7) データ解析

本節では、反射法大阪バイブレータ測線、反射法甲賀低重合バイブレータ測線、反射法 鈴鹿バイブレータ測線、屈折法及び広角反射法測線の順に従って、データ解析内容を詳述 する。尚、反射法各測線データ解析における処理パラメータの一覧を表2に示した。 a) 反射法大阪バイブレータ測線及びデータ解析

本節では、広域測線西部の大阪府大阪市此花区舞洲緑地-京都府城陽市奈島間に位置する 大阪平野を中心とした地域におけるバイブレータ大阪測線 OS-1(測線長 53km)の反射法デ ータ処理内容について記述する。図 23 に、データ処理フローを示す。

図 23 反射法データ処理フロー

i) フォーマット変換及びデータ編集(Format Conversion and Trace Edit)

フィールドデータに記録された原記録(GDSPS-4 SEGY Format)について、SuperX (JGI Internal Format)フォーマットへ変換を行った。さらに、S/N 比が著しく低く、 初動が判別できないトレースを処理対象から除外した。

ii) トレースヘッダーへの測線情報の入力(Geometry Application)

SuperX トレースヘッダーに関して、発振点、受振点及び各 CMP のインデックス、座標、標高値、オフセット距離、基準面標高値等の測線情報を入力した。データ解析における基準標高面は平均海水面から標高 500m に位置に設定された。また、CMP 重合測線は下記の基準によって決定された。

