3.2.2 大深度ボーリング掘削,検層および孔井内速度構造調査

(1) 業務の内容

(a) 業務題目 大深度ボーリング掘削, 検層および孔井内速度構造調査

(1 \)	- +11 /1	1 -17.
(h)	- 十日 〓	石
\N//		

所属	役 職	氏 名
独立行政法人防災科学技術研究所		
固体地球研究部門	研究参事	笠原敬司
固体地球研究部門	主任研究員	関口渉次
固体地球研究部門	主任研究員	小原一成
防災基盤研究部門	主任研究員	藤原広行
固体地球研究部門	主任研究員	山水史生
固体地球研究部門	研究員	青井 真
固体地球研究部門	研究員	山田隆二
固体地球研究部門	研究員	木村尚紀
固体地球研究部門	研究員	汐見勝彦
固体地球研究部門	研究員	松原 誠
国立大学法人島根大学		
総合理工学部地球資源環境科	助教授	林広樹

(c) 業務の目的

強震動予測においては特にS波速度構造が重要な問題となる。S波速度構造については、地震基盤ま で到達するボーリング調査によって、坑内計測などによる直接計測を行うことが最も有効である。首都 圏・近畿圏でも既にいくつかの地点でこうした調査が実施されているが、測定点は大変少ない。本調査 では、大規模ボーリングを実施し、検層・VSP法によって弾性波速度構造を明らかにする。ボーリング 調査によって得られる速度構造や地質構造は、現在、地震調査研究推進本部の主導によって進められて いる平野部の地下構造調査や、本研究で予定されている地殻構造探査の成果と合わせ、総合的な首都圏・ 近畿圏の速度構造モデルの構築に資する。また、調査井を利用して、地震調査研究推進本部のもとに進 められている Hi-net の整備を推進する。

(d) 5ヵ年の年次実施計画

- 1年目:房総半島鴨川市西部で、深さ2000m級の調査観測ボーリングを実施し、関東盆地南部の基盤を構成する第三紀下部層のP波・S波速度構造を計測(地震動予測の明確化)し、基盤地質構造を解明する。ボーリング孔を利用し、Hinetを整備する。関東平野について、既存地質資料などを取りまとめた総合的研究を推進する。
- 2年目:神奈川県西部(足柄平野)で深さ2000m級のボーリングを実施し、足柄平野下に伏在する 可能性の高い伊豆-小笠原弧の地殻と本州弧の地殻の接合部を観察し、伏在活断層を実証する。国 府津-松田断層系全体の平均すべり速度の推定を行い、震源断層モデルの構築に貢献する。足柄平 野の堆積層の速度構造や地層の微細な構造の調査のため、ボーリングはオールコアで採取し、詳 細な年代決定などの地質学的分析を行う。地温勾配の高い地域であるため、高感度地震計の地中

観測装置の高温試験を実施する。関東平野について、既存地質資料などを取りまとめた総合的研 究を推進する。

- 3年目:関西地区2箇所において、深さ1000m級の調査ボーリングを2箇所実施し、VSP検層など によって、堆積層の物理特性を明らかにすると共にHi-netを整備する。また、神奈川県西部のボ ーリング孔に高温試験済みの地震計を設置し、Hi-net 観測を開始する。関東平野について、既存 地質資料などを取りまとめた総合的研究を推進する。
- 4 年目:観測点密度の低い北関東地域に深さ2000m級のボーリングを実施し、関東盆地成初期に形成されたと考えられる P 波速度 4km/s 層の実態をコア調査、検層などにより調査する。関東平野について、既存地質資料などを取りまとめた総合的研究を推進する。ボーリング孔を利用し、 Hi-net を整備する。
- 5年目:千葉県北西部から茨城県南部において、深さ1000m級のボーリングを実施する。関東平野 については、既存地質資料などを取りまとめた総合的研究のまとめを行う。ボーリング孔を利用 し、Hi-netを整備する。
 - (ボーリング地点および深さは概ね上記の地点とするが、事由が発生した場合は変更することができる。)

(e) 平成 18 年度業務目的

千葉県北西部から茨城県南部において、深さ1000m級のボーリングを実施し、P波・S波速度構造の直接測定を行い、強震動予測地図作成のための基礎資料を得る。また、ボーリングから得られた試料(コア・スライム)を微化石分析して地層の地質年代を明らかにし、地表地質の情報や大深度弾性波探査の結果と合わせて解析することにより、地下の地質構造を明らかにする。

調査後のボーリング孔を活用して高感度地震計・強震計を地震基盤に設置し、防災科学技術研究所の 高感度地震観測網(Hi-net)等と一体的な運営のもと、自然地震の観測等を行う。

(2)平成18年度の成果

(a) 業務の要約

茨城県南部で深さ 1,200m 級のボーリングを掘削し、コアやカッティングス試料の分析、VSP検層 等により、孔井地質および地震波速度構造を調査した。ケーシングおよびセメンチング終了後の孔井を Hi-net 観測点として整備した。

(b) 業務の実施方法

本調査では、堆積層を貫通し地震基盤に達する大深度ボーリングを掘削し、直接測定(孔内検層および VSP 法)によって地下の弾性波速度構造を明らかにする。ボーリング調査によって得られる速度構造や地質構造は、現在、地震調査研究推進本部によって進められている平野部の地下構造調査や、大都市圏地殻構造調査研究で実施している地殻構造探査の成果と合わせ、総合的な首都圏・近畿圏の速度構造モデルの構築に資する。また、ボーリングで得られたコア試料を解析することによって、地震防災に密接に関連する首都圏の堆積層の構造やその成立過程を明らかにする。

本年度では、関東平野北部、茨城県つくば市下岩崎において大深度ボーリング調査(1,200m級)を 実施した(以下、この孔井をつくば南観測井と記す)。掘削地点の選定にあたっては、既存の地球物理・ 地質データを活用できること、およびボーリング調査の終了後に地震観測を行うことを考慮して、深度 1,200m未満で先新第三系の地震基盤に到達する可能性のある地点を候補とした。

(c) 業務の成果

1) 平成 18 年度掘削における成果

i)つくば南観測井の掘削調査および研究背景

平成 18 年度のボーリング調査地点として、茨城県つくば市下岩崎の茎崎運動公園が選定された(図

 $1, 2)_{\circ}$

図1 つくば南ボーリング地点の位置(星印)。地質調査所発行20万分の1地質図「水戸」「千葉」「大 多喜」「宇都宮」「東京」「横須賀」に、鈴木(2002)を一部改正した関東平野の基盤深度分布を青のグラデ ーションで重ねて示した。

