Seismic anisotropy of the upper crust and response to dynamic stress around Mount Fuji, Japan

mainly from KR Araragi, MK Savage, T Ohminato and Y Aoki, *Seismic anisotropy of the upper crust around Mount Fuji, Japan.*, Journal of Geophysical Research: Solid Earth 120 (4), 2739-2751

K. Run Araragi^{1*} Martha Savage² Ohminato Takao¹ Yosuke Aoki and Florent Brenguier³

35°05'	Mar Star	and the second			
	138°25'	138°30'	138°35'	138°40'	138°45'

1:Earthquake Research Institute, University of Tokyo, Japan 2:Victoria University of Wellington, NZ 05' 139'10' 3: Université Joseph Fourier, France

Contents (Araragi et al., 2015 + α)

Introduction

Background of Mt. Fuji

- Shear wave splitting(SWS)
 & MFAST [Savage et al., 2010]
- Design of seismic networks & used events
- Results

Horizontal distribution of SWS SWS in regional scale

- Stress estimation
- Summary
- Subtle seismic velocity change

Purpose of research:

Using seismic anisotropy around Mt. Fuji for interpretation of the regional and local geologic structure and/or processes of the area.

Introduction

- No eruption (- AD 1707)
- The triple junction of PHS, NAM, and EUR.
- Radial pattern of dyke near the summit [e.g. Takada, 2007]
- Regional NW-SE
 compressive stress field
 [e.g. Nakamura, 1977].

Calculated by Hardebeck et al. [2004]

Why do we study Mt. Fuji with SWS ?

Geologic background

Triggering factors for the change of geologic processes

- Dike distribution and the formation processes of the mountain edifice.
- Regional stress field (NW-SE)

- Increase of dilatation strain [Harada et al., 2010]
- Change of regional stress field by the 2011 Tohoku-Oki earthquake
- Mw5.9 event on 15, March,
 2011

Seismic anisotropy/velocity change around Mt. Fuji may constrain the geologic structure and/or stress-related processes of the area.

Fast polarization (ø): Direction in which shear wave propagates faster than other directions **Delay time (\Delta t) :** Difference of waves along the fast direction and along the slow direction.

In anisotropic media, seismic wave is **projected** in fast direction (\emptyset) and slow direction. In slow direction, seismic wave cause delay time (δt).

SWS in volcanic region

Anisotropy

Maximum compression

SWS can be used for detection of stress-related events. (e.g. Gerst and Savage, 2004)

Structural or stressrelated anisotropy?

Frequency (Hz)

Procedure of MFAST (Savage et al., 2010)

Station locations (JMA, ERI and NIED)

30

Events used for SWS measurements

Measured SWS

- Dominant frequency: ~ 7 Hz or less than 5 Hz
- Delay times : 0.04-0.09 [s]
- Consistent fast and delay at each station
- Temporal consistency

Spatial distribution of SWS

SWS in regional scale

Depths of anisotropy

Interpretation of radial pattern

SWS close to the summit

Fast polarization directions the spatial distribution of dyke structure.

The gravitational stresses due to the mass of the volcanic edifice [e.g. Acocella and Neri, 2009]

SWS far from the summit

Regional stresses

Takada et al. (2007)

Quantitative analysis of stress fields

Tectonic stresses

We estimated stresses from lithostatic pressure(σ_2) at depths.

$$R = \frac{(\sigma_1 - \sigma_2)}{(\sigma_1 - \sigma_3)}$$
$$\sigma_1 = A\sigma_2$$

The factor(A) was determined by <u>trial and error.</u>

Gravitational effects

Boussinesq's problem. We assumed a point load beneath the summit of Mt. Fuji.

Generating stress tensors & their eigenvectors

Stress fields and SWS

Summary

Our SWS measurement shows that the anisotropy around Mt. Fuji has clear spatial variations. We interpreted them and made the following conclusions:

- Radial pattern of fast directions is consistent with the directions of the strikes of dikes around Mt. Fuji.
- The regional NW-SE trends of fast directions, and radial anisotropy around Mt. Fuji are consistent with stress fields in the region.
- Stress modeling supports the interaction of stresses and anisotropic structure in the Mt. Fuji volcanic regions.

Thank you for your kind attention!