakes detectable by GRACE. Their conclusion was that co-seismic deformations for an 
earthquake with a seismic magnitude greater than m=7.5 (for tensile sources) and m=9.0 (for shear sources) are 
expected to be detectable by GRACE. Note that the dislocation Love numbers used in Sun and Okubo [2004a, b] 
are obtained conventionally for a spherically symmetric earth model such as the 1066A [Gilbert and Dziewonski, 
1975] or the preliminary reference earth model (PREM) [Dziewonski and Anderson, 1981]. However, dislocation 
Love numbers calculated based on an earth model are theoretically different from those of the earth. On the other 
hand, Okubo et al. [2002] showed that the co-seismic deformations vary if the earth parameters are adjusted. That 
fact implies that the accuracy of the dislocation Love numbers depends directly on the rightness of the adopted 
earth model. If possible, it is better to determine them by real observations because they carry real information 
regarding the earth’s structure. Satellite gravity missions provide the possibility of determining the dislocation 
Love numbers.  

Therefore, dislocation Love numbers are considered in this study as unknown variables. They are derived 
from observations of satellite gravity missions such as GRACE. Then theoretical formulations are presented for 
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determining the dislocation Love numbers. They are applicable to study the inner structure of the earth as a new 
approach or condition because the dislocation Love numbers derived independently from space carry real 
information about the earth’s mass distribution. Numerical applications should be useful for a seismic event that is 
sufficiently large to be detectable from space. 
 
 
2. Co-seismic Potential Change and Dislocation Love Numbers 
 
Assume that an inclined point dislocation is located on the polar axis in a compressible and self-gravitating 
spherical earth, and that the fault line is in the direction of 0=ϕ  (Greenwich meridian). According to the 
quasi-static dislocation theory, the co-seismic potential change at an observation point ),,( ϕθa  can be expressed 
as [Sun and Okubo, 1993] 
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where ij

nmk  (related to the gravitational potential change) are the dislocation Love numbers, function of the 
spherical harmonic degree, order, source depth, and source type. Components of the slip vector and its normal on 
the infinitesimal fault area dS are iν  and jn with total dislocation U. Gravity on the earth surface is 0g , a is the 

Earth’s radius, and ),( ϕθm
nY  is the spherical harmonic function of degree n and order m. The so-called 

dislocation factor, 2
0 / aUdSg , defines the earthquake magnitude and gives the unit of potential change.  

A combination of the three slip and three normal components means that nine solutions exist for all possible 
sources. However, only four independent solutions exist if the earth model is spherically symmetric and isotropic. 
A deformation caused by an arbitrary source can be obtained by a proper combination of the four types of 
independent sources. In this study, we choose the following four independent solutions: ij = 12, 32, 22, and 33. 
They represent strike-slip, dip-slip, horizontal tensile and vertical tensile, respectively. Components of ij = 22 
include two parts: m = 0 and 2. Computation of m = 2 is derived easily from the component of ij = 12. Expressions 
of the four independent solutions are given as the following [Sun and Okubo, 1993]. 
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A co-seismic potential change caused by an arbitrary inclined fault can be expressed by the above four 

independent solutions. In this case, a dislocation vector ν  and its normal n can be described in terms of dip-angle 
δ  and slip-angle λ  of the fault as 
 

δδ sincos 23 een −=        (6) 

λδλλδ sincoscossinsin 213 eeeν ++= .     (7) 
 
We face a shear dislocation problem if dislocation vector ν  runs parallel to the fault plane. Similarly, for a tensile 
opening, the dislocation vector ν  and its normal n become equal:  
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δδ sincos 23 eenν −== .      (8) 

 
Then for an arbitrary shear fault on the polar axis, according to Eqs. (1)–(5) the co-seismic potential change can be 
written as the following. 
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Similarly, for a tensile source, the co-seismic potential change becomes the following. 
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Dislocation Love numbers ij
nmk  in (9) and (10) are obtained conventionally for a spherically symmetric earth 

model [Sun and Okubo, 1993] such as the 1066A [Gilbert and Dziewonski, 1975] or the preliminary reference 
earth model (PREM) [Dziewonski and Anderson, 1981]. Once a dislocation source or earthquake parameter is 
provided, co-seismic deformations can be calculated easily using these Love numbers. Subsequently, the potential 
change can be calculated by the above summations in (9) or (10). 

However, the dislocation Love numbers calculated based on an earth model are theoretically worse than those 
of the earth. Furthermore, Okubo et al. [2002] showed that co-seismic deformations vary if the earth parameters 
are adjusted. That fact implies that the accuracy of the dislocation Love numbers depends directly on the adopted 
earth model. If possible, it is better to determine them using real observations. Satellite gravity missions provide 
just such a possibility. For that reason, dislocation Love numbers are considered to be unknown variables in this 
study, and are derived from observations of satellite gravity missions, such as GRACE. In previous studies, Sun 
and Okubo [2004a, b] proved that the satellite gravity mission (GRACE) is able to detect co-seismic deformations 
from space. This benefit allows the study of the earth’s inner structure from a new vantage because dislocation 
Love numbers, when they are derived independently from space, carry reliable information of the earth’s mass 
distribution. Therefore, the observed dislocation Love numbers are useful not only for geodetic application, but 
also for modeling the earth structure as a new condition, in combination with seismic knowledge. 

