3.3.7 地下構造モデル化の研究(三次元速度・Q)

- (1) 業務の内容
- (a) 業務題目 地下構造モデル化の研究/三次元速度・Q構造モデル
- (b) 担当者

所属機関	役職	氏名	メールアドレス
東京工業大学・大学院総合	助教授	山中浩明	yamanaka@depe.titech.ac.jp
理工学研究科			
東京大学・地震研究所	助教授	古村孝志	furumura@eri.u-tokyo.ac.jp
(財)電力中央研究所	主任研究員	佐藤浩章	hiroakis@criepi.denken.or.jp
(財)電力中央研究所	主任研究員	東貞成	higashi@criepi.denken.or.jp
(財)電力中央研究所	主任研究員	芝良昭	cbar@criepi.denken.or.jp
清水建設(株)·技術研究所	主席研究員	佐藤俊明	toshiaki.sato@shimz.co.jp
清水建設(株)·技術研究所	副主任研究員	早川崇	takashi.hayakawa@shimz.co.jp

(c) 業務の目的

この研究では、関東平野において地下構造調査および地震記録の分析により、新たに地 下構造に関する情報を取得し、既存の地下構造関連データと統合して、強震動数値シミュ レーション用の3次元地下構造(P波・S波速度、密度、Q値)のマスターモデルを構築 することを目的とする。さらに、得られたマスターモデルを用いて、関東平野周辺で発生 した被害地震による強震動の数値シミュレーションを行い、強震動強さと被害の関係につ いても明らかにする。

- (d) 5ヵ年の年次実施計画(過去年度は、実施業務の要約)
 - 1) 平成14年度:
 - ・既存データの収集・既存モデルの整備
 - ・既存地下構造モデルを用いた地震動シミュレーション
 - ・堆積層における速度勾配および不均質性の既存データ調査
 - 2) 平成15年度:
 - ・既存の地下構造データのコンパイル
 - ・堆積層の構造探査の実施
 - ・既存地下構造モデルによる地震動シミュレーション
 - ・地震記録の分析によるモデル修正
 - ・速度の深度勾配および不均質モデルの影響の評価
 - 3) 平成16年度:
 - ・堆積層の構造探査の実施
 - ・関東平野の堆積層のマスターモデルの提案
 - ・地震記録の分析によるモデル修正
 - ・深度勾配と不均質を付与した地下構造モデルの検証と改良
 - ・マスターモデルを用いた高精度強震動シミュレーション
 - 4) 平成17年度:

- ・堆積層の構造探査の実施
- ・関東平野の堆積層のマスターモデルの改良
- ・地震記録の分析によるモデル修正
- ・関東周辺の被害地震の強震動シミュレーション
- 5) 平成18年度:
- ・堆積層の構造探査の実施
- ・関東平野の堆積層のマスターモデルの最終案
- ・関東周辺の想定地震による強震動シミュレーション
- (e) 平成 17 年度業務目的

平成 16 年度までに収集した既存の関東平野での微動アレイ観測による位相速度データ を整理し、統一した基準でデータ解析を行い、平野全体の地下構造モデルの改良を行う。 さらに、昨年度において数値化した深井戸での速度検層データに基づいて堆積層の不均質 性をモデル化し、より短周期の地震動特性への影響を評価する。また、既往の3次元地下 構造モデルのチューニングを行い、最近の中小地震や1944年東南海地震による強震動の再 現を行う。

(2) 平成 17 年度の成果

(2-1) 関東平野の地下構造のモデル化に関する研究

山中浩明(東京工業大学) yamanaka@depe.titech.ac.jp

(a) 業務の要約

平成 16 年度までに収集した既存の関東平野での微動アレイ観測によるレイリー波の位 相速度データを整理し、統一した基準での分析により関東平野の堆積層の3次元モデルを 改良した。さらに、改良した3次元モデルの妥当性を検討するために、中規模の地震によ る強震動のシミュレーションを行い、改良による地震動の説明能力が向上していることが 確認した。