図2 本掘削地点(茎崎運動公園)の位置図(星印)。山口ほか(2003)による反射法地震探査の CMP 測線(緑線)もあわせて示した。国土地理院発行 1:25,000 地形図「藤代」を利用した。

本年度の掘削地点が位置する茨城県南部は、新第三紀以降の海成層が厚く分布する関東堆積盆の北部 に位置する。関東堆積盆を埋積する中新統〜鮮新統の安房層群および上部鮮新統〜更新統の上総層群は、 典型的な前弧海盆堆積物であると考えられている。関東堆積盆の基盤深度は、南関東の房総半島中央部 で最も深くなり4,000m以上の深度が予想されているが(図1)、北側の茨城県つくば市に向かって急激 に浅くなり、茨城県・千葉県境界付近で約1,000mとなる。先述の安房層群および上総層群も、北へ向 かって厚さを減じている。千葉県北部を南北に横切る反射法地震探査断面(千葉県、2004)を見ると、 安房層群および上総層群は基盤の上面に下位層からオーバーラップし尖滅していく様子が明瞭である (図3)。このように、新第三系が下位層から順次尖滅していくため、安房層群は千葉県北部よりも北側 では分布していない。

図3 千葉県船橋から本掘削地点(茎崎運動公園)近傍を通り、つくば市へ至る反射法地震探査の深 度変換断面(千葉県、2004 および山口ほか, 2003 より引用し編集)。

本掘削地点のすぐ近傍を通る反射法地震探査断面(山口ほか、2003)(図3)を参照すると、本掘削 地点では深度 800m 近くまで新第三系の上総層群が分布し、それより下位で先新第三系基盤岩類に到達 するものと考えられた。千葉県による船橋--我孫子測線の近傍には下総観測井が位置し、微化石により 詳細な層序が明らかにされている(柳沢ほか、2006)。下総観測井から反射面を追跡すると、本掘削地 点では上総層群の最下部付近を欠き、上総層群下部〜中部が基盤を不整合で覆っているものと予想され た。先新第三系基盤の上面形状に着目すると、本掘削地点のすぐ北側、つくば市谷田部付近で、基盤深 度が 300~400m ほど高くなる。この基盤の高まりは正の重力異常としても認識され(図4)、何らかの 高密度岩体が分布している可能性も指摘されていた(山口ほか、2003)。この高重力異常の分布は、空 中磁気探査による磁気異常の分布とも一致している。この高密度岩体が御荷鉾緑色岩類に相当する可能 性も指摘され、中央構造線や棚倉構造線との関連も議論されたことがあった(小川ほか、1979;長谷川、 1988 など)。以上述べてきたように、本掘削調査における最も重要な課題は、重力探査や空中磁気探査、 地震探査等で想定された基盤の不連続構造とその意義を実証的に明らかにすることである。

産総研地質調査総合センター(2000)

図4 掘削地点 (星印) 近傍の重力ブーゲー異常の分布 (地質調査所、2000)。 仮定密度は 2.00g/cm³。 点線部に重力急変帯が認識される。

本掘削地点近傍の千葉県北部から茨城県南部にかけての地域では、先新第三系基盤岩類に到達する多 くの孔井が分布する(図5)。掘削地点に最も近いのは、北方約 10km に位置する応用地質実験井であ り、ミグマタイト化した泥質変成岩や花崗岩等が基盤岩類として得られている(三本ほか、2000)。周 辺の地質調査所観測井、防災科研観測井、筑波大学2号井等では、筑波深成岩類と思われる花崗岩や輝 緑岩等が産出している。したがって、本調査に先立って想定された掘削地点の先新第三系基盤岩類は、 筑波帯に相当する深成岩・変成岩類であった。つくば市沼田字新田の防災科研観測井では、つくば花崗 岩類に属する花崗岩について、表層の風化部で 3,100m/s、それ以深で 4,800~5,300m/s の P 波速度が 測定されている。したがって、本研究で実施される 1,200m 級の掘削により、高感度地震観測点の設置 に適した P 波速度 4km/s 以上の地震基盤にじゅうぶん到達できるものと推測された。

図5 つくば南観測井(星印)および周辺の基盤に到達した孔井の分布。地質調査所発行20万分の 1地質図「水戸」および「千葉」を利用した。

ii)つくば南観測井の掘削

調査観測井の工事にはロータリー式掘削機が使用された。ロータリー式掘削機(ロータリーテーブル 型ドリル)はロータリーテーブル(ターンテーブル)と呼ばれる回転装置とドローワークスと呼ばれる 巻上げ装置が主要な機能であり、送水ポンプ、櫓、サブストラクチャー及びこれらを駆動する為の原動 機等の装置から構成される(図6)。ロータリーテーブル型ドリルの巻上げ装置であるドローワークスは、 掘削具(ロッド、ビット)の巻上げ・降下やロータリーテーブルに回転を伝達する役割を果たす。また、 ロータリーテーブルはロッドから最下部のビットへ回転を伝達するものである。

ロータリーテーブルの回転はドローワークスの主軸からローラチェーンで伝動され、ベベルギヤによ り伝えられる。テーブルの回転部は、ボーリングロッドやビット、ケーシングなどを通過させるため四 角状ないし六角状の穴が貰通している。テーブルにはマスターブッシング(テーブルブッシング)とケ リードライブブッシングと呼ばれるケリーロッド(ケリーバー)に回転を伝える装置が挿入される. ロ ータリーテーブルでは、接続したボーリングロッドの最上部に正方形断面または正六角形断面のケリー ロッドを1本接続して、マスターブッシング、ケリードライブブッシングの角部を利用して回転をロッ ドに伝える。ケリーロッドは、ドローワークスによりワイヤロープでつり下げられ、巻上・降下が行わ れる。ロッドの継ぎ足しは、ケリーロッドの長さ分を掘削すると、いったんその長さ分だけ巻き上げ、 ケリーロッドをはずして追加するロッドを順次繋ぐ。クラウンブロックなどは、ボーリングの櫓の頂点 につけ掘削器具の昇降に使用する滑車装置である。ウォータスイベルは、送水ポンプからの泥水などの 流体を回転しているボーリングロッド内に送る装置である。回転しているビットによって粉砕された岩 石(スライム)は、泥水の循環によって、地上に運び出される。

図6 ロータリー式掘削機の模式図および作業配置図

つくば南観測井の掘削工事の様子を図7に、観測井の構造を図8に示す。

図7 工事風景(左図:掘削全景、右図:ドリルビット)

図8 つくば南観測井の構造(概念図)

