火砕流ダイナミクスに関する数値的研究:

浅水波方程式に基づく2層密度流モデルの開発

志水宏行, 小屋口剛博, 鈴木雄治郎 (東京大学 地震研究所)

1. はじめに

■ 火砕流の内部構造

• 上部: 低粒子濃度部 $(\rho_c/\rho_a \gtrsim 1)$

・底部:高粒子濃度部 $(\rho_c/\rho_a \sim 1000)$

2層間の相互作用

火砕流全体のダイナミクスに影響 (e.g., Branney & Kokelaar, 1992)

火砕流ダイナミクスの理解

相互作用を考慮した上で, 2層それぞれの 流動様式の理解が重要

周囲大気 (密度 ρ_a)

相互作用

火砕流 (密度 ρ_c)

低濃度部

 $\frac{\rho_c}{\rho_a} \gtrsim 1$

高濃度部

 $\frac{\rho_c}{\rho_a} \sim 1000$

1. はじめに

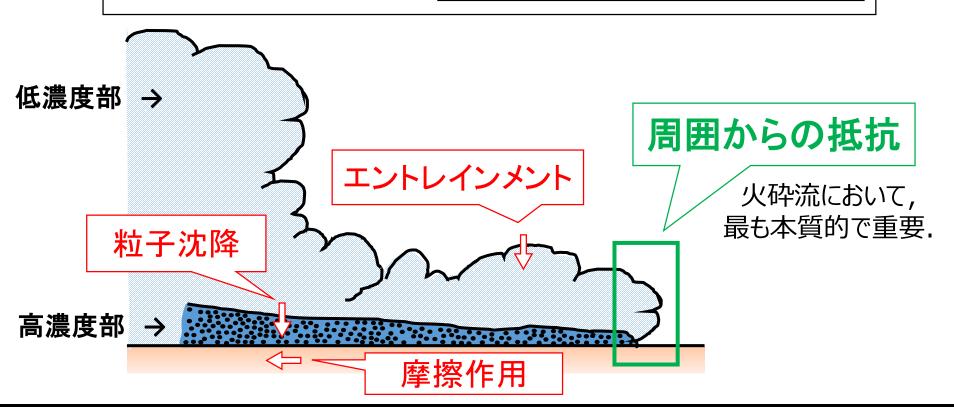
■ 火砕流のダイナミクス

密度流ダイナミクスの 支配要因

・周囲からの抵抗

火砕流ではさらに,・・・

粒子沈降, エントレインメント, 摩擦作用, …etc

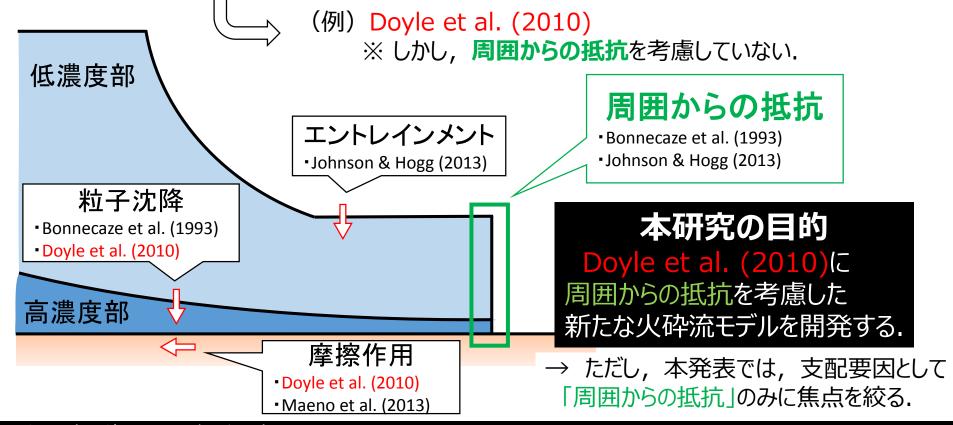


1. はじめに

■ 火砕流ダイナミクスの2層密度流モデル

モデリングの方針

- ・2層(低濃度部と高濃度部)それぞれを, <u>浅水波方程式</u>を 基に定式化する.
- ・支配要因を考慮して2層を連成する.



「周囲からの抵抗」のみが考慮された 最もシンプルな**浅水波方程式**

→ 本発表では、これの数理的性質を調べる.