CMP 間隔..... 25.0m

重合測線からの最大偏倚制限.... 制限無し

重合測線決定のために CMP 分布を平滑化したオフセット範囲 0-2500m。図 24 に重合数 分布を示した。

	• • • •		2 -	
	反射法大阪バイブレータ測線	反射法甲賀低重合パイプレータ測線	反射法伊賀バイブレータ測線	反射法鈴鹿パイプレータ測線
フォーマット変換及びデータ編集				
解析対象の発震点範囲	VP.10-VP.1061	VP.2007-VP.3148	VP.6001-VP.6256	VP.5002-VP.5535
有効発震点数	345点	低重合発震点 71点	89点	172点
		顧宮断層稠密発震点 36点		(準多重発震点8点を含む)
トレースヘッダーへの源線情報の入力				
CMP間隔	25.0m	25.0m	25.0m	25.0m
重合測線からの最大許容偏倚	朝限無し	制限無し	制限無し	制限無し
屈折初動解析				
屈折初動読み取り位相	正のピーク位置	正のピーク位置	正のピーク位置	正のピーク位置
屈折波インバージョン実施オフセット範囲	100-800m	750-2000m	45-400m(測線中央)	150-600m(測線中央)
表層基此速度を求める際の空間プロック長	5000m	2500m	1500m	3000m
初期ミュート		and the state of the second second		
アーバー長	100msec	1000msec(低重合発展記録)	50msec	100msec
ミュート所知し面(ハフイナインク)迷皮)	A1147T40190114_190	和出生在自動的工作的	R13-171-771-9691147.100.	和中国的位置
またであたったための また の た の た の た の た の た の た の た の た の た	2	121		
気内病政補損 AGC適用ゲート馬	800meog	800maog	800maag	800meog
コピーレントノイズ抑制処理	600maec	Boomsec	600maec	ooomsec
アルゴリズム	時間-空間領域速度フィルター	周波教・空間領域予測フィルター	時間-空間領域速度フィルター	時間-空間領域速度フィルター
適用領域	NMO補正後の出演基準記録	NMO補正後の共通基置記録	NMO 補正後の共通発電記録	NMO補正後の北道客電記録
通過(抽止)速度範囲	通過領域 ±4000m/sec	予測フィルターに上入信号執調	通過領域 ±4000m/sec	通過領域 ±4000m/sec
デコンポリューション	All All Book and Compace	1.005 (175.5) 1605 (0117) 2000	All all the state of the second secon	Senerative a root in sec
パイプレータスウィープ波形位相処理	最小位相変換		最小位相恋施	最小位相変換
アルゴリズム	周波数領域'Surface:consistent'型	時間確認的な皮型デュンガリューション	時間領域にレース単位デコンポリューション	周波数領域Surface:consistent'型
前提とするウェーブレット位相	最小位相	零位相	最小位相	最小位相
予測距離	4.0msec	4.0msec	4.0msec	4.0msec
零オフセット位置における設計ゲート	300-4000msec(Non-TV)	300-4000msec(Non-TV)	600-4000msec(Non-TV)	600-4000msec(Non-TV)
オペレーク長	400msec	320msec	400msec	400msec
プリホワイトニングファクター	5.0%	BLRRノイズ(スウィーブ周波数依存)	5.0%	5.0%
浮動基準面に関する静補正				
補正內容	表層補正及び標高補正	表層補正及び標高補正	表層補正及び標高補正	表層補正及び標高補正
浮動基準面定義に用いたオフセット範囲	0-500m	0-3500m	0-250m	0-500m
クロスディップ補正				
クロスディップスキャン範囲	$-6 \sim +8 \text{msec}/100 \text{m}$	(*)	$0 \sim \pm 10$ msec/100 m	$0 \sim \pm 10 \text{msec}/100 \text{m}$
クロスディップスキャン間隔	1250m		1250m	1250m
速度解析				
解析内容	重合速度及びDMO速度	重合速度	重合速度	重合速度及びDMO速度
解析点間隔	2000m	2000m	1250m	2000m
解析速度数	71(1500-5000m/sec)	48(1500-7000m/sec)	71(1500-5000m/sec)	71(1500-5000m/sec)
残差静補正				
アルゴリズム	Linear Traveltime Inversion	Stack-power Optimization	Linear Traveltime Inversion	Linear Traveltime Inversion
時間シフトの最大許容地	12msec	16msec	12msec	12msec
時間ウィンドー	100-1700msec	1000-5000msec	120.400msec	100-2000msec
Dip Moveout				
アルゴリズム	共通オフセット時間・空間領域DMO		•	共通オフセット時間・空間領域DMO
解析対象の最大傾斜角	70度		×	70度
解析対象の最小基準速度	1700m/sec			1700m/sec
DMOオペレータの片側最大長	2500m			2500m
DMOオペレータの定義数	61(100-6100m / 100m問題)	-		61(100-6100m / 100m間隔)
旅船佣值 4. 10. 14 19	F-K DMO等価型			F-K DMO等恤型
位相補償	Dip-dependent Alias Filter			Dip-dependent Alias Filter
CMP(DMO)重合 NMO2LLの手ですが	0.0	5.0	20	5.0
NMUAPV9Tファクター 電合計HTalf mult	2.2	0.0 TSCM(-immed 0)	0.0	0.0
血合則炊物調整 接進金へ発	AGC 300msec	1SGM(sigma=4.0)	AGC TOOmsec	AGC 300msec
伝導出合数	90	30	0-1000-	80
風行オノモット起産転団	0.8000m	300-30000m	0-4000m	0.8000m
周波数・空間関連ノイルクー	2 CMPe	2 CMPe	2 CMPe	2 CMPe
空間ないとう及	50 CMPs	50 CMPs	50 CMPs	50 CMPc
空間ワインドー反 時期カッパー反	1000msoc	500msee	500 maga	1000msoc
「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	Tooomsee	Soomsec	Soomsec	Tooomsec
オペリーク毛	960	500maaa	960	960
国法教通過基礎	0.0sec : 2 - 40Hz	0 0eec : 2 - 25 Hz	0 0sec : 6 - 60Hz	0 0sec : 2 - 40Hz
And SIX TOX ADD ADD THE ADX	1 Ocos : 2 - 25Uz	2 Oeoo : 2 - 20112	1 Osec : 6 - 50Hz	1 0eec : 9 - 95U-
	2 0eee 1 9 - 20Hz	4 0eee : 9 - 05 Ua	2 Osoc : 6 - 40Hz	2 Oece : 2 - 2014
	4 Osec : 2 - 25 Hz	16 0eec : 2 - 20Hz	16 0sec : 6 -20Hz	4 Osoc : 2 - 25Ha
	8.0eec : 2 - 20Hz	10.0sec - 3 - 20Hz	10.0800 - 0 -30FIZ	8.0sec - 3 - 20Hz
	16 0eee : 9 - 20Hz			16 0eeo : 9 - 20Hz
時間マイガレージョン	10.0000+0-20112			IU.UBEC + 0 - 20112
71-1171				
	周波教-方開御徒進合	キルドホッフ型時間マイガレーマーン	開始教-応期領域進合のマイクレーション・	原波粉・次開留は第〇マイガレーション
長大アバチャー範囲	周波数-空間領域差分マイグレーション	キルヒホッフ型時間マイグレーション 6000m	周波数-空間領域差分マイグレーション	周波数・空間領域差分マイグレーション