掘削は深度 1,117m まで行われ、深度約 790m で先新第三系基盤岩に到達した。コアの採取は HQ(97.5mm)サーフェスダイヤモンドビットを用いて、およそ 50~200m 毎にスポットコアサンプリン グを行った(表1)(図9、10、11、12、13)。また、掘進 5.0m 毎にカッティングスを採取し、 500ml 瓶に入れ保管した。採取されたコア試料については、現在詳細な地質学的検討が進められている。 掘削された孔井について、電気・音波・密度・温度等の各種坑内検層を行った(図14)。

77	採取沒	採取深度(m)		同收兹	出日	
17	自	至	(m)	凹松平	石伯	
1	50.00	53.00	2.00	0.66	灰褐色中粒~粗粒砂	
2	100.00	103.00	2.60	0.87	緑灰色中粒~粗粒砂岩	
3	150.00	153.00	2.40	0.80	灰色中粒~粗粒砂岩	
4	201.00	204.00	2.30	0.77	緑灰色シルト岩	
5	250.00	253.00	2.10	0.70	緑灰色粗粒砂岩	
6	300.00	303.00	3.00	1.00	緑灰色中粒~粗粒砂岩	
7	400.00	403.00	2.20	0.73	緑灰色砂質シルト岩	
8	500.00	503.00	2.70	0.90	緑灰色細粒砂岩	
9	600.00	603.00	2.30	0.77	貝殻片含む灰色中粒~粗粒砂岩	
10	801.00	804.00	2.40	0.80	トーナル岩源マイロナイト	
11	944.00	947.00	2.90	0.97	稿状トーナル岩源マイロナイト	
12	1111.00	1114.00	3.00	1.00	トーナル岩源マイロナイト	
13	1114.00	1117.00	3.00	1.00	トーナル岩源マイロナイト	

表1 つくば南で採取されたコアサンプルのリスト

図9 深度 400m のコアサンプル(上総層群の炭質物を多く含む砂質シルト岩)

図10 深度 500m のコアサンプル(上総層群の緑灰色塊状細粒砂岩)

図11 深度800mのコアサンプル(トーナル岩源マイロナイト)

工事名 Xば南中深層調査観測井堀削工事および付帯工事

図12 深度944mのコアサンプル(縞状トーナル岩源マイロナイト)

	工事名 つくば南中深層調査観測井掘削工事および付帯工事	Constant and
and the second	スポットコアリンフ	
Γ	採取コア	
-	深度.1114-1117	
	東京地質工業㈱	
NH.		A A
		COV 1
	CONTRACTION OF THE	A
		9

図13 最深部 1,117m を含むコアサンプル(トーナル岩源マイロナイト)

図14 つくば南観測井の検層柱状図

iii)つくば南観測井における成果

得られたコアおよびカッティングスの分析、および検層結果については、現在も多数の共同研究者に よる解析が進行中である。現時点での成果を以下にまとめる。

孔井地質は、大きく2層に区分される。表層から深度約 725m までは、河川成~海成の砂岩、泥岩、 礫岩等からなる下総・上総層群相当層、またはそれらを覆う第四系の段丘堆積物から構成される。それ より下位には、先新第三系基盤岩類が分布する。下総・上総層群相当層の年代層序学的検討については、 この報告書の「大深度ボーリング試料による地質年代調査」を参照されたい。

先新第三系基盤岩類については、深度801m~孔底1,117mまでの区間から得られた4本のコアの全

てが、粗粒〜細粒角閃石トーナル岩起源のマイロナイトであった。ただし、944-947m コアは、全体に 縞状構造が発達しており、細粒黒雲母集合部が肉眼で認められる点で、他の基盤岩コアと異なる。変形 もこの深度範囲が最も強い。途中で得られたカッティングスも、肉眼観察によるとコアの岩相ときわめ て類似していた。マイロナイト面構造の傾斜は10°〜80°の範囲でばらつくものの、平均的な傾斜は40° である。したがって、深度800m 付近から孔底の1,117m に至るまで、少なくとも深度差300m 以上(厚 さで200m 以上)に及ぶ大きなマイロナイト帯の存在が確実となった。また、マイロナイト面構造と異 なる姿勢をもつ割れ目も多く、部分的にカタクレーサイト化と強い変質を被っている。ボアホール・テ レビューアー検層(高木秀雄・山本俊也、私信;詳細は別に公表予定)による割れ目の方位は、いずれ のコアも南西〜西傾斜50°程度のものが卓越しているが、コアの割れ目との対応は不明確のものが多い。 その中でも比較的良好に対応づけができた945m 付近の方位復元によると、マイロナイト面構造の傾斜 方向は概ね北になる。ただし、マイロナイト化時の剪断センス解析は、肉眼では困難であり、今後検討 する予定である。深度802.9m 層準のコアについて、早稲田大学教育・総合科学学術院の高木秀雄教授 によって撮影された研磨面および薄片の写真を図15に示す。以下に記す岩石記載は高木教授によるも のである。

この岩石試料は角閃石トーナル岩がマイロナイト化したものである。ポーフィロクラストとして斜長 石、角閃石、少量の白雲母フィッシュを含み、基質は石英および緑泥石により構成される。石英中には マイクロブーダン化したルチル包有物が認められる。 石英は数 100 µ mの粗粒な S タイプのものと, 動的再結晶による 10 µ m前後の粒子が混在する。これら石英の形態により、このマイロナイトは比較的 低温成であると判断される。やや脆性的なシアバンド(リーデル剪断面)は正断層運動を示している(図 15左)。

図15 深度 802.9m 付近のコア試料。左:研磨面写真(スケールは 1cm)。右上:薄片のクロスニコ ル写真(スケールは 200 µ m)。右下:同じ視野のオープンニコル写真

こうしたマイロナイト帯の存在は、地質時代の大きな断層(構造線)がこの掘削地点に存在する可能 性を強く示唆する。この掘削地点より西南西約 30km の埼玉県岩槻観測井および松伏 SK-1 では、基盤 岩としてマイロナイト化作用を受けた領家帯深成岩類の産出が報告されており(高木ほか、2006;高木・ 高橋、2006)、これら孔井の南側直近に中央構造線の存在が示唆されている。本掘削地点はそれよりも 内帯側に位置しており、今回発見されたマイロナイト帯の地体構造上の位置付けが、今後解決するべき 重要な課題として残された。

2) 蓮沼観測井における追加成果

平成17年度に掘削された蓮沼観測井について、前年度の報告書以降に追加された成果を報告する。 蓮沼観測井の位置を図16に示す。

図16 蓮沼観測井の位置(星印)。地質調査所発行20万分の1地質図「千葉」に、鈴木(2002)の基盤 深度分布を青のグラデーションで重ねて示した。赤線は石油公団(2000)による音波探査測線、青線は大 大特平成14年度房総測線を示す。