■ 浅水波方程式 (無次元)_(e.g., Ungarish, 2009)

$$\frac{\partial}{\partial t} \binom{h}{hu} + \frac{\partial}{\partial x} \binom{hu}{hu^2 + \frac{1}{2}h^2} = \binom{0}{0}$$

厚さ: h(x,t), 速度: u(x,t)

■ 先端条件 (無次元)【周囲からの抵抗】

$$u_N = Fr \cdot \sqrt{\rho_c/\rho_a} \cdot \sqrt{h_N}$$
$$(x = x_N(t))$$

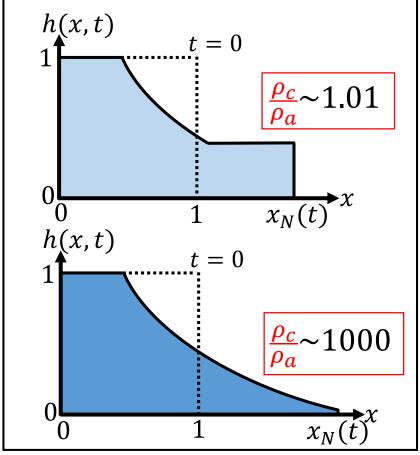
先端の位置: $x_N(t)$, 先端の厚さ: $h_N(x,t)$,

先端の速度: $u_N(x,t)$

※Frは1のオーダーの定数

ダム・ブレイク問題

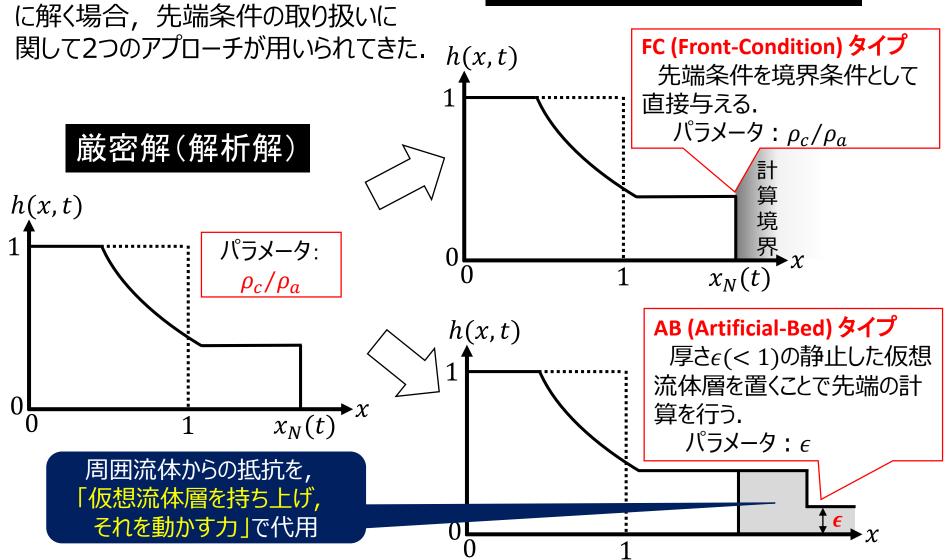
単位長さ・高さで固定された流れを t=0 で開放(ダム・ブレイク)した際, 流れがいかに流動するかを求める.



■ 先端条件の数値的取り扱い

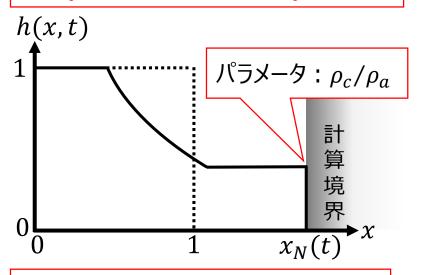
浅水波方程式と先端条件を数値的

先端部の数値的取り扱い

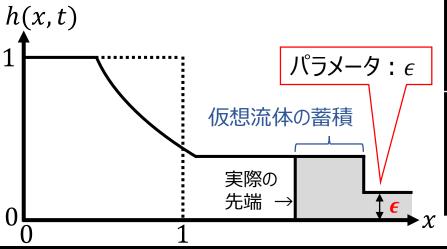


■ 先端条件の数値的取り扱い

FC (Front-Condition) タイプ



AB (Artificial-Bed) タイプ



利点

先端条件を直接計算する. (→特に問題なければ,全ての ρ_c/ρ_a に対してFCで解くべき)

問題点

先端の位置 x_N が計算グリッドに一致していないため取り扱いが難しく,数値的不安定が生じやすい.

解こうとしている流れの ρ_c/ρ_a に対する計算を行っている保証がない

利点

仮想厚さ ϵ を置いて解くだけで安定に計算できるため,数値的取り扱いが簡単である.

