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Motivation

uniform tension

0.016
0.014
0.012
0.01

0.008
0.006
0.004
0.002

-0.2 -0.1

€ Necessary to consider minor local heterogeneity
® Size and distribution local heterogeneity cannot be measured
® Monte-Carlo simulations with randomly distributed heterogeneity
€ Meshless or adaptive methods are to complicated for stochastic studies
@ Difficult to introduce heterogeneity to the numerical model
@® Sophisticated and computationally intensive

€ PDS-FEM provides simple means of modeling size and distribution of local
heterogeneity with numerically efficient failure treatments



Organization

® Discretization scheme and formulation of PDS-FEM

# Fallure treatment with torsional failure as an example

4 Dynamic model and kidney stone breaking as an example



Background: two models of deformable body
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Discretization schemes of FEM and DEM

Ordinary FEM DEM
discontinuities
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Particles can be interpreted as

Smooth and overlapping shape functions non-overlapping shape functions

[ PDS-FEM: numerical method to solve BVP of a continuum with particle discretization ]




1-D particle discretization
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[ Function and derivative are discretized using conjugate geometries. ]




2D-Particle discretization

Voronoi tessellation for function u(x) Delaunay tessellation for derivative u,;(x)
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Function and derivative are discretized using conjugate geometries, Voronoi
and Delaunay tessellations




Particle discretization for continuum: PDS-FEM

€ Boundary Value Problem for Linear Elasticity
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® Functional used in PDS-FEM
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Particle discretization for continuum: PDS-FEM

1. Functional J(uj, 0y, 65) = L%ffucimgkl — oy (& —Uj;) —byu;dv

2. Conjugate discretization
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4. With Voronoi and Delaunay tessellations, Kif(’“' coincides with stiffness matrix of FEM

with linear characteristic functions
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Failure treatment

Spring properties are rigorously determined

stiffness matrix of FEM-B with material properties; E and v
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[ Failure is modeled by appropriately modifying the components of element stiffness matrix ]




Failure treatment: modeling brittle failure
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No new DOFs or elements are introduced to accommodate the new crack surface
Computational overhead is almost equal to re-computation of element stiffness matrix




Failure treatment of PDS-FEM Is approximate

FEM PDS-FEM
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P e @’
new crack surfaces new crack surfaces
One new node ad four elements No new nodes are introduced

are introduced

No new DOFs or elements are introduced to accommodate the new crack surface
Cannot guarantee the satisfaction of BCs on new crack surface




Accuracy of approximate failure treatment: problem setting
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Accuracy of crack tip stress field
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PDS-FEM crack tip stress filed is as accurate as the FEM solution, regardless of approximate failure
treatment. The accuracy of crack tip stress filed can be improved by including rotational DOF




Accuracy of rotational component

Distance from the crack tip

PDS-FEM estimates the rotational component fairly accurately, leading to better
estimation of crack tip stress filed
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Example problem: torsion testing

€ Problem setting: torsion testing

80 mm

Helical spiral fracture surface

Real experiment

E =70GPa
v=0.3




Example problem: torsion testing

/
Helical spiral fracture surface

Ghost layer
(computed using MPI)




Organization

& Discretization scheme and formulation of PDS-FEM

& Failure treatment with torsional failure as an example

4 Dynamic model and kidney stone breaking as an example



Time Integration approaches for PDS-FEM

FEM like continuum representation N-body problem like particle representation

Lagrangian based Hamiltonian based
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Simulating failure of concrete wall under tsunami load

Conc. wall

Snaps of the experiment

Damaged concrete wall

Conducted at the LHC facility at the Port and Airport Research Institute , Japan



Model detalils

Material parameters

100mMM

Concrete Steel
E /(GPa) 30 210
\Y 0.2 0.3
o; /(MPa) 5 400

300x300mm

Fixed boundaries
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Section A-A

Reinforcement mesh ($6@200mm x 200mm)



Input data: pressure time histories at 5 heights
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Crack patterns : front side of 100mm thick wall




Crack patterns : back side of 100mm thick wall




Shockwave Lithotripsy: kidney stone breaking
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€ Simulation of this mechanism would help ° Time ()
further development of this technology Typical pressure history in water
induced by a single ultrasonic pulse




Current studies of Shockwave Lithotripsy (SWL)

P-wave in Epoxy

Xufeng Xi and Pei Zhong, J of Acoust. Soci. Am. 2001

@ High speed photoelasticity and ray tracing are used to find the possible high stress
regions and the locations of crack initiation

€ Predicting the crack path of this dynamic phenomena has not yet been done



Interesting crack patterns in plaster of Paris samples

Cylindrical Rectangular prism
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@ Crack initiation and propagation is due to a dynamic state of stress
@ This could be one of the toughest crack propagation problem to be simulated



Simulation of SWL: problem setting
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Stress waves of Gy
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Crack patterns at different sections of cylinder
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Tuler and Butcher failure criterion :
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Summary

@ Particle discretization for continuum mechanics problems
® uses a set of non-overlapping characteristic functions on conjugate geometries
® numerically efficient approximate failure treatment
@® accuracy of crack tip stress field can be improved with rotational DOF
® particle physics type dynamic simulations (i.e. a simplified N body problem)

€ We simulated several 3D crack profiles with complicated geometries