蓮沼観測井については PS 検層が行われ、最終的に孔底までの P 波・S 波速度構造が決定された。また、カッティングスおよびコア試料、検層結果等を総合し、孔井地質が明らかにされた。結果を図17 に示す。

孔井地質は大きく3層に区分される。上位より、貝殻の混じる粗粒砂よりなる沖積層(0~30m)、 主に海成の泥岩や砂泥互層からなる上総層群(30~1,584m)、硬砂岩からなる先新第三系基盤岩類 (1,584m~孔底)である。上総層群区間のコアおよびカッティングス試料については微化石分析が行わ れ、関東堆積盆の詳細な年代や堆積環境についてデータが得られた。コア分析、および年代層序学的検 討の成果については、この報告書の「大深度ボーリング試料による地質年代調査」を参照されたい。

図17 蓮沼観測井における総合柱状図

蓮沼観測井より得られた先新第三系基盤岩類の研磨面写真を図18に示す。薄片観察の結果、深度 1,600m 付近より得られた硬砂岩は角張った石英・長石粒子から主に構成され、少量の黒色泥岩片を含 んでおり、基質に乏しい。この硬砂岩は石英・長石質アレナイトに相当する。本観測井の近傍に位置す る蓮沼 TR-1 では基盤岩類としてグレイワッケが報告されており(福田ほか、1974)、同様のものと考 えられる。

本研究結果からこの硬砂岩の地体構造区分上の帰属を決定することは、困難である。しかし、これまでに報告された関東平野地下の基盤岩類の分布を考慮すると、秩父帯に属する可能性が高い。

図18 蓮沼観測井の深度1,600.1mより得られた硬砂岩の研磨面写真。スケールは1cm

3) Hi-net 整備

地震調査研究を推進するための基礎データ取得を目的として、掘削されたボーリング孔に高感度地震 観測装置を設置し、Hi-netの観測施設として整備を行った。

高感度地震観測装置は、長期間安定した地震観測が持続することを目的として、メンテナンスが可能 な引上げ方式をとっている。孔底部の観測装置から得られた信号は、外装された多芯ケーブルにより地 表に直送している。高感度地震観測データは、VPN による常時テレメータによって防災科学技術研究所 の Hirnet 観測システムに取り込まれ、強震動のデータ等は定期的に公衆回線で取得される。これらのデ ータは、防災科研のホームページを通じて一般に公開され、様々な形で地震調査研究に役立てられてい るとともに、気象庁や大学へはリアルタイムでデータ流通されており、24 時間の地震監視業務、及び基 礎研究に利用されている。

i) 構成

孔底装置、多芯外装ケーブル、孔底装置と多芯外装ケーブルとの接続部、地上固定装置、地上装置から構成される。

ii) 観測装置(孔底装置)

高感度地震観測装置の観測井の孔底に設置し高感度観測・強震観測を行う装置を孔底装置といい,以 下で示すユニットで構成されている。観測装置孔底装置の断面図を図19に示す。

- ① 速度地震計ユニット 1Hz速度型地震計 X, Y, Z 3成分
- ② 高感度加速度計ユニット 力平衡型振子式高感度加速度計 X, Y、Z 3成分
- ③ 強震計ユニット 力平衡型強震計 X, Y, Z 3成分
- ④ 耐圧容器ユニット 観測井孔底に設置する各種検出器・制御器を収納して、孔内水圧から保
 - 護し、孔底に固定することを目的としたステンレス製円筒容器
- ⑤ スクリュー式方位設定器 観測井孔底の方位設定機構のキー部を自らのキー溝に合致させることに より、観測装置を所定の方向に設定する
- ⑥ 着底検出器 耐圧容器の自重を利用して、着底部の可動部分の押し込み量を抵抗値変 化により検知し、確実な着底を確認
- ⑦ 水もれ検知器 耐圧容器の水密異常があった時,抵抗値の変化により速やかに検知
- ⑧ 耐圧容器固定器 耐圧容器を観測井底の設置用非磁性ケーシングに固定する
- ⑨ 地中計測制御部ユニット 孔底に設置する各種検出器の制御・検定や、設置のための測定操作を実施するための電子回路部
- ① 信号ケーブル・信号ケーブル接続部

図19 観測井及び観測装置の断面図

iii)地上装置

以上の孔底装置からアーマードケーブル経由で信号線を受けたのち、データは、地震観測装置地上装置、及びデータ変換、転送を行うための各処理装置によって、Hi-net 方式のデータ流通が行われている。 地上部に設置される機器は以下のユニットから構成される。

① 高感度地震観測装置地上装置

ア)地上用強震計 カ平衡型サーボ加速度計 X, Y, Z 3成分

- イ)速度地震計制御装置 速度地震計の姿勢制御を行う
- ウ) 高感度加速度計制御装置及びフィルタ回路 高感度加速度計の姿勢制御を行う
- エ) 現地データ収録装置 地表・地中強震計の現地記録を行う
- オ) 無停電電源
- ② 高精度AD変換装置 アナログ出力をデジタル化する装置。△-ΣのオーバーサンプリングAD変換方式を採用し、24 ビット分解能で1000Hz データにデジタル化したパケットをとして出力する。
- ③ 観測データ観測点内処理装置 AD変換から出力されたパケットに対しデシメーション処理を行い、 100Hz サンプリング 27 ビットの秒パケットを生成し、サブセンタに向けてパケット送信を行う。 タイムスタンプとしてGPS信号を取得し、絶対時刻をパケットに付与する。サブセンタやデータ センタ側でパケット欠測を認識した場合には、再送要求に応じてパケット再送を行う。
- ④ ハブ・ルータ 観測データ観測点内処理装置からのパケットをサブセンタ側に送出するためのデー タ転送装置。
- ⑤ GPSアンテナ GPS信号を取得しパケットに絶対時刻を付与するための機器。
- ⑥ 無停電電源 上記②から④の機器に対して停電時、安定的にシャットダウンさせるための電源供給 ユニット。

地上装置の構成機器のうち、地上用強震計力平衡型サーボ加速度計及び高精度AD変換装置は、それ ぞれ観測施設内の別々の地下ピット内に設置されている。現場設置例を図20に示す。