問題点

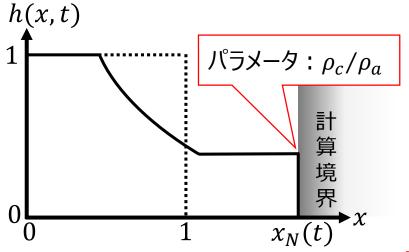
- ・仮想厚さ $\epsilon k \rho_c/\rho_a$ の対応関係が不明である.
- ・「仮想流体の蓄積」の影響がどのように表れるのか不明である.

火山現象のダイナミクス・素過程研究

2014.12.05 (Fri) 10:30-10:55

■ 先端条件の数値的取り扱い

FC (Front-Condition) タイプ



利点 先端条件を直接計算する. (→特に問題なければ,全ての ρ_c/ρ_a に対してFCで解くべき)

問題点

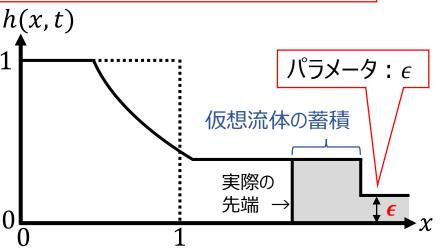
課題2

先端の位置 x_N が計算グリッドに一致していないため取り扱いが難しく,数値的不安定が生じやすい.

本研究で解決した課題

FC・ABそれぞれの 適用範囲を求めた

AB (Artificial-Bed) タイプ



利点

仮想厚さ ϵ を置いて解くだけで安定に計算できるため,数値的取り扱いが簡単である.

問題点

課題1

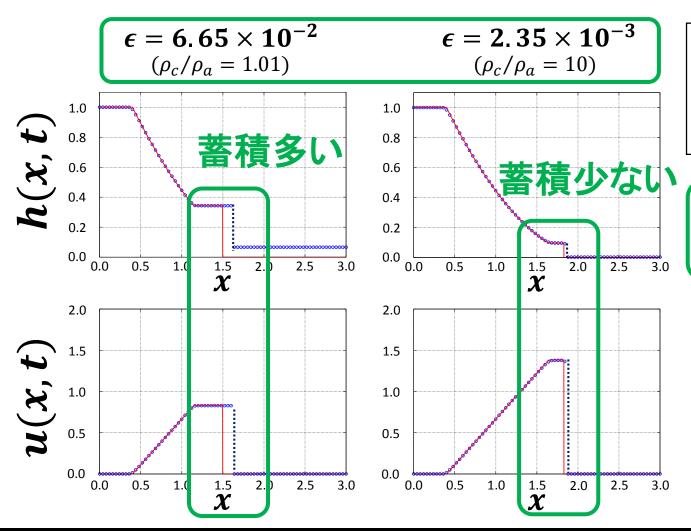
- ・仮想厚さ $\epsilon k \rho_c/\rho_a$ の対応関係が不明である.
- ・「仮想流体の蓄積」の影響がどのように表れるのか不明である.

3. 課題1:ABタイプにおける€とその蓄積について

■ 厳密解(解析解)とABタイプの数値解の比較

 $ho_c/
ho_a$ に関する厳密解

 \Rightarrow ABタイプでは、 ϵ を調節すると数値解を対応づけられた.



厳密解 (t = 0.6) ____ 【パラメータ: ρ_c/ρ_a 】 数値解 (t = 0.6) 。 【パラメータ: ϵ 】

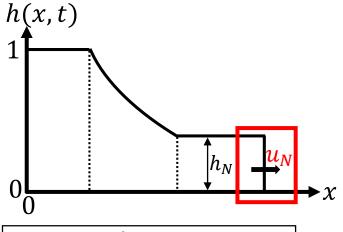
- • ϵ と ρ_c/ρ_a の関係
- 仮想流体の蓄積量

ABタイプの数理 的性質を解析的 に調べることで, 定量的に求めた.

