火砕流の発生条件に対する 火口形状の影響

小屋口剛博1•鈴木雄治郎2•小園誠史3

1:東大地震研 2:JAMSTEC 3:防災科研

Column collapse condition **Positively or negatively buoyant**

Eruption column Example from the 1980 eruption at Mt. St. Helens (USGS)

Pyroclastic flow

Previous model prediction based on 1-D steady eruption column model

Column collapse condition predicted by Carazzo et al. (2008)

Problems to solve

Column dynamics

Bursik and Woods (1991) Kaminski and Jaupart (2001) Carazzo et al. (2008)

Flow inside crater

Woods and Bower (1995) Ogden et al. (2008) etc.

Flow in conduit

Wilson et al. (1980) CONFLOW (2000) Koyaguchi (2005) etc.

Entrainment hypothesis [Morton et al., 1956] Inflow velocity = k * mean velocity *k*=0.09 (e.g., Woods, 1988) **k∗**U based on self-similarity of ideal steady jets or plumes Is this applicable to non-self-similar eruption clouds?

Comparison between the 1-D and 3D models

[Suzuki et al., 2005]

Problems to solve

Column dynamics

Bursik and Woods (1991) Kaminski and Jaupart (2001) Carazzo et al. (2008)

Flow inside crater

Woods and Bower (1995) Ogden et al. (2008) etc.

Flow in conduit

Wilson et al. (1980) CONFLOW (2000) Koyaguchi (2005) etc.

Flow inside crater

Boundaries of different flow regimes

Effect of the crater shape on $r_{\rm ex}/r_{\rm c}$ ratio

 $r_{\rm ex}/r_{\rm c}$ decreases as $r_{\rm c}$ increases for given θ .

 r_{ex}/r_{c} decreases as D decreases for given θ .

Velocity at the atmospheric $P("v_a")$ on "magma discharge rate vs r_c diagram"

(based on Woods and Bower, 1995; Ogden et al., 2008)

"v

Proclastic-flow and buoyant plume regions on "magma discharge rate vs r_c diagram"

Mass flow rate through a conduit 1-D conduit flow model (e.g., Wilson et al., 1980;Koyaguchi, 2005)

Semi-analytical solution of 1-D steady conduit flow (Koyaguchi, 2005)

 L_{total} : chamber depth.

 $\Delta P = P_{\text{lith}} - P_0$: degree of chamber under-pressure.

"Magma discharge rate vs r_c relationship" derived from 1-D conduit flow model

Choking pressure (Pa)

Column collapse condition on "magma discharge rate vs r_c diagram"

Difference from the previous study

(e.g. Carazzo et al. 2008)

Observations and previous prediction

Conclusions and future direction

- The column collapse condition of depends on entrainment coefficient, crater shape, and magma chamber pressure.
- The entrainment coefficient may be approximated by $k=0.04 \sim 0.07$ near the exit $k=0.10 \sim 0.15$ far from the exit.
- The effects of crater shape and magma chamber pressure on the column collapse condition can be systematically analyzed using the magma discharge rate vs r_c diagram.
- In order to confirm the present conclusions, 3-D simulations of eruption cloud are in progress, particularly focusing on more quantitative evaluation of the effects of compressible flow inside and just above the crater.