将来合成開口レーダについて-災害観測/資源 観測-

Future spaceborne synthetic aperture radar - disaster/resources monitoring

島田政信,大沢右二(地球観測利用推進センター / 宇宙航空研究開発機構) masanobu shimada, Yuji Osawa(Earth Observation Resaerch center/Japan Aerospace Exploration Agency)

E-mail:shimada@eorc.jhaxa.jp

Representative parameters of JAXA SAR

	Freq.	Bw(MHz)	InSAR	FULLPOL	SCANSAR
JERS-1	L	15	Х		
Pi-SAR	L	50	Х	Х	
PALSAR	L	28/14	Х	Х	Х

JAXA Spaceborne/Airborne sensor Programs and SARs

Penetration

(2)地表と樹幹の2回後方散乱

SAR scattering mechanism from the land complex

K&C output examples

a)Mosaic of Kalimantan, b) (Mangrove forest, Malaysia), c)biomass-coherence, d) Flood duration map K&C Desert & Water Theme Mapping of sub-surface hydrology in arid areas.

L band penetration

Coherences of Mt. Fuji images

Measure coherences of several different targets as functions of time separation and baseline.

Surface Deformation measured by JERS-1 Differential InSAR

Master:Feb.6.1995 Slave:Sept.9.1992

Phase error

35 ° ->1.2cm, weighed filter reduces the error.

Land slide monitoring

Comparison between DInSAR and GPS

Generation of L band model function and estimated wind speed, after T. Shimada et al.

$$\sigma_{lin}^{0}(U,\phi) = a_0(U) + a_1(U)\cos\phi + a_2(U)\cos2\phi + a_3(U)\cos3\phi$$

2288 scenes of JERS-1 SAR' NRCS and incidence angleNSCAT, Buoy data for wind vectors7577 match up data for wide range of wind vector

Pi-SAR REPEAT PASS InSAR

Repeat Pass INSAR processing of pi-SAR over Tottori City (2000)

SIGMA-SAR

Scattering Balance

Tomakomai forest:Nov. 2 2002

fv:volume scattering fd:double bounce x:fd(HH)/fd(VV)

Interferometry - Tomakomai forest (HH-VV)

Amplitude image

Coherence HH :μ183.90 / σ29.21

Phase difference (HH)

Coherence VV : μ 178.91 / σ 27.54

Original Image: Hokkaido Tomakomai region

HH, HV, VV Polarimetric SAR data obtained by JAXA L band airborne SAR

amplitude combination

phase combination

POL-IN-SAR

Tree height Histogram

IONOSPHERE

Faraday rotation depends on electron density and geomagnetic field. Error source for polarization data, but might provide new research trigger.

International Reference Ionosphere @ NASA.GSFC

今後の注目すべき特徴

•信号の透過性 -> ターゲット検出

- •L バンド
 - •ポラリメトリ
 - •干涉処理
 - •森林/洪水/湿原/砂漠モニター
 - •災害(地震, 地滑り)

•もれのない観測

◆仮に設定した目標

・空間分解能10m程度の合成開口レーダ(SAR)を 搭載する複数のSAR衛星により、発災後ほぼ3時間 以内に災害地域の観測データを関係機関に提供。以 降、必要に応じ、3時間毎の観測データを提供。

•自動精密軌道制御技術と高精度インターフェロメトリ 技術を開発し、cm級の精度での地表面変化の観測 を3時間毎に行う。

◆検討結果

 ・衛星の軌道高度を適切に選択することにより、4機の 衛星で3時間毎の観測が可能との結論を得た

•但し、3時間毎に全球のデータが得られるわけではなく、あらかじめ指定された場所の3時間毎の観測となる(観測幅:約100kmを想定)

●例:

◆高度約720km:入射角70度

◆高度約1300km:入射角60度

•衛星毎に軌道面を変える必要がある

将来SARの一例

No. SAR S/Cs Frequency Height Resolution Polarization Trans power Modes Orbits ~ 4程度以下 + アルファ L (changeable?) Medium ~ 600Km ~10m HH, full pol(1) ~2Kw STRIP/SCANSAR same orbits ~45 deg. separated 7 days' InSAR

Objectives: 干渉SARによる地殻変動(3時間以内) 全球森林観測(バイオマス量推定) 環境モニター(Environment monitoring)

Key words:High coherence, short time repeatability.

衛星 主 衛星1 L- full polarimetry

衛星2 L単偏波

衛星3 L単偏波

衛星4 L単偏波

観測目標:

その他

衛星 主 衛星1 L- full polarimetry

従 複数小型受信機

衛星2 L単偏波

衛星3 L単偏波

衛星4 L単偏波

観測目標: 7日間隔DinSAR 3時間内観測 DEM(高精度)あるいはバイオマス量

観測目標: 7日間隔DinSAR 3時間内観測 世界森林樹高測定(バイオマス精度劣化版) その他 案4)

衛星 主 衛星1 L- full polarimetry 受信機(Bistatic-sar) SCANSAR-SCANSAR DinSAR Biomass-

SCANSAR

Types	No. of pulses	Resolution	Period(s)
3 scans	247/356/274	x3.0	0.46
4 scans	247/356/274/355	x4.2	0.63
5 scans	247/356/274/355/327	x5.3	0.8
3 scans	480/698/534	x3.0	0.92
4 scans	480/698/534/696	x4.2	1.25
5 scans	480/698/534/696/640	x5.3	1.58

Polarization HH/VV

Process: Range migration+SPECAN

Location error of equi-transmission -> 50 pulses -> possible SCANSAR SCANSAR InSAR -> only experimental

◆技術課題

- •SARおよび衛星の小型化、軽量化
- •精密軌道制御
- •軌道面の異なる4つの軌道への衛星投入方式
- •低コスト化
- •大気遅延の影響除去
- •電離層の影響(ファラデー回転)
- •運用モードの選択:観測幅の拡大(400km)
 •SCANSAR?

•STRIP?

- ◆その他の課題
 - ・ユーザの明確化 ー>InSAR研究会?

代表的仕様

周波数 Lバンド(1275MHz) 帯域幅 28MHz 偏波数 4 AD変換器 3I+Q(BAQ)送信電力 2Kw 軌道高度 500 600Km 観測幅 100km(STRIP) + 400km(SCANSAR) Data Rate 120MBPS TBD(ドーンダスクか?) ローカルタイム 軌道保持 100m tube アンテナ 20m程度 NESZ -30 dB ヨースティアリング 電離層補正機能(?) モード切り替え時間 0.1秒