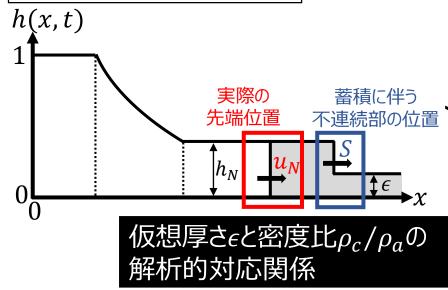
3. 課題1:ABタイプにおける∈とその蓄積について

■ ダム・ブレイク問題の解析解

厳密解 (パラメータ: $ho_c/
ho_a$)

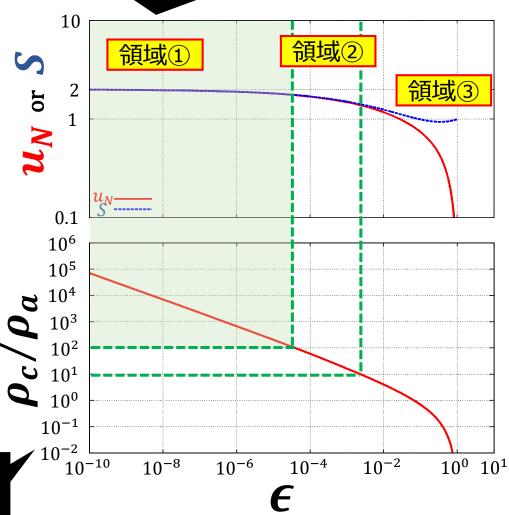


AB タイプ (パラメータ: ϵ)

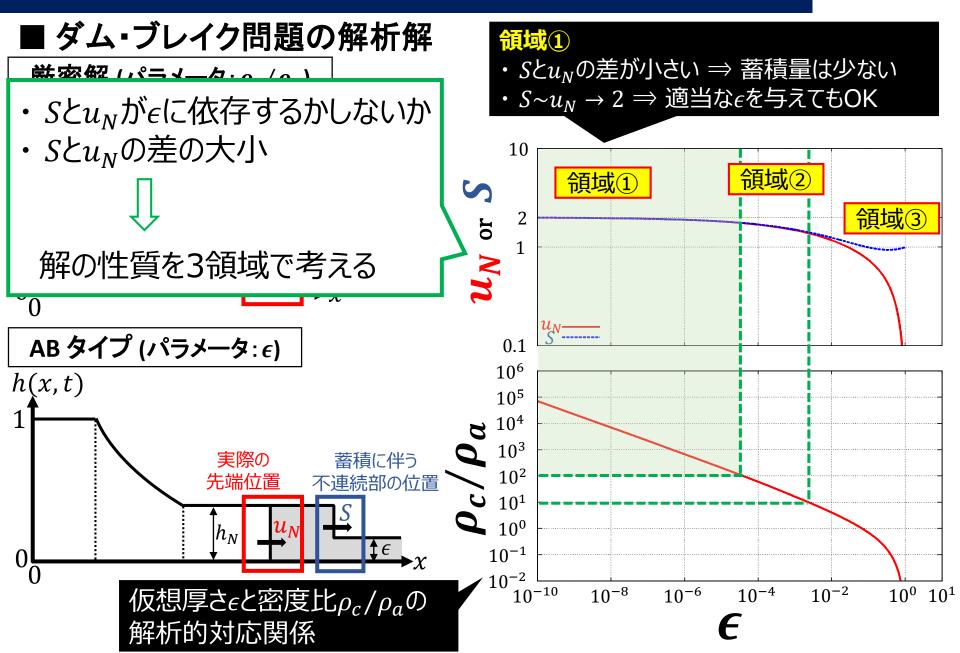


領域①

- ・ $S \ge u_N$ の差が小さい \Rightarrow 蓄積量は少ない
- $S \sim u_N \rightarrow 2 \Rightarrow$ 適当な ϵ を与えてもOK



3. 課題1:ABタイプにおけるeとその蓄積について



3. 課題 1:ABタイプにおける∈とその蓄積について

■ ダム・ブレイク問題の解析解の性質

ABタイプ適切

領域①

$$10^2 \lesssim \rho_c/\rho_a$$

- ・蓄積量が少ない $(S/u_N \sim 1)$
- ϵ に依存しない($S \sim u_N \rightarrow 2$)
- \Rightarrow 適当に ϵ を与えてもOK

ABタイプ不適切 (FCタイプを用いるべき)