図20 観測施設内地下ピット

その他の地上装置のうち、GPS アンテナを除くすべての機器は同一ラック内に収納されている。収納 例を図21に示す。

図21 地上装置機器収納ラック

地上部におけるデータの流れを図22に示す。

図22 観測施設におけるデータフロー

iv) データ処理及び流通

観測点より送信されたデータはフレームリレー網を経由してサブセンタにいったん集約された後にデ ータセンタに送信される。つくばの防災科研データセンタで受信されたデータは他の観測点からのデー タと同様にデータ処理される。すなわち、準リアルタイムで地震発生の検知及び震源決定処理が行われ、 その結果はホームページを通じて一般に公開される。また、すべてのデータは連続的に蓄積され、その 連続波形データについてもホームページからダウンロードできると共に、連続波形画像として当該観測 点における地震観測状況が一目でわかるような形で閲覧可能である。 4) ボーリング資料による関東平野地下の基盤岩の分布

a) はじめに

関東平野は厚い新第三系によって覆われており、その分布を把握することは強震動予測のうえで重要 な課題となっている。一方で、それら堆積層の下位には先新第三系の基盤岩類が分布している。Koketsu and Higashi (1992)は首都圏で行われた人工地震探査の走時インバージョンを行い、埼玉県南部から東 京都東部を通って千葉県東部に抜ける V 字型の領域を境界として、基盤の P 波速度が北側と南側で異な っていることを示した(図23)。この北側の Vp は 5.72km/s、南側の Vp は 5.36km/s と見積もられて いる(纐纈, 1995)。この速度境界は、それまでにボーリング等によって推定されていた秩父帯と三波 川帯の境界(例えば、鈴木, 2002 など)にほぼ相当している。こうした基盤岩の分布を把握し、また物 性を測定することは、人工地震や自然地震の波形を合理的に説明するうえで役立つ。また、先新第三系 の主要な地質境界は、しばしば仏像構造線や中央構造線といった大きな断層を伴っている。これら断層 の一部については、伏在活断層として直下型地震を発生させる可能性も指摘されている。これら構造線 の正確な位置および形状を把握することも重要な課題である。

林ほか(2006)は関東平野で基盤に到達したボーリング資料を収集し、平野地下の地体構造を推定した。 本研究ではさらに大深度ボーリングのデータを追加収集し、関東平野地下の地体構造と基盤岩の地震波 速度との関係について考察する。

図23 纐纈(1995)による関東平野の基盤構造。中央をV字型に東西につらぬく灰色の線が、基盤岩の速度境界を示す。

b) ボーリング資料による関東平野地下の基盤岩類

林ほか(2006)は、関東平野で基盤に到達した 49 カ所のボーリング資料をコンパイルし、関東平野地 下の地体構造区分を推定した。本研究では、さらに文献等により 10 カ所のボーリングデータを収集し た(表2、図24)。 表2 孔井データー覧。深度は全て海水準を0mとした値で示した。灰色の領域で示した孔井は林ほか (2006)によるものであり、それらの引用文献は林ほか(2006)を参照。

孔井名	標高(m)	堀止深度(m)	基盤上面(m)	岩相	推定帰属	文献
1 太田温泉井	40	800	600	チャート・粘板岩互屬	足尾帯	坂川ほか(2004)
2 館林観測井	20	1215	576	砂岩頁岩チャート互層・花崗岩	足尾带	鈴木・小村(1999)
3 宇都宮温泉井	130	1283	1280	花崗岩	足尾帯	福田(まか)(1988)
4 石下観測井	16	887	502	両 雲母花崗岩	筑波花崗岩	池田・塚原(1987)
5 防災科研つくば	25	575	385	花崗岩・輝緑岩	筑波花崗岩	塚原ほか(1983)
6 地理院つくば	25	790	462	ホルンフェルス	筑波変成岩類	多田(1983)
7 応用地質実験井	25	1325	597	ミグマタイト	筑波変成岩額	三本ほか(2000)
				圧砕された黒色泥質岩	三波川帯	矢島(1981)
8 新利根R-1	3	836	810	破砕された黒色千枚岩	三波川帯	福田(まか(1974)
				粘板岩	領家帯	福田ほか(1988)
9 江戸崎観測井	2	1232	663	砂岩・頁岩	白蚕系跡倉屬相当屬	久田ほか(2006)
10 席(島神SK-1	-38	2159	1638	泥岩	白亜系	米谷ほか(1981)
11 鹿島KT-1	5	905	882	泥岩	白蚕系	石井(1962)
12 霞ヶ浦観測井	25	514	428	頁岩砂岩互屬	筑波変成岩類	林ほか(2006)
13 下赛温泉井	25	1488	1015	石英斑岩	筑波花崗岩	林ほか(2004c)
14 明野温泉井	35	1500	228	花崗岩	筑波花幽岩	林ほか(2004c)
15 GSJつくば	24	751.5	525	花崗岩・頁岩	筑波花崗岩	三本ほか(2000)
16 筑波大学2号井	26	500	409.1	花崗岩	筑波花崗岩	佐藤ほか(1980)
17 つくば南観測井	21	1096	701	トーナル岩質マイロナイト	帰属不明	本研究
18 阿字ヶ浦温泉井	30	1503.9	300	含藥頁岩	八溝帯	安藤(2006)
19 東松山温泉井	30	1200	970	頁岩	白亜系または秩父帯?	林ほか(2006)
20 春日部GS-1	5	3098	3067	圧砕された黒色粘板岩	白亜系南蛇井層	福田(1962)
21 岩槻地殼観測井	8	3501	2888	石英斑岩・トーナル岩・角閃岩	中新統花崗岩及び領家帯	高木ほか(2006)
22 松伏SK-1	5	2001	1595	トーナル岩・角閃岩	領家帯	高木・高橋(2006)
23 瑞穂試錐	142	260	228	頁岩・砂岩	秩父帯	川島ほか(1985)
24 武蔵村山試錐	124	579	537	粘板岩、砂岩、チャート	秩父带	川島・川合(1980)
25 昭島試維	119	302	269	破砕したシルト岩	秩父带	川島ほか(1990)
26 八王子試錐	109	592	572	頁岩	小仏層群 (四万十帯)	川島ほか(1984)
27 府中地鼓観測井	45	2738	1977	砂岩・頁岩互層	秩父帯	鈴木・高橋(1985)
28 江東地殼観測井	7	3023	2572	砂岩・泥岩・チャート	秩父帯	鈴木(1996)
29 八王子中町温泉井	112	1378	458	砂岩・石灰岩・黒色粘板岩	小河内層群(四万十带)	東京都土木技術研究所(2003)
30 八王子上柚木温泉井	120	1230	890	珪質頁岩・黒色頁岩・砂岩	小河内層群(四万十帯)	東京都土木技術研究所(2003)
31 野田R-1	7	1123	1029	片麻岩質花崗岩	領家帯	福田ほか(1974)
32 流山NP-1	3	1522	1479	砂質シルト岩	白亜系	福田ほか(1988)
33 下総地殼観測井	23	2307	1491	緑色片岩および黒色片岩	三波川帯	鈴木・高橋(1983)
34 船橋FR-18	7	2100	2064	緑色片岩および石墨片岩	三波川帯	福田ほか(1974)
35 船橋地盤沈下観測井	3	2143	2136	黑色千枚岩	三波川帯	福田ほか(1974)
36 船橋温泉井	3	2380	2367	緑色岩類	三波川帯御荷鉾ユニット	鈴木(2002)
37 小見川R-1	0.5	662	658	グレイワッケ	中生界	石井(1962)
38 成田観測井	12	1324	860	千枚岩・緑色片岩	三波川帯	鈴木・小村(1999)
39 成田R-1	7	1046	1011	緑色片岩	三波川帯	石井(1962)
40 菱田R-1	41	908	897	砂岩	白亜系?	菊泡(1963)
41 多古R-1	7	819	818	緑色片岩	三波川帯	福田ほか(1974)
42 旭R-1	6	736	733	砂岩	秩父帯	河井(1961)
43 旭R-2	4	560	545	砂岩	秩父带	河井(1961)
44 飯岡R-1	5	396	395	アルコーズ質細粒砂岩	秩父带	石和田ほか(1962)
45 佐倉R-1	3	1519	1507	不明	不明	菊泡(1963)
46 八街R-2	46	1949	1943	礫岩砂岩互層	白亜系	河井(1961)
47 成東R-2	7	1999	1993	砂岩	秩父帯	石和田ほか(1962)
48 運沼TR-1	2	1444	1429	グレイワッケ	秩父帯	河井(1961)
49 運沼観測井	2	1659	1582	グレイワッケ	秩父带	本研究
50 銚子中観測井	2	528	142.3	砂岩頁岩・礫質泥岩	白亜系,愛宕山層群	林ほか(2006)
51 柏温泉井	20	1180	?	花崗岩	領家帯	関ほか(2004)
52 柏南温泉井	10	1290	1263	緑色岩	三波川帯御荷鉾ユニット	道前ほか(2003),高木・高橋(2006)
53 柏沼南町温泉井	3	1737	1197	砂岩・粘板岩・斑糲岩	白亜系	本研究
54 豊住R-1	5	875	849	緑色片岩	三波川帯	駒沢・長谷川(1988)
55 栗源町温泉井	28	1772	850	珪岩・結晶片岩	三波川帯	坂川ほか(2004)
56 佐原温泉井	29	1466	1100	砂岩頁岩互層	不明	本研究
57 厚木温泉井	28	1472	428	硬質黒色泥岩・砂岩互層	相模湖層群(四万十帯)	小沢 · 江藤(2005)
58 海老名温泉井	55	1246	950	硬質黒色泥岩・砂岩互層	相模湖層群(四万十帯)	小沢・江藤(2005)
59 相模原温泉井	104	1396	1351	細粒砂岩	小仏層群(四万十帯)	小沢ほか(1999)