(b) 業務の成果

1)表面波位相速度データによる3次元S波速度構造モデルの作成

近年、関東平野では、自治体などによって堆積層の構造探査が実施され、地下構造デー タは急速に増えつつある。とくに、地震動特性に大きな影響を及ぼすS波速度は、微動探 査によって推定されている。また、本プロジェクトにおいても、今まで微動探査があまり 実施されていなかった平野北部において微動探査を実施した。平成16年度までに、これら の微動探査において観測されたレイリー波の位相速度データを収集してきている。図1に は、収集した既存の微動探査の調査位置が示されている。観測点の数は、合計241地点で ある。これらの地点での観測データは、著者らも含めた複数の調査研究機関による独自の 観測、自治体による調査などによるものである。

収集した各地点でのレイリー波の位相速度データに対して逆解析を行い、1次元S波速 度構造を推定し、それらを統合して深部地盤構造の見直しを行った。その際には、4層構 造を仮定し、表層を除く3つの層のS波速度値を1.0、1.5、3.0km/sと固定して、3つの 堆積層の厚さを決めることを試みた。こうした逆解析では、かなり強い拘束を与えてこと になり、観測された位相速度が十分に説明できない場合も当然でてくる。しかし、統一し て逆解析することで、同じ速度の層構成となるので、3次元モデルの構築が容易になると いう利点がある。さらに、得られた各地点での地下構造モデルは、やや長周期帯域のレイ リー波の位相速度の分散特性を満足するものであり、やや長周期表面波の評価により適切 な堆積層のモデルをとなることが期待される

上記のような逆解析を各地点での位相速度の観測値に適用し、地震基盤までの1次元S 波速度構造を推定した。さらに、それらをまとめて、図2に示すように、第2層、第3層、 および地震基盤上面までの深度分布図を作成した。なお、この深度分布図の作成において は、関東山地では地震基盤深度が露頭していると仮定している。S波速度1km/sの第2層 目までの深さは、平野北部と房総半島で0.6km以上と深く、南西部では浅くなっている。 S波速度1.5km/sを有する第3層目までの深度も房総半島中央部では、2km以上と厚い。 同様の傾向は、地震基盤深度図でも認められ、房総半島中心部で深さ4kmに達している。 北部では基盤深度は2km以下と浅く、その他の地域では、2.5km前後である。なお、北緯 36度以北と三浦半島・房総半島より南西の領域は、山中・山田(2002)と同じとしてある。 また、図1の一部の観測点でのデータは解析途上であり、3次元モデルの作成に取り入れ ていない。将来モデルの更新を行う予定である。

2) 地下構造モデルのバリデーション

強震動予測のための地下構造のモデルに要求される性能のなかで最も重要なことは、観 測された地震動の説明能力である。つまり、構築した地下構造モデルによって、中小地震 の際に観測された地震動の特徴がどの程度よく説明することができるかを検証しなければ ならない。こうした地下構造モデルのバリデーションのためには、モデルから期待される 地震動特性を何らかの方法で評価することになる。とくに、やや長周期地震動の評価を目 的にした地下構造モデルの検証には、最大振幅だけでなく、表面波まで含む波形全体の経 時的特徴を評価する必要がある。そこで、3次元波動場のシミュレーションが用いられる ことが多い。ここでも、上記のように構築された堆積層の3次元S波速度構造を用いて地 震動シミュレーションを行うことにする。

モデルバリデーションで対象とする地震は、規模が小さく、考えている想定地震の震源 域に震源があり、目的とする周期帯域の成分を含む地震記録が得られていることが望まし い。ここでは、1990年2月20日の伊豆大島近海の地震(Mj6.5)を検討に用いることにした。 この地震は、十数年前の地震であり、最近の地震に比べると得られている地震記録の数は それほど多いというわけではない。しかし、中小地震としては比較的規模が大きく、浅い 地震であり、関東平野では顕著な振幅のやや長周期地震動を含んだ記録が得られている。 また、著者らは、既往の3次元地下構造モデルを用いて、この地震の地震動のシミュレー ションを実施しており(山田・山中、2003)、著者らにとってベンチマーク的色合いの強い 地震である。