表2 データ処理パラメーター覧

図 24 大阪測線における CMP 重合数

iii) 屈折波初動解析(Refraction Analysis)

改良型タイムターム法による屈折初動解析を行い、受振点及び発振点タイムターム値 と表層基底層速度を算出した。この手法では解析対象とする屈折面が2次元ブロックに 分割され、各ブロックに対して表層基底層速度が定義される。このモデルは以下の関係 式で記述される。

$$T_{ij} - \sum_{k} s_{k,0} \Delta_{ijk} = a_i + b_j + \sum_{k} \delta s_k \Delta_{ijk}$$
(1)

$$D_W = \frac{T_m}{\sqrt{1 - \left(\frac{V_W}{V_{SW}}\right)^2}} \cdot V_W \tag{2}$$

ここに、Tm は'Time-Term'、Vw は表層速度、 Vsw は表層基底層速度である。表層速度

として受振点側及び発振点側共に 800m/sec を採用した。この値は表層速度を変化させた 重合スキャンによって確定した。図 25 に、改良型タイムターム法による解析結果を示 す。

図 25 屈折初動解析結果 バイブレータ大阪測線

iv) 初動ミュート(First-break Mute)

強振幅の屈折波初動部分を抑制する目的で、以下のパラメータによる初動抑制処理を 実施した。

ミュート位置のスライディング速度...... 4000m/sec

v) 振幅補償(Gain Recovery)

弾性波の震源からの伝播に伴う幾何減衰、多層構造内を透過、多重反射することによ る伝播損失及び非弾性効果による減衰、さらには受振点、発振点毎のカップリングの 相異に起因する振幅特性の変化を補償することを目的として、振幅補償を行った。大阪 府枚方市の国道1号線枚方バイパス周辺及び京田辺市-城陽市間の国道307号線区間では、 バックグラウンドノイズレベルが著しく高く、幾何減衰補償の適用によって先新第三系 基盤以深の振幅レベルを過度に増大させることが懸念されたため、下記の自動振幅調整 のみを適用した。

Instantaneous AGC[ウィンドー長......800msec]

vi) コヒーレントノイズ抑制処理(Suppression of Coherent Noise)

今回取得されたデータでは、寝屋川市-枚方市区間の淀川河川敷区間(VP.502-598)及び

この周波数-空間領域における速度フィルターは、NMO 補正及び屈折波静補正後の共通 発振点アンサンブルで適用された。

vii) $\vec{r} = \vec{v} \cdot \vec{v} = \vec{v}$ (Deconvolution)

デコンボリューション処理では、次式で示される1次元コンボリューションモデルが 前提とされている。

F(t) = W(t) * R(t) + N(t)

(3)

ここに F(t)は地震波トレース、 W(t)は基本波形、 R(t)はランダム定常な反射係数列、 N(t)はランダムノイズである。このモデルにおいて基本波形を構成する要素としては、 以下の項目を挙げることができる。

・震源波形:バイブレータスイープ波形、震源カップリング効果、ゴースト効果

・地層効果:多重反射、 非弾性による吸収

・記録系 : 受振器特性及び設置効果、 表層に関わるゴースト効果、 探鉱機の応答特 性

こうした要素の集積としての基本波形を地震トレースから推定・除去し、記録の分解 能向上を図るためにデコンボリューションを適用した。'Surface-consistent'型デコンボリ ューション処理を含めた比較重合テストを通じて、以下のパラメータが採用された。パ ラメータテストの結果、'Surface- consistent'型デコンボリューションが有効であること が確認された(図 26)。53kmに亙る大阪平野から枚方市の丘陵地域を経て木津川を横断 する大阪測線では、地表地質、受振器設置条件及び受振測線周辺の定常ノイズ等が測線 内で大きく変化し、同様に発振条件についても、測線西側から淀川流域の沖積層に被覆 された大阪平野、 大阪層群、布引花崗岩等が地表で確認される枚方市丘陵地、丹波帯 の露頭が確認される測線東端の地域では、発振カップリングの地域差は顕著であ り、'Surface-consistent'な受振及び発振スペクトルを推定し、最小位相の前提によってデ コンボリューションオペレータを構築することは有効性が非常に高いものと考えられ る。