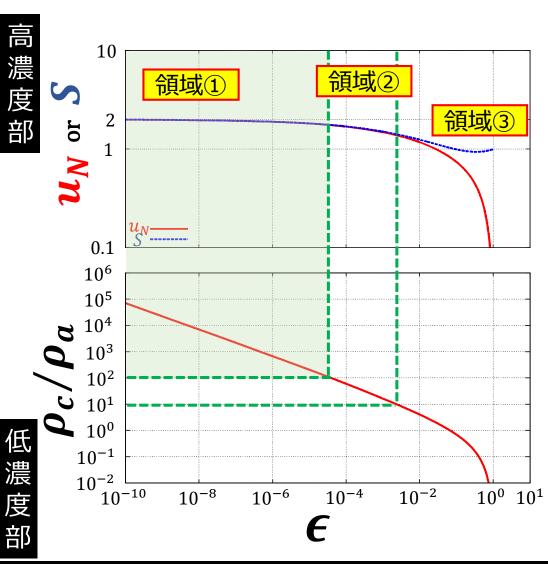
領域②
$$10^1 \lesssim \rho_c/\rho_a \lesssim 10^2$$

- 蓄積量が少ない(S/u_N~1)
- $\cdot \epsilon$ に依存する
- $\Rightarrow \epsilon$ を正しく与えるべき

領域③

$$\rho_c/\rho_a \lesssim 10^1$$

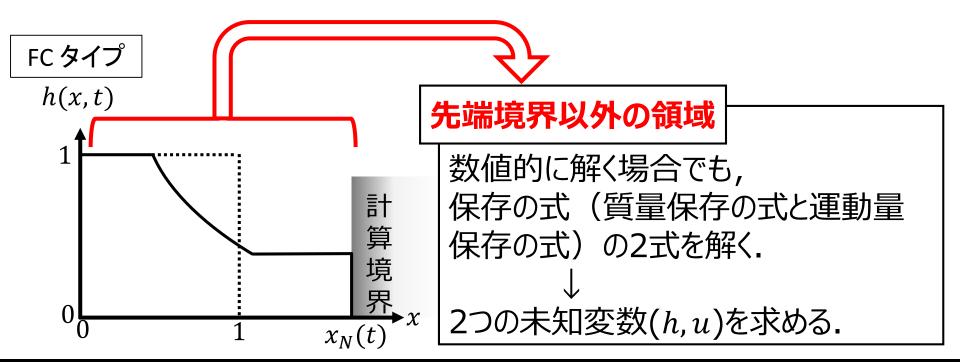
- ・蓄積量が多い $(S/u_N \gg 1)$
- $\cdot \epsilon$ に依存する



■ 離散化手法: 有限体積法 (Finite Volume Method)

浅水波方程式

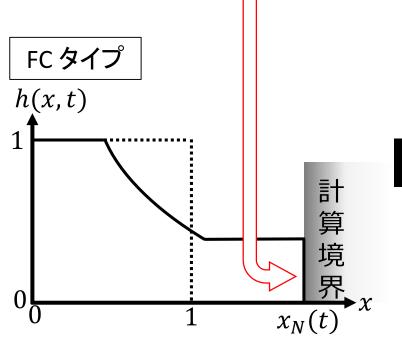
$$\frac{\partial}{\partial t} \binom{h}{hu} + \frac{\partial}{\partial x} \binom{hu}{hu^2 + \frac{1}{2}h^2} = \binom{0}{0} \quad \text{$\frac{\mathbb{P}^{\mathsf{d}} : h(x,t)}{\text{$!$} \text{$!$} \text{$$$



■ 先端境界の数値的取り扱い

先端境界

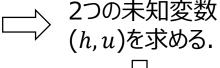
- ・3つの未知変数 (x_N, h_N, u_N)
- ・物理的に満たされるべき方程式 「保存の式(質量と運動量) 「先端条件



既存のアルゴリズム (e.g., Ungarish, 2009)

問題点:

