# 噴煙からの粒子分別と移流輸送を考慮した 2次元降下・堆積プロセス



2次元降下堆積プロセスの概念図

### 入山 宙\*:九州大学 大学院理学府 地球惑星科学専攻 寅丸敦志:九州大学 大学院理学研究院 地球惑星科学部門

### はじめに|噴火現象と降下火砕堆積物



### 降下・堆積プロセスへの空間拡張



堆積物GSD・堆積層厚の特徴

# はじめに | プリニー式噴火における 堆積層厚の変化

### 堆積物の層厚

遠方域で層厚が指数関数的減少

e.g.) Pyle (1989)

Fierstein and Nathenson (1992)

copyrighted material

copyrighted material

Pyle (1989)

Fierstein and Nathenson (1992)

# はじめに|プリニー式噴火の噴出物粒径分布



Kaminski and Jaupart (1998)

• 冪分布の総噴出物の粒径分布

(粒径 vs. 粒子数)

### copyrighted material

Kaminski and Jaupart (1998)

### Koyaguchi (1994)

・ 指数関数的関係を与える総粒径分布 | 数学的観点  $f_0^*(v) = \frac{1}{\Gamma(3/2)} \left(\frac{k^2 Q}{4\pi}\right)^{3/2} v^{-5/2} exp\left(-\frac{k^2 Q}{4\pi v}\right)$ 

 $f_0^*(v)$  initial probability distribution function of settling velocity which satisfies the exponential thinning behaviour

*k* decay constant of the exponential thinning behaviour

copyrighted material

Koyaguchi (1994)

# 1次元準定常的降下・堆積プロセスの特徴と課題

Iriyama and Toramaru (2014) AGU

準定常的降下・堆積プロセス

- ・ 粒径に依存した降下速度差により
   生じる分級作用
- ▶ 単純な正級化構造

逆級化構造←非定常な噴火



1次元準定常的降下堆積プロセスの概念図 および形成される堆積物の模式図

非定常な場合

風の影響

- 噴煙柱高度
- ・ 噴出率
- ・噴出時の粒径分布



Pinatubo 1991**噴火堆積物の模式柱状図** (Lynn et al., 1996)



### 初期GSDのみ非定常な場合の降下・堆積プロセス

### This presentation

- size variation, unsteady source GSD→2次元降下堆積モデルの関係式導出
  - ✓ 冪乗初期GSD→堆積物の粒径分布の算出
  - ✓ 堆積物層厚の算出



# 2次元降下・堆積モデル 定義



### Grain-size distribution (GSD) function

 $N(a,r,t)[N/(L^2 \cdot L)]$  (unit area)  $f(a,r,t)[N/(L^3 \cdot L)]$  (unit volume)

### **Hypotheses**

- **Negligible particle interaction**
- Constant terminal fall velocity (TFV) during fall process







 $N(a,r,t)[N/(L^2 \cdot L)] \quad f(a,r,t)[N/(L^3 \cdot L)]$ (unit area)

(unit volume)

# Application | Pinatubo 1991 eruption

| 項目             |                | 値                    |                                   |
|----------------|----------------|----------------------|-----------------------------------|
| 火口噴出初期<br>粒径分布 | N(a, 0, t)     | ※後述                  |                                   |
| 噴出率            | Q              | $10^{10} [m^3/sec.]$ | umbrella ash cloud                |
| 噴出物密度          | $\rho(a)$      | $1000  [kg/m^3]$     | $N(a, 0) \qquad Q \implies L$     |
| 噴煙高度           | $H_0$          | $2 	imes 10^4 \ [m]$ | fractionation                     |
| 傘型噴煙の厚さ        | L              | $10^{3} [m]$         | advection $u$ fall                |
| 平均風速           | $\overline{u}$ | 0 [m/sec.]           | deposit<br>distance from the vent |
| 噴火継続時間         | $	au_s$        | 3 × 60 × 60 [sec.]   |                                   |