新たに追加されたデータは、大都市圏地殻構造調査研究による大深度ボーリング掘削の2カ所(表2 および図24の17、49番)以外は温泉ボーリングである。このうち、柏沼南町温泉井(同、53番) のカッティングスについては、早稲田大学の新井宏嘉博士および高木秀雄教授により岩石学的な検討が 進められている。この詳細は別に公表される予定であり、ここでは新井博士および高木教授からの私信 より概略のみ示す。

図24 関東平野で基盤に到達した孔井(林ほか、2006をもとにデータを追加)。数字は表2の番号 に対応。大きな数字は、林ほか(2006)から追加された孔井データを示す。

カッティングスから判断すると、柏沼南町温泉井の先新第三系地質は、深度約 1320m より上位の斑 れい岩と、それより下位のチャートや砂岩、粘板岩よりなる砕屑岩類とに大区分される。斑れい岩は斜 長石および単斜輝石から主に構成され、著しく変質しているが、御荷鉾帯の変斑れい岩で見られるアク チノライトのような変成鉱物は認められない。砂岩は極細粒~中粒で、長石質ワッケ、もしくは長石質 アレナイトに相当し、その重鉱物組成は関東山地の白亜系跡倉層のもの(武井, 1992; 新井ほか, 2000) にほぼ一致している。これらカッティングスの薄片写真を図25に示す。

図25 柏沼南町温泉井のカッティングスの顕微鏡写真(撮影:新井宏嘉博士).(a)斑れい岩(深度 1,350 m). 直交ニコル.(b) 中粒砂岩(深度 1,740 m). 直交ニコル. Cpx:単斜輝石, Ep:緑簾石, Qtz:石英, Pl:斜長石, Ttn:チタン石.

これらのデータによって、千葉県北部の三波川帯の北限境界、および東京都西部の秩父帯南限境界が より制約された。高木ほか(2006)および高木・高橋(2006)は、埼玉県岩槻観測井および松伏 SK-1 のコ ア試料からマイロナイト化したトーナル岩類を報告し、これら孔井の南側直近に中央構造線が存在する 可能性を指摘した。関東平野北部の活断層である深谷断層や綾瀬川断層等は、地下で中央構造線に収斂 する可能性が指摘されている。今後、千葉県柏市周辺で新たに報告されたボーリングデータの詳細な解 析により、中央構造線の東方延長の実態を明らかにすることが強く望まれる。

c) 関東平野地下における基盤岩類の地震波速度

大深度ボーリングのうち、防災科研の観測井では孔内検層や VSP 法等によって現位置での地震波速 度が得られている。防災科研のウェブページ(KiK-net: http://www.kik.bosai.go.jp/kik/) で公表されて いる観測井の地震波速度は、VSP 法や検層によって得られた詳細速度構造を多層近似し、各層の平均的 な速度構造を求めたものである。関東平野の防災科研観測井について、地震波速度と深度との関係を地 体構造区分ごとにプロットした(図26)。用いた観測井は、岩槻(IWT)、下総(SHM)、成田(NRT)、府 中(FCH)、江東(KOT)、銚子中(CH2)、ひたちなか(HTK)、江戸崎(EDS)、霞ヶ浦(KGR)である。

