3次元シミュレーションによる 2014年Kelud火山噴火の再現

鈴木雄治郎¹•井口正人²•前野深¹•中田節也¹ 橋本明弘³•新堀敏基³•石井憲介³ (¹地震研, ²京大, ³気象研)

目的:爆発的噴火現象の定量的理解

Pinatubo 1991 Eruption

Distribution of mass fraction of magma in cross-section

- * plume height
- * neutral buoyancy level
- * umbrella cloud radius

MDR=1.0x10⁹ kg s⁻¹

・噴出物総量/噴火継続時間 から求めた噴出率と整合的

Shinmoe-dake 2011 Eruption

Suzuki and Koyaguchi (2013)

Iso-surface of mass fraction

Time = 504 sec Mass fraction of magma (0.001)

MDR=1.5x10⁶ kg s⁻¹

- •噴出物総量/噴火継続時間
- ・傾斜変動+測地データ
 から求めた噴出率と整合的

Kelud 2014 Eruption

インドネシア・ジャワ島東部 2/13 15:45UTC頃から爆発的噴火開始 16:00過ぎから18・19時頃まで強い噴煙放出

MTSAT rapiod scan (infrared imagery)

Observed data of Kelud Eruption 噴煙高度•傘型半径 堆積物分布

傘型部:17-18 km asl. 中心部: 22-30 km asl.

主に西側に堆積 北・北東側にも少量の堆積 総体積 0.3 – 0.4 km³ *MDR* = 4 – 6 x 10⁷ kg s⁻¹

Simulation Setting

Magma temperature: 1273 K Volatile content: 5 wt% Exit velocity: 170 m/s Altitude of vent: 1500 m

	MDR	Atmosphere
Case 1:	4x10 ⁷ kg s ⁻¹	Radiozonde
Case 2:	6x10 ⁷ kg s ⁻¹	Radiozonde
Case 3:	6x10 ⁷ kg s ⁻¹	Reanalysis

3D Numerical Model

Fluid motion: pseudo-gas model [Suzuki et al., 2005]

- the mixture of gas phases and pyroclasts is treated as a single gas
- mixture density is calculated from mixing ratio

Particle motion: Lagrangian model

- Lagrangian marker particles of ideal sphere
- 200 or 300 particles per second.
- Grain sizes are randomly selected within 0.0625 64 mm
- Terminal velocity

$$V_{t} = \frac{g\sigma d^{2}}{18\mu} , \qquad V_{t} = d\left(\frac{4d^{2}\sigma^{2}}{225\mu\rho_{a}}\right)^{1/3}, \qquad V_{t} = \left(\frac{3.1g\sigma d}{\rho_{a}}\right)^{2}$$
(Re < 6) (6 < Re < 500) (Re > 500)

 (-6ϕ)

 (4ϕ)

Representative Results

Case 1 *MDR*: 4 x 10⁷ kg s⁻¹ ATM: Radiozonde Mass fraction of magma (0.2 wt%) Time = 4360 sec

Mass fraction of magma (0.2 wt%) Time = 4360 sec

Plume Heights

Case 1 MDR: 4x10⁷ kg s⁻¹ ATM: Radiozonde

Case 2 MDR: 6x10⁷ kg s⁻¹ ATM: Radiozonde

Case 3 MDR: 6x10⁷ kg s⁻¹ **ATM: Reanalysis**

Fall Deposits

Case 1 *MDR*: 4x10⁷ kg s⁻¹ ATM: Radiozonde

Case 2 *MDR*: 6x10⁷ kg s⁻¹ ATM: Radiozonde

Case 3 *MDR*: 6x10⁷ kg s⁻¹ ATM: Reanalysis

主に火山より西に堆積
 北側・北東側にはほぼ堆積しない
 → 実際には噴煙高度が低いフェーズが存在した可能性
 を示唆.後半の火砕流からの灰神楽か

Expansion of Umbrella Cloud

傘型噴煙の水平面積Sの拡大率 Observation: ~4/3 Case 1: ~ 4/3 Case 2: < 4/3 Case 3: < 4/3

©Simple model of umbrella cloud : Gravity current model

[Sparks et al., 1998]

$$S = \left[\frac{3\lambda N\dot{V_U}}{2\pi}\right]^{\frac{1}{3}} t^{\frac{4}{3}}$$

S: Area of umbrella N: Brant-Vaisalla frequency Vu: volumetric flow rate t : time

粒子サイズ毎にみた噴煙拡大

3D results

傘型面積 3D計算結果 >人工衛星画像

・衛星画像で見えている粒子サイズ・粒子濃度
 ・計算で用いている圏界面の風速が大きい

 (Radiozonde data in Surabaya)
 再解析データのほうが実際に近い可能性

Satellite image

Summary

■様々な風の影響下での噴煙挙動を3次元モデルで再 現することができた

■複数の観測データと計算結果を比較することで、噴出条件・大気条件に拘束を与えられる可能性

Kelud 2014噴火事例
 噴出率: 4x10⁷ kg s⁻¹
 大気状態: 再解析データ
 を与えた時に、観測量を整合的に説明する