予測距離	.4.0msec
零オフセット位置における設計ゲート	200~3000msec [Non-TV]
オペレータ長	320msec
プリホワイトニングファクター	5.0%
アルゴリズム 'Surface-consistent Deconvol	ution with Spectral Decomposition'

尚、デコンボリューション適用に際しては、零位相であるバイブレータ震源のスイー プ波形(探鉱機'A/D Decimation Filter(DCF)'及び相互相関処理実施後のスイープ波形) について、最小位相変換処理を適用した。今回用いた GDAPS-4A 探鉱機では 24 ビット Δ-ΣA/D 変換が採用されているため、ローカットフィルターは探鉱機では適用されず、 最小位相推定において問題となる 10Hz 以下の低周波数成分についての影響は少ない。 図 27 はスイープ周波数(6-35Hz)の範囲内における'Spectral Decomposition'によって得ら れた共通受振点スペクトルの空間分布である。この図から、受振点カップリングの地域 性は顕著であり、特に淀川河川敷南部区間 15.0km(RP.101-400)では表面波の励起度が低 いにもかかわらず、8~10Hzの低周波成分が卓越していることが、また枚方撓曲以東の 丘陵地で大阪層群上部が地表に露出している範囲で 12~15Hz の周波数成分が卓越して いることが確認できる。

図 26 デコンボリューションパラメータテスト結果(1) 比較重合処理結果。

'Spectral Decomposition'によって得られた共通受振点スペクトル

viii) 共通反射点編集(Common Midpoint Sorting)

上述 ii) のパラメータによって、共通反射点の編集が実施された。

ix) 浮動基準面に対する静補正(Static Corrections to FDP)

浮動基準面に対する静補正を実施した。静補正については、下式で定義される標高補 正量及び表層補正量の和として各発振点、受振点について与えられる。

[A] 標高補正 Te: 観測面を一定基準面へ補正する。

Te = - (He - Hb) / Vsw

(4)

[B] 表層補正 Tw: 低速度の表層構造変化による影響を除去する。

Tw = Sd * (-1/Vw + 1/Vsw)

(5)

ここに、 He:発振点あるいは受振点標高(m)

Hb:基準面 [平均海水面 0.0m]

Sd:表層厚(m)

である。

表層補正値は、前述 iii)の屈折波初動解析による結果を用いて計算された。本調査の 基準面(Datum)は平均海水面 から 500.0mの標高位置に設定されたが、絶対値の大きい 標高補正値の適用を回避するため、CMP アンサンブル上において平均標高を定義し、こ れを浮動基準面(FDP:'Floating Datum Plane')とした。この FDP から基準面までの基準面 補正量 Td は、下記のように定義される。

Td = -2.0 * (Hf-Hb) / Vc (6)

ここに、 Hf:浮動基準面(FDP)

Vc:基準面補正速度(1800m/sec)

である。この FDP の計算には CMP 内のオフセット距離範囲 0 - 500m の比較的'Near'トレースが用いられた。

x) クロスディップ補正(Cross-dip Correction)

発振及び受振測線が屈曲している場合、地下の反射点は重合測線上に収束せず、空間 的な広がりを持つ。この反射点の重合測線からの偏倚が大きい場合、同一 CMP 内で反 射面走時が重合測線と直交する方向への構造傾斜を反映する誤差が系統的に含まれる。 クロスディップ補正は、各トレースの発振点-受振点の中点と重合測線との距離 X(m)に 対する時間補正量を X(m)×a(msec/m)として、重合スキャンによって各 CMP 位置及び時 間ウィンドーにおいて重合効果が向上する見掛け時間傾斜量 a を決定する解析手法であ る。図 28 に推定されたクロスディップ量を重合記録に投影表示した結果を示す。この 図では、Loc.1-251 の測線西部大阪市此花区から北区の区間において、浅層部から先新 第三系基盤面まで、測線に対して直交方向のクロスディップ量は北落ち傾斜の傾向を示 し、さらに、Loc.601-751 の枚方撓曲以東の枚方市丘陵地区間では測線に対して直交方 向のクロスディップ量は南落ち傾斜の傾向を示している。これの結果は、図 3 の広域ブ ーゲー異常図から推定される構造傾斜とほぼ調和的な結果であることが確認できる。尚、 図 29 にクロスディップ補正処理に関わる比較重合テスト結果を示す。また、クロスデ ィップスキャンに関わるパラメータは以下の通りである。