- ・ 運動量保存の式が解かれていなかった.
 - ・質量保存の式
 - ·先端条件



求まったuを用いて, $x_N^{new} = x_N^{old} + \Delta t \cdot u$

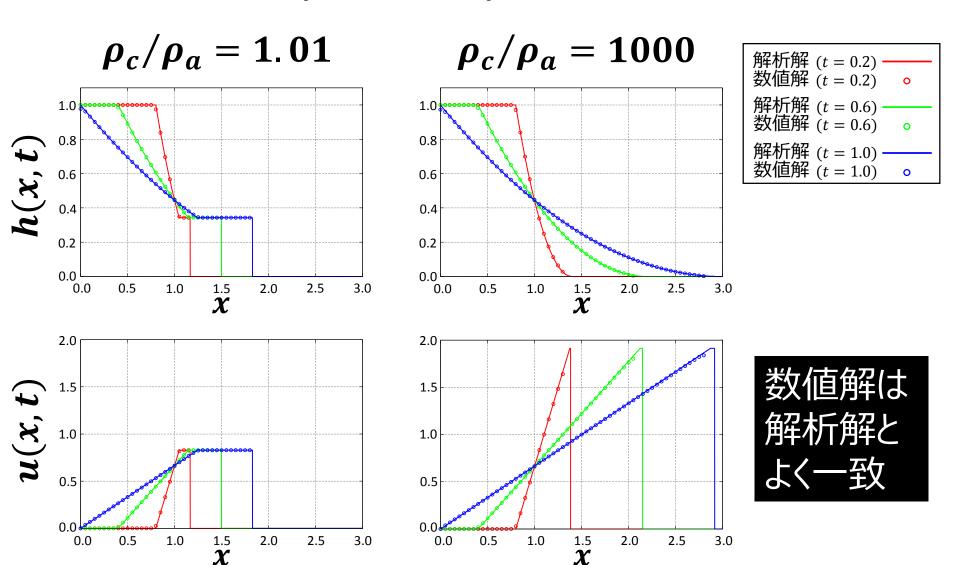
本研究で開発したアルゴリズム

保存の式(質量保存・運動量保存)と 先端条件の両方とも満たす。

- ・質量保存の式
- ・運動量保存の式
- ·先端条件

3つの未知変数 (x_N, h_N, u_N) を求める.

■ 数値解の検証(verification): ダム・ブレイク問題

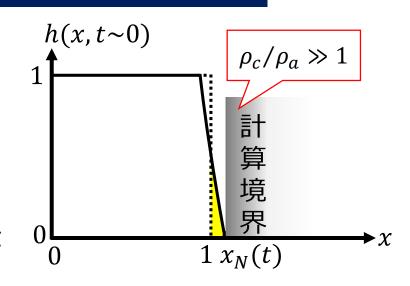


■ 先端境界の数値的取り扱い

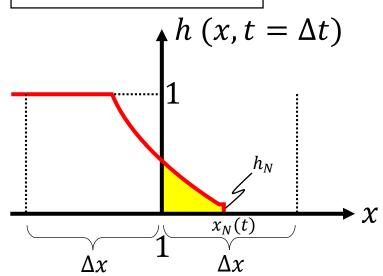
開発したアルゴリズムの注意点

 $\rho_c/\rho_a\gg 1$ の場合,最初の数ステップでは 先端位置 x_N が実際の値よりも過大に見積も られてしまう.

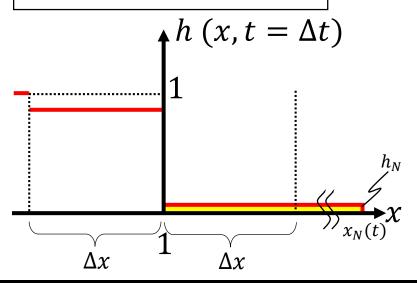
 $\Rightarrow \rho_c/\rho_a$ の大きさに対し、ABタイプとFCタイプを使い分けることで解決できる.



先端付近の解析解 (時間ステップn=1)

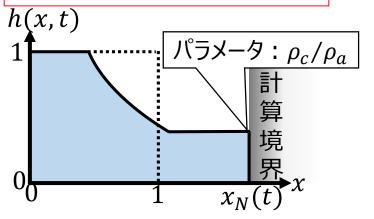


先端付近の数値的取り扱い (時間ステップn=1)



4. まとめ: FCタイプとABタイプの ρ_c/ρ_a に関する適用範囲

FC (Front-Condition) タイプ



利点

成果

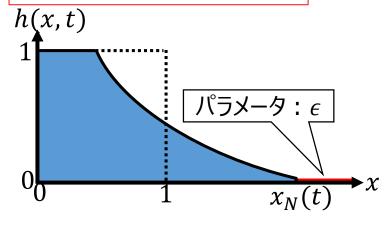
先端条件を直接計算する.

本研究の

保存則・先端条件の両方を満たす新たなア ルゴリズムを開発した.

(ただし, $\rho_c/\rho_a \gg 1$ を計算する際には, 先端の取り扱いについて注意点有り)

AB (Artificial-Bed) タイプ



利点

成果

本研究の

仮想厚さ ϵ を設置して解くだけで,計算は 安定・簡単にできる.

ダム・ブレイク問題における解の性質を調べ ることで, $\rho_c/\rho_a \gtrsim 100$ の流れに適用でき ることがわかった.

低濃度部についてはFCタイプで、高濃度部についてはABタイプ で解く火砕流の2層密度流モデルを開発していけば良い.