### 準定常計算条件

火口噴出初期GSD一定

噴煙高度一定

#### 噴出率一定

降下速度一定

$$a_c \le a \le a_0$$
  
 $a_c = 10^{-6} [m]$   
 $a_0 = 10^{-1} [m]$ 

#### <u>References</u>

- Koyaguchi and Tokuno (1993)
- Koyaguchi and Ohno (2001a)
- Koyaguchi and Ohno (2001b)

# 初期条件|降下速度・粒子体積



# 火口噴出初期GSDの設定

### Source GSD

Powerlaw distribution

 $N(a, 0, t) = \beta \times a^q \times \sqcap (t^*)$ 

 $(0 \le t \le \tau_s)$ 

 $\beta$ : constant

q: powerlaw exponent

$$t^* \equiv \frac{t}{\tau_s}$$

 $\sqcap$  ( $t^*$ ): rectangular function (矩形関数)

#### **References**

- Kaminski and Jaupart (1998)
- Girault et al. (2014)

 $proclastic fall deposit: -4.9 \le q \le -4.0$ 

$$a_c \le a \le a_0$$
  
 $a_0 = 10^{-1} [m]$   
 $a_c = 10^{-6} [m]$ 



$$\widetilde{N_0} \equiv \frac{N_0}{\int N_0 V^* da/L}$$

# 結果 | 堆積物GSDの空間変化f<sub>sed</sub>(a,r)

### Sediment GSD

Normalized sediment GSDs



2015年12月21日[月] 15:40-16:05

火山現象のダイナミクス・素過程研究@東京大学地震研究所

### 結果 | 堆積時volume fluxの時間・空間変化



10<sup>-20</sup>

10<sup>3</sup>

10<sup>2</sup>

1 1 1 1 1 1 1 1 1

104

time from the eruption [sec.]

..... r = 100 km

105

106

a = - 5

 $10^{8}$ 

107

time from the eruption

# 結果 | 層厚変化 $h_{tot.}(r)$

#### 層厚の算出式 fine rich (分別しに≪い)→遠方に難積 10-3 $\frac{dh(r,t)}{dt} = J_{v}(r,t) \equiv \int_{a_{min}(r,t)}^{a_{max}(r,t)} f_{sed}(a,r,t)v_{t}(a)V^{*}(a)da$ 10-4 $h(r,t) = \int \frac{dh(r,t)}{dt} dt$ normalized thickness [ - ] 10-5 blue : q = -510-6 q = -4.5q = -4exponential decay umbrella ash cloud height 10<sup>-7</sup> L fractionation 20 60 80 40 100 advection distance from the vent [km] fall $\widetilde{h_{tot.}} \equiv \frac{\int f_{sed} v_t V^* da}{\int N_0 v_t V^* da}$ sedimentation deposit distance from the vent

ア
 2015年12月21日[月] 15:40-16:05
 火山現象のダイナミクス

火山現象のダイナミクス・素過程研究@東京大学地震研究所

### 考察 | 層厚減少率の比較 モデル vs. 観測



slope: 0.012





現在まで得られた風の影響を加味した結果を報告

### 考察 | sediment GSD vs. downwind velocity



### 考察|到達最大粒径と最小粒径

#### **Distance vs. maximum particle size**

$$r \ge \frac{\bar{u}H_0}{v_t(a_0)}$$
 において

$$a_M(r) = a_0$$

**Distance vs. minimum particle size** 

$$r \ge \frac{\bar{u}H_0}{v_t(a_0)}$$
 において

$$r = \frac{uH_0}{v_t(a)}$$

Maximum and minimum particle size





- ・ 降下・堆積モデルを鉛直1次元から円筒2次元に拡張
- 初期GSDが非定常な場合の初期GSDと堆積物GSDの関係式を導出
   ※噴煙高度・傘型噴煙の厚さ・噴出率・平均風速を用いて定式化
- ・ 準定常状態で冪乗粒径分布の違いに応じた堆積時GSDおよび堆積層厚の 距離変化を算出
- 層厚は距離とともに指数関数的に減少(観測と類似傾向)