Co-seismic deformations can be studied for individual harmonic degrees because the satellite gravity missions 
provide potential measurements in the form of spherical harmonic coefficients, as indicated by Chao and Gross 
[1987]. Note that the terms of degrees n=0 and n=1 in Eqs. (9) and (10) vanish because the total mass of the earth 
is constant and the reference frame origin is located at the center of mass of the earth model. On the other hand, 
the angular order m vanishes except m = 0, 1 and 2 because the source is chosen at the polar axis and because of 
the symmetric property of the source functions. 
 
 
3. Potential Change Observed by Satellite Gravity Missions 
 
On the other hand, satellite gravity missions provide the following observations for a potential anomaly as a 
spherical harmonic series [Heiskanen and Moritz, 1967]: 
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where nmC∆  and nmS∆  are differences of two sets of spherical harmonic coefficients ( 1

nmC ,
1
nmS ) and 

( 2
nmC ,

2
nmS ) of the geo-potential model observed by the GRACE mission: 
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12
nmnmnm SSS −=∆ .       (13) 

 
Notice that a dislocation may occur at an arbitrary position in the earth in practice, whereas satellite gravity 
missions always provide results in spherical coordinates with the North Pole as orientation. Then the theoretical 
co-seismic potential changes expressed in (9) and (10) and the potential change provided by the satellite in (11) 
are for two different spherical coordinate systems: ),,( ϕθa  and )',',( ϕθa . For comparison, they must be 
unified into one coordinate system by transforming one of them to the other’s format. Because of the spherical 
symmetric property, results are identical whichever is transformed. Nevertheless, the dislocation Love numbers in 
(9) and (10) are unknown and are derived from satellite observations. For that reason, it is convenient to leave 
them unchanged. On the other hand, if the seismic source is chosen at a pole, the co-seismic potential change only 
contains spherical harmonic orders m=0, 1 and 2. Otherwise, all spherical harmonic orders m will be involved. 
Therefore, we transform Eq. (11) into the same system as that used in (9) and (10) below:  
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and coefficients k

nma  and 
k
nmb  can be obtained by a set of reoccurrence formulas, as listed in Appendix A. 

 
 
4. Dislocation Love Numbers ij

nmk  Derived From Observations of Gravity Missions 
 
Theoretically, the predicted potential change ),,( ϕθψ aShear  (or ),,( ϕθψ aTensile ) should be identical to the 
observed ),,( ϕθaT  anywhere on the earth surface, as  
 

),,(),,( ϕθϕθψ aTa ≡ .       (17) 
 
In practice, the use of either ),,( ϕθψ aShear  or ),,( ϕθψ aTensile  depends on the actual source type – shear or 
tensile. On the other hand, relation (17) holds for any harmonic degree. Consequently, we only discuss spherical 
harmonic degree n in the following. Assuming a shear seismic source, inserting (9) and (14) into (17) yields 
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Note that ),( ϕθif  (i=1,2,3,4) and ),( ϕθg  in (18) are known once the parameters of an earthquake are 

provided. The only unknowns are the four dislocation Love numbers 12
2nk , 32

1nk , 22
0nk  and 33

0nk . The remaining 
task is to solve Eq. (18). For that purpose, (18) can be discretized into a linear system 
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So that the unknown dislocation Love numbers K can be obtained easily as 
 

GFK 1−= .        (28) 
 
Decoupling of the dislocation Love numbers simplifies matters if the seismic source is occasionally one of 
the four independent types. For a vertical strike-slip (m=2), Eq. (18) can be reduced to 
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Thereby, the dislocation Love number can be written as 
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Similarly, we may obtain dislocation Love numbers for the other three source types as 
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However, in this special case, not all, but only the concerned dislocation Love numbers can be determined. 

For a tensile source, similar equations exist as (18)–(33), but with slightly different contents for 
),( ϕθif  (i=1,2,3,4). They are omitted here because a pure tensile rupture occurs very rarely in practice. If 

necessary, they can be written out easily in the same manner as those for the shear source. 
 
 
5. Discussion and Final Remarks 
 
This study presents a new method to calculate dislocation Love numbers using observations of a satellite gravity 
mission such as GRACE. A necessary condition is that the co-seismic deformations (e.g., potential change) 
should be sufficiently large to be detectable by the gravity mission. Deformations for each spherical harmonic 
degree n are decoupled. Therefore, the dislocation Love numbers can be determined independently for each n. 
However, the maximum determinable harmonic degree n depends on the seismic size, source type, and the 
accuracy (detectability) of a satellite gravity mission. For example, for a seismic event as large as the 1964 Alaska 
earthquake, the dislocation Love numbers of the first 70 spherical harmonic degrees are expected to be 
determinable using GRACE observations [Sun and Okubo, 2004a, b]. The forthcoming gravity mission GRACE 
follow-on is expected to improve accuracy by two orders [Watkins, et al., 2000]. Therefore, more harmonic 
degrees are expected to be determined. On the other hand, for an arbitrary seismic source (with certain dip angle, 
e.g., around o45=δ ), all four types of dislocation Love numbers can be determined using only one seismic 
event because all deformation components are involved together. However, only the related dislocation Love 
numbers can be computed in the case of any one of the four types of sources. For example, only 12

2nk  can be 
obtained for a vertical strike-slip earthquake. 
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Appendix A. Transformation coefficients k

nma  and k
nmb  

 
According to Xu and Jiang (1964), the transformation coefficients k

nma  and k
nmb  used in (15) and (16) can be 

derived by the following recurrence formulas, assuming ),( 00 ϕθ  as the orientation of the seismic source, i.e. 
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