クロスティックスキャン範囲	£	$-50 \sim +50 \text{msec}/100 \text{m}$
クロスディップスキャン間隔	न म	2000m

図 28 クロスディップ解析の結果推定されたクロスディップ量(重合断面上に重複表示)。

xi) 速度解析及び DMO 速度解析(Velocity Analysis)

以下に示す定速度重合法による速度解析を実施した。尚、残差静補正後に再解析がな されている。また、速度解析結果を用いて NMO 補正したデータを入力として、速度解 析箇所の DMO モニターアンサンブルを抽出し、同様の定速度重合法による速度解析を 実施した。図 30 に大阪測線 OS-1 に関する DMO 速度解析例を示す。また、図 31 に DMO 速度プロファイル、図 32 に重合速度プロファイルを示す。これらの速度プロファイル は、大阪平野の先新第三系基盤面までの速度構造を比較的精度良く表現していることが わかる。

 解析点間隔
 2000m

 解析速度数
 48(1500 - 7000 m/sec)

xii) NMO 補正(Normal Moveout Corrections)

速度解析によって求められた重合速度-時間の関数を時間-空間方向に内挿し、その速 度テーブルに従って NMO 補正を適用した。同時に、下記のストレッチミュートを実施 した。

ストレッチミュートファクター.....5.0

xiii) $\exists = - h$ (Outside Mute)

NMO 補正に伴う波形の伸長及び'Far'オフセット側に残留する屈折波初動部分を抑制 する目的で、ミュート処理を全 CMP アンサンブルについて設計して、適用した。

xiv) 残差静補正(2D Residual Static Corrections)

NMO 補正後の CMP アンサンブルを入力として、基準トレースとの相互相関関数から得

られる最大ラグ値を用いて'Surface-consistent'な発振点、受振点残差静補正量を
 LTI(Linear Travel- time Inversion)によって統計的に計算し、これを適用した。
 時間シフトの最大許容値......
 18msec(1st)
 時間ウィンドー.....
 100-1700msec

図 29 クロスディップ補正処理比較重合テスト結果

図 30 大阪測線における DMO 速度解析例

図 31 速度プロファイル(大阪測線 OS-1)[1] DMO 重合速度

図 32 速度プロファイル(大阪測線 OS-1) CMP 重合速度

xv) DMO 重合(DMO Stack)

標準 DMO 重合数...... 79Folds DMO オペレータの定義数.....100[150m - 10050m 100m 間隔] DMO 重合オフセット距離範囲..... 150 - 10050m F-K DMO 等価型 振幅補償..... 位相補償..... dip-dependent alias filter 適用 xvi) 周波数一空間領域予測フィルター(F-X Prediction Filter) 周波数-空間領域に於いて複素型予測フィルターを設計、適用して、ランダムノイズを 抑制し相対的に S/N を向上させる以下の F-X 予測フィルター処理を実施した。 オペレータ長...... 3 CDPs 時間ウィンドー長..... 1000 msec xvii) 帯域通過フィルター(Bandpass Filter) 反射波の有効周波数帯域が周波数成分解析によって決定され、以下の零位相帯域通過 フィルターが採用された。 オペレータ長..... 500 msec 周波数通過带域往復走時0.0sec / 通過帯域[3-40Hz] 1.0sec / 通過帯域[3-35Hz] 2.0sec / 通過帯域[3-30Hz] 4.0sec / 通過帯域[3-25Hz] 8.0sec / 通過帯域[3-20Hz] 16.0sec / 通過帯域[3-20Hz] これらの通過帯域のフィルターパラメータは線型内挿される。 xviii) 基準面補正(Datum Corrections) 浮動基準面から基準面への、時間補正が適用された。 xix) 周波数-空間領域差分時間マイグレーション(F-X FD Time Migration) 時間断面上の反射点位置を実際の位置に移動させ、回折波を回折点に復元することを 目的として、周波数-空間領域差分時間マイグレーションを適用した。 最大周波数..... 45 Hz 下方外挿時間ステップ...... 8 msec xx) 深度変換 (Depth Conversion) 図 32 に示した重合速度プロファイルから、時間及び空間方向に平滑化した平均速度 分布を用いて、'Vertical Stretch'法による深度変換を実施した。 以上の処理ステップを逐次経ることによって、図 33、34の CMP/DMO 重合処理断面図、 図 35、36 の時間マイグレーション断面図が得られた。また、これらの重合記録及び時 間マイグレーション記録を用いて深度変換を実施した結果を、図 37、38、39、40 に示 した。