計算には、山田・山中(2003)と同じ差分法を用いることにして、上記の地下構造モデルを最小格子間隔400mの食い違い差分格子に離散化した。この場合には、計算精度を勘案

して周期4秒より長周期成分をみることになる。なお、逆解析で得られる表層のS波速度 は各地点で異なっているが、計算では0.5km/sと仮定した。ここでは、既往の3次元モデ ル(山中・山田、2002)を用いた計算結果とも比較することによって地下構造モデルの見 直しによる効果を検討するために、差分法の計算パラメータ、震源に関するパラメータお よび地震基盤より深い地殻やマントルの構造は山田・山中(2003)と同じものを用いるこ とにした。

図3に観測点および震央の位置を示す。図4には、観測記録と今回作成した堆積層のS 波速度構造モデルを用いて計算された波形の比較も示されている。図中のすべての波形は、 周期4~20秒のバンドパスフィルター処理をした速度波形である。観測波形に見られるよ うな顕著な位相や振幅の大きい部分の継続時間が計算により概ね再現されている。しかし、 詳しくみると、まだ両者が一致しているとは言い難い地点もある。図5に5%減衰の擬似速 度応答スペクトルの比較を示す。図では、観測波形(OBS)、山中・山田(2002)のモデルを 用いた計算波形(YY2002)および今回のモデルによる計算波形に対する速度応答スペクトル が比較されており、地下構造モデルの違いが及ぼす計算結果への影響を比較できる。横浜 (YKH)や東京(TOK)などで周期数秒の帯域で修正モデルに対する計算値が観測値に近づき、 ピーク周期もほぼ一致するなど、モデルの修正の効果がわかる。このように、構築したモ デルによって、やや長周期成分が特徴的な部分が説明でき、モデルの妥当性が検証できた ものと考えられる。ただし、一致の程度が不十分な地点もないわけではないので、計算に より理解される波動場の特性も踏まえたモデルのキャリブレーションが今後必要である。

図1 関東平野での微動アレイ観測の位置

図 2 3 次元 S 波速度構造 a)Vs1.0km/s 層の上面深度, b)Vs1.5km/s 層の上面深度、 c)Vs3.0km/s 層(地震基盤)の上面深度、

