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Motivation

uniform tension

0.0 0.3-0.3 0.0 0.3-0.3
…

Minor heterogeneity 
play a significant role

Necessary to consider minor local heterogeneity
Size and distribution local heterogeneity cannot be measured
Monte-Carlo simulations with randomly distributed heterogeneity

Meshless or adaptive methods are to complicated for stochastic studies 
Difficult to introduce heterogeneity to the numerical model
Sophisticated and computationally intensive

PDS-FEM provides simple means of modeling size and  distribution of local 
heterogeneity with numerically efficient failure treatments

No two experiments generate identical crack  profiles



Organization

Discretization scheme and formulation of PDS-FEM

Failure treatment with torsional failure as an example  

Dynamic model and kidney stone breaking as an example
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interpolation functions
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Background: two models of deformable body

fracture

continuum

BVP

FEM / BEM / FDM DEM

equivalence to continuum 
is not verified and springs 
are mysterious

co
nt

in
uu

m

R
ig

id
-b

od
y 

sp
rin

g

difficult to deal with 
failure

Numerically intensive failure treatment Efficient failure treatment

spring properties ?



Discretization schemes of FEM and DEM

Ordinary FEM

Smooth and overlapping shape functions

DEM

Particles can be interpreted as    
non-overlapping shape functions
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PDS-FEM: numerical method to solve BVP of a continuum  with particle discretization
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discontinuities



1-D particle discretization
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An average value for derivative is obtained on a 
conjugate geometry ψα
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Function and derivative are discretized using  conjugate geometries. 
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2D-Particle discretization 
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Voronoi tessellation for function u(x) Delaunay tessellation  for derivative u,i(x)
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Function and derivative are discretized using  conjugate geometries, Voronoi 
and Delaunay tessellations
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Particle discretization for continuum: PDS-FEM
Boundary Value Problem for Linear Elasticity

Functional
Ordinary FEM functional 

Functional used in PDS-FEM
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Particle discretization for continuum: PDS-FEM 

∑
∫

∫∫∑
′

′

′

′

′′ ==
βαα

αα
β

βαββα

αα

αααα

ψ

ψϕψϕ

,,
2
1

,
2
1

,,
ki

B

B lijklB j
kiik uu

dv

dvcdv
uuKJ

1. Functional

2. Conjugate discretization

3. determination of uα

4. With Voronoi and Delaunay tessellations,           coincides with stiffness matrix  of FEM 
with linear characteristic functions
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Organization

Discretization scheme and formulation of PDS-FEM

Failure treatment with torsional failure as an example

Dynamic model and kidney stone breaking as an example



Failure treatment
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stiffness matrix of FEM-β
Spring properties are rigorously determined 
with material properties; E and ν

Failure is modeled by appropriately modifying the components of element stiffness matrix

ψβ



ϕ1 ϕ2
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ψβ

Failure treatment: modeling brittle failure
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Candidate 
crack paths

No new DOFs or elements are introduced to accommodate the new crack surface
Computational overhead is almost equal to re-computation of element stiffness matrix

an infinitesimally thin crack
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ϕ3

Failure treatment of PDS-FEM is approximate

No new DOFs or elements are introduced to accommodate the new crack surface
Cannot guarantee the satisfaction of BCs on new crack surface

PDS-FEM

new crack surfaces

No new nodes are introduced

ϕ2

FEM

One new node ad four elements 
are introduced

new crack surfaces



Accuracy of approximate failure treatment: problem setting

Far field stress σyy

Accuracy of crack tip stress field 
with J-integral
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Accuracy of crack tip stress field

PDS-FEM crack tip stress filed is as accurate as the FEM solution, regardless of approximate failure 
treatment. The accuracy of crack tip stress filed can be improved by including rotational DOF



Accuracy of rotational component

PDS-FEM estimates the rotational component fairly accurately, leading to better 
estimation of crack tip stress filed



Example problem: torsion testing

Problem setting: torsion testing 

E =70GPa
ν = 0.3

80 mm

φ15 mm

Real experiment Helical spiral fracture surface



Example problem: torsion testing

Helical spiral fracture surface
Ghost layer

(computed using MPI)



Organization

Discretization scheme and formulation of PDS-FEM

Failure treatment with torsional failure as an example  

Dynamic model and kidney stone breaking as an example



Time integration approaches for PDS-FEM

FEM like continuum representation N-body problem like particle representation
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Candy’s method: 4th order symplectic
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Hamiltonian principle

Lagrangian based Hamiltonian based

Second order explicit algorithm
(a range of Variational integrators)



Simulating failure of concrete wall under tsunami load

Snaps of the experiment Damaged concrete wall

Conc. wall

Conducted at the LHC facility at the Port and Airport Research Institute , Japan



Model details

Material parameters

2.
45

m

2.7m

100mm

300x300mm100mm
Fixed boundaries

Concrete Steel
E /(GPa) 30 210
ν 0.2 0.3
σt /(MPa) 5 400

Reinforcement mesh (φ6@200mm x 200mm)

A A

Section A-A



Input data: pressure time histories at 5 heights

Locations of 
pressure gauges

P1

P2

P3

P4

P5

Pressure histories are interpolated 
for the intermediate points



Crack patterns : front side of 100mm thick wall



Crack patterns : back side of 100mm thick wall

Semicircular crack 
patterns of the front 
side are reaching 
the back



Shockwave Lithotripsy: kidney stone breaking

Complete phenomena is not well explained 
Simulation of this mechanism would help 
further development of this technology

Ultrasonic pulse generator

X-ray source

Typical pressure history  in water 
induced by a single ultrasonic pulse

Pressure pulse is 
focused into kidney 



Current studies of Shockwave Lithotripsy (SWL)

Xufeng Xi and Pei Zhong, J of Acoust. Soci. Am. 2001

P-wave in Epoxy

High speed photoelasticity and ray tracing are used to find the possible high stress 
regions  and the locations of crack initiation
Predicting the crack path of this dynamic phenomena has not yet been done



Interesting crack patterns in plaster of Paris samples
Cylindrical Rectangular  prism

Plane wave Plane wave

Crack initiation and propagation is due to a dynamic state of stress
This could be one of the toughest crack propagation problem to be simulated



Simulation of SWL: problem setting
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Input pressure pulse

48
mm

50mm 48mm

12.7mm

14mm

Pressure pulse 
applied on this 
plane

~ 6 million elements
~ 3.5 million DOFs

E  = 8.875 GPa
ν = 0.228
Vp = 2478 m/s
Vs = 1471 m/s

Plaster of Paris
Κ= 
Vp = 1483 m/s

Water

Yufeng Zhou and Pei Zhong, J. Acoust. Soc. 
Am.; 119(6) 2006



Stress waves of σyy

vertical plane

horizontal plane

x

y

z

cylindrical 
sample



Crack patterns at different sections of cylinder
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Tuler and Butcher failure criterion :

tσ tensile strength
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Summary

Particle discretization for continuum mechanics problems
uses a set of non-overlapping characteristic functions on conjugate geometries
numerically efficient approximate failure treatment
accuracy of crack tip stress field can be improved with rotational DOF
particle physics type dynamic simulations (i.e. a simplified N body problem)

We simulated several 3D crack profiles with complicated geometries