図26 関東平野の防災科研観測井における基盤岩類の深度と地震波速度との関係(林ほか、2006 に追加)。

堆積岩から主に構成される地質体(秩父帯、愛宕山層群、白亜系)については、深度にともなって地 震波速度が増加しているが、その関係は直線的ではなく、深度 1000m 付近で飽和する傾向が認められ る。この速度の増加は、地層の圧密による空隙率の減少が原因と考えられる。一方、結晶片岩や緑色岩 等によって構成される三波川帯、深成岩・変成岩によって構成される領家帯では、P 波・S 波とも深度 によらず大きな速度を示している。一般に、岩石中を伝わる地震波速度は、堆積岩よりも深成岩や変成 岩のような結晶質の岩石の方が大きくなることが知られている(たとえば、服部・杉本, 1975)。本研 究の結果はそれと整合的である。

Koketsu and Higashi(1992)および纐纈(1995)による人工地震の走時インバージョンで認められた基 盤の速度境界(図23)は、彼らが指摘しているように、秩父帯と三波川帯の境界にほぼ対応している (図24)。三波川帯と領家帯は、地震波速度の大きい変成岩や深成岩によって主に構成されており、堆 積岩が分布する秩父帯や四万十帯との速度コントラストが、屈折波の伝搬に影響を与えているものと考 えられる。逆に言えば、バイブロサイスや爆破等の走時解析で基盤のP波速度に顕著な不連続が認めら れる場合、それは地体構造区分の境界に相当する可能性が高い。

5) 本研究課題5年間の成果総括

平成14年度からの5年間で、日本を代表する大都市圏である首都圏および近畿圏において、計6箇 所の大深度ボーリング調査を行った(図27、28)。これら全ての調査地点で、予定された孔井内速度 構造調査およびコア試料の採取が実施され、また掘削後の孔井は、Hi-net 観測点として整備された。孔 井内で直接測定された速度構造は、首都圏・近畿圏の詳細な速度構造モデルの構築を通して、地震動予 測の高精度化に貢献するものである。また、コア試料の分析および検層によって明らかにされた孔井地 質は、本計画の中で実施された大規模な構造探査による地下構造断面の解釈に貢献した。

図27 本計画における関東平野の構造探査測線(赤線)およびボーリング調査地点(赤丸印)を、産業技術総合研究所地質調査総合センター発行のシームレス地質図(地質調査所、2003)上に示した。青のグラデーションは、鈴木(2002)による先新第三系基盤深度分布を500m間隔で示した(一部改訂)。

図28 本計画における平成16年度の近畿圏の構造探査測線(赤線)およびボーリング調査地点(赤丸印) を、産業技術総合研究所地質調査総合センター発行のシームレス地質図(地質調査所、2003)上に示した。

掘削された全ての地点で、P波速度 4km/s 以上の地震基盤まで到達した。さらに首都圏・近畿圏の4 地点(蓮沼、つくば南、大阪、京都)については、堆積層を貫いて先新第三系基盤岩類のコアを採取す ることができた。これらは、厚い堆積層に覆われる平野地下の地体構造区分に新たな制約を提供した。

首都圏・近畿圏の2地点(山北南、大阪)については、活断層の近傍を掘削したため、それら活断層 の実態解明に役立つデータが得られた。首都圏西部、神奈川県山北町で平成15年度に掘削された山北 南観測井は、日本最大級の平均変位速度をもつ活断層のひとつである神縄・国府津-松田断層系活断層 の近傍に位置する。孔井地質によると、深度721m(標高では海水準下569m)まで陸成上部更新統の 箱根古期外輪山噴出物(約250~500ka)が分布していた。掘削地点のすぐ山側には海成鮮新統~更新 統の足柄層群が分布していることから、掘削地点のすぐ近傍に、最低でも累積変位569m以上、平均変 位速度1m/k.y.以上の未発見の第四紀断層の存在が確実となった(図29)。この断層の最近の活動につ いては不明であるが、平均変位速度1m/k.y.以上はA級の活断層に相当する。

大阪観測井は大阪平野の中心部、淀川左岸の沖積低地で掘削された。この場所は、大阪平野を南北に 貫く活断層(上町断層)の上盤側であり、この断層の活動によって更新統の大阪層群が累積的に変位し ていることが想定された。孔井地質によると、この地点では完新統の直下の深度 44m で 100 万年前の 噴出年代を示す鍵層(ピンク火山灰)が認められ、すなわち 100 万年分の地層が不整合によって欠如し ている。周辺の孔井との対比によると、この不整合により欠如する年代範囲は上町断層から遠ざかるほ ど少なくなる傾向が明瞭に示された。したがって、この不整合は上町断層の活動による基盤の隆起運動 を示している可能性が高い。

図29 山北南観測井(星印)周辺の地質図(林ほか,2007,印刷中)。地形図は1:25,000 国土地理院発行地形図「山北」を利用した. 断層 B-E-F-C が本研究で新たに推定された第四紀断層である。断層 A は徐(1995)により発見された日向断層、G は今永(1999)による内川断層である。推定断層 H は、木村ほか(2004)および本計画による小田原-甲府測線によって存在が確認された。

(d) 結論

首都圏の関東堆積盆北部、茨城県つくば市下岩崎において、1,000m級の調査観測ボーリングを実施 し、地下のP波およびS波速度構造を計測した。これらのデータは地震動予測の高精度化に活用される ものである。

- (e) 引用文献
- 1) 安藤寿男:関東平野東端の太平洋岸に分布する銚子層群・那珂湊層群・大洗層の地質学的位置づけ. 地質学雑誌,第112巻,第1号,84-97,2006.
- 2) 新井宏嘉・村上愼二郎・高木秀雄:関東山地跡倉層の後背地 地質学論集 第56号, 123-136, 2000
- 3) 千葉県:平成15年度地震関係基礎調査交付金千葉県地下構造調査成果報告書. 千葉県, 50p, 2004.
- 4) 地質調查所:日本重力 CD-ROM, 数值地質図 P-2, 地質調查所, 2000.
- 5) 地質調査所:100万分の1日本地質図 第3版 CD-ROM 第2版,数値地質図 G-1,地質調査所, 2003.
- 6) 福田 理・高橋 博・大八木規夫・鈴木宏芳:孔井地質にみる関東平野の基盤. 地質ニュース,第 100号,8-17,1974.
- 7) 長谷川功:地震探査から見た関東平野の基盤構造. 地質学論集, 第31号, 41-56, 1988.
- 8) 服部保正・杉本卓司:岩石のP波伝搬速度に関する統計的研究(I).物理探鉱,第28巻,第1号, 3-12,1975.
- 9) 林 広樹・笠原敬司・木村尚紀:関東平野の地下に分布する先新第三系基盤岩類.地質学雑誌,第 112巻,第1号,2-13,2006.
- 10)林 広樹・伊藤谷生・上杉 陽・笠原敬司・関口渉次・高橋雅紀・津久井雅志・松 本拓己・山水 史生・柳沢幸夫:伊豆衝突帯北東部における大深度陸上掘削の成果.月 刊地球,号外,第 57 号, 2007 (印刷中).
- 11) 今永 勇: 足柄層群の構造,神奈川県博調査研報(自然),第3号,41-56,1999.
- 12) 木村治夫・佐藤比呂志・伊藤谷生・宮内崇裕・松多信尚・河村知徳・石山達也・岡田真介・加藤直 子・荻野スミ子・楮原京子・小田 晋・石黒 梓・長谷川 悟・上条裕久・駒田希充・丸山友章・ 坂下尚久・森 智之・佐野順平・野田克也・井川 猛:国府津-松田断層帯松田北断層における P 波浅層反射法地震探査,日本地震学会講演予稿集, C059, 2004.
- 13) 纐纈一起:首都圏の地下構造.物理探査,第48巻,第6号,504-518,1995.
- 14) Koketsu, K. and Higashi, S.: Three-dimensional topography of the sediment/basement interface in the Tokyo Metropolitan Area, central Japan. Bulletin of the Seismological Society of America, Vol. 82, No. 6, 2328-2349, 1992.
- 15) 三本健四郎・山根 誠・吉田 浩・岡野 肇・妹尾洋一・原 郁夫: つくば技術開発センター1350m ボーリングコアの地質学(1)基盤岩類の地質概観. 応用地質技術年報,第20号,43-86,2000.
- 16) 小川克郎・堀川義夫・津 宏治:茨城県日立-千葉県鴨川地域の空中磁気異常と地質構造.地質調 査所月報,第30号,549-569,1979.
- 17) 小沢 清・江藤哲人:神奈川県中・東部地域の大深度温泉井の地質および地下地質構造.神奈川県 温泉地学研究所報告,第37巻,15-38,2005.
- 18) 関 陽児・中嶋輝允・上岡 晃・金井 豊・間中光雄・月村勝宏: 関東地方東部における大深度温

泉の特徴. 温泉科学, 第54巻, 第1号, 1-24, 2004.

- 19) 石油公団:平成 10 年度国内石油天然ガス基礎調査. 海上基礎物理探査「房総沖浅海域」調査報告書, 2000.
- 20) 徐 垣:足柄層群南縁の衝上断層(日向断層)とその地震テクトニクス上の意義.地質学雑誌,第 101 巻, 295-303, 1995.
- 21) 鈴木宏芳: 関東平野の地下地質構造. 防災科学技術研究所研究報告, 第63号, 1-19, 2002.
- 22) 高木秀雄・鈴木宏芳・高橋雅紀・濱本拓史・林 広樹: 関東平野岩槻観測井の基盤岩類の帰属と中 央構造線の位置. 地質学雑誌, 第112巻, 53-64, 2006.
- 23) 高木秀雄・高橋雅紀:松伏坑井基盤岩試料からみた関東平野の中央構造線. 地質学雑誌, 第112巻, 65-71, 2006.
- 24) 武井晛朔: 関東山地北縁部のいわゆる跡倉層の砂岩. 地質学論集, 第38号, 249-259, 1992.
- 25) 東京都土木技術研究所:平成14年度地震関係基礎調査交付金温泉ボーリング資料収集委託報告書, 2003.
- 26) 山口和雄・横倉隆伸・加野直巳・田中明子・大滝壽樹・伊藤 忍・横田俊之: 取手付近における利 根川下流低地の浅部地下構造. 物理探査学会第 109 回学術講演会論文集, 87-88, 2003.
- 27) 柳沢幸夫・渡辺真人・高橋雅紀・田中裕一郎・木村克己・林 広樹: 3.2.4.大深度ボーリング試料による地質年代調査. 大都市大震災軽減化特別プロジェクト 1: 地震動(強い揺れ)の予測「大都市 圏地殻構造調査研究」(平成 16 年度)成果報告書,科学技術振興費 主要 5 分野の研究開発委託事業:新世紀重点研究創世プラン〜リサーチ・レボリューション・2002~, 296-329, 2006.

(f) 成果の論文発表・口頭発表等

1) 論文発表

著者	題名	発表先	発表年月日
林広樹・阿部恒平・柳沢	神奈川県西部,山北南地	地質調査研究報告,第	2006年11月
幸夫・笠原敬司	震観測井のコア 試料か	3/4 号,127-133	
	ら産出した有孔虫化石		
林広樹・伊藤谷生・上杉	神奈川県西部山北南高	防災科学技 術研究所研	2006年10月
陽・小山田浩子・笠原敬	感度地震観測井の掘削	究資料, 第 298 号, 1-32	
司・関口渉次・高橋雅	および孔内検層		
紀・田中裕 一郎・津久			
井雅志・松井智之・松本			
拓己・山崎優・山田隆			
二・山水史生・柳沢幸			
夫・渡辺真人			
津久井雅志・山崎優・松	伊豆弧北端の火山岩類	地質調査研究報告,	
井智之・小山田浩子・上	の記載と地殻構造-山	2006年,(印刷中)	
杉陽・林広樹・柳沢幸	北南大深度観測井の箱		
夫・笠原敬司	根火山, 先箱 根火山岩		
	類から-		
林広樹・伊藤谷生・上杉	伊豆衝突帯北東部にお	月刊地 球, 2007年, 号	
陽・笠原敬司・関口渉	ける大深度陸上掘削の	外,第57号,(印刷中)	
次・高橋雅紀・津久井雅	成果		
志・松本拓 己・山水史			
生・柳沢幸夫			

2) 口頭発表等

著者	題名	発表先	発表年月日
林広樹・阿部恒平・柳沢	神奈川県西部, 山北町の	日本古生物学会2006年	2006 年6月24日
幸夫・田中裕一郎・笠原	深 層ボーリングにより	年会(島根大)	
敬司	得られた有孔虫化石		
林広樹・笠原敬司	関東平野の基盤構造- 大都市大震災軽減化特 別プロジェクトの 成果 -	平成18年度(第22回) 島根県地学会研究発表 会(島根大)	2006年7月8日
林広樹・高橋雅紀・柳沢	関東平野地下における	日本地質学会第 113 年	2006年9月16日
幸夫・笠原敬司	新第三系分布図の 改訂	学術大会(高知大)	
林広樹・柳沢幸夫・高橋	関東平野の地下地質構	日本地震学会2006年秋	2006年11月2日
雅紀・関口渉次・笠原敬	造モデルの改訂	季大会(名古屋市)、P174	

(g) 特許出願、ソフトウェア開発、仕様・標準等の策定

1) 特許出願

なし

2) ソフトウェア開発

なし

3) 仕様・標準等の策定

なし