図3 1990年2月20日伊豆大島近海の地震の震央と観測点の位置

	4 -20	s	IN	. R . A	(cm/s)	I	<u> </u>	(cm/s)		0-6	<i>,</i>	((())))
ЭНС	OBS			M	WWW	V	www	MM~		$\sim\sim$	M	MM
	SYN			white	WWW		www.	0.148 W/w//		www	ŵW	₩~~~
			•		0,154			0.173				0.114
NRS	; OBS			~~~~W	WYWW		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MWW			~~~~	Www.v.
	SYN		M	mm	MAAN		~~~MM	White		~~~~~	~~~~	0.519 w~////
				****	1.261			1.359				0.371
ίτο	OBS	~~~	mvVW	WWW	WWWWW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~VVVVVVV	Imm		~~~~	~~~~	0 377
	SYN	-	m	~M	MMM	-	www	wim.		~~~~	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			٨	111	1.283	۰.۸	AAAA.	1.138				0.466
ITK	OBS		m	WWW	wh white		l na	www		~~~~	~~~~~	MM-M-V
	SYN	-	m	WWW	WWW .	~~~~	inwM	MMM		~^ ~~	~~~~	0.430 v~~~~~~
			I	• •	1.006	. A		1.143				0.358
SK	OBS		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	······		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~	~~~	0.145
	SYN	_	~~~p	$\sim\sim\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim \sim $	V	1	Mm	h	0.145
					0.251	· • •		0.569				0.257
		0	60	12	0 180	0 60) 120	180	νοι	50	120	180
				~								
P ≥				_ \							•	
	4 -20) s	IN		(cm/s)	l	⊑ — VV ∧ ∧ ↓ ∧ ∧ ∧ ∧	(cm/s)		υ-ι)	(cm/s)
OK	4 –20 0BS) s 	~~~~~	ŴW	(cm/s)	، ہمبی	\sim	(cm/s) WMM		0-L) ~~~~~	(cm/s)
ЭК	4 –20 OBS SYN) s 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(cm/s)	, ,	∟−w NAMM MMM	(cm/s) MMU 1:501 MWW		U-L ~~~~) ~~~~ ~~~~	(cm/s)
OK	4 –20 OBS SYN) s 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 1.617 1.617 1.617 1.617 1.617		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) WWW 1.501 1.266	 	0−L ∽∽∽∽) ~~~~~ ~~~~~	(cm/s) 0.349 0.423
OK WS	4 –20 OBS SYN OBS) s 	N	~~~~~ ////// //////	(cm/s) 1.617 MMMM 0.773 0.773	 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 1.501 1.266		U-L ~~~~ ~~~~) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 0.349 0.423 0.423
)K WS	4 –20 OBS SYN OBS SYN)s 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ //////	(cm/s) 1.617 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773	 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 1.501 1.266 1.226 1.226 1.226 1.229 1.029 1.029 1.029		U-L ~~~~ ~~~~ ~~~~) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 0.349 0.423 0.423 0.540
ok Ws	4 –20 OBS SYN OBS SYN			~~~~ ///// /////	(cm/s) 1.617 	//////////////////////////////////////		(cm/s) (cm/s) (1.501 (1.266 (0.29 (0.29 (1.555)	 	U-L ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 0.349 0.423 0.423 0.540 0.571
ок WS	4 -20 OBS SYN OBS SYN OBS		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ ///// /////	(cm/s) 1.617 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(cm/s) (501 1.266) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 0.349 0.423 0.423 0.540 0.571
ок ws кн	4 –20 OBS SYN OBS SYN OBS SYN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(cm/s) 1.617 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E M M M M M M M M M M M M M M M M M M M	(cm/s) 1.266 1.266 1.255 1.555 1.299) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 0.349 0.423 0.540 0.571 0.807
OK WS KH	4 –20 OBS SYN OBS SYN OBS SYN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(cm/s) 1.617 1.617 0.773 1.783 1.694 1.694 1.261 1.261 1.203	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(cm/s) 1.501 1.266 1.266 1.555 1.555 1.299 1.299 1.971			, , , , , , , , , , , , , , , , , , ,	(cm/s) 0.349 0.423 0.540 0.571 0.807 0.807 0.519
WS KH	4 –20 OBS SYN OBS SYN OBS SYN OBS		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMW MMM MMM MMM MMM MMM MMM	(cm/s) MMM 1.617 MMM 1.783 MMM 1.694 MMM 1.261 MMM 2.093 MMM 2.093			(cm/s) 1.501 1.266 1.266 1.255 1.299 1.299 1.299 1.291 1.971 1.971			, , , , , , , , , , , , , , , , , , ,	(cm/s) 0.349 WWWW 0.423 0.540 0.571 0.571 0.807 0.519
WS KH	4 –20 OBS SYN OBS SYN OBS SYN OBS		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WWW WWW WWW WWW WWW	(cm/s) MMM 1.617 0.773 MMM 1.694 1.694 MMM 1.261 0.203 MMM 2.093 MMM 0.868 0.8588 0.858 0.858 0.858 0.858 0.858 0.858 0.8		 MMMM MMMM MMMM MMMM MMMM MMMM MM	(cm/s) 1.501 1.501 1.266 1.266 1.555 1.299 1.400 1			, , , , , , , , , , , , , , , , , , ,	(cm/s) 0.349 0.423 0.540 0.571 0.807 0.519 0.525
OK WS KH	4 –20 OBS SYN OBS SYN OBS SYN OBS SYN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(cm/s) 1.617 			(cm/s) 1.501 1.266 1.266 1.555 1.289 1.400 1) 	(cm/s) 0.349 0.423 0.540 0.571 0.571 0.507 0.519 0.525 0.606
OK WS KH	4 –20 OBS SYN OBS SYN OBS SYN OBS SYN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WWW	(cm/s) 1.617 			(cm/s) 1.266 1.266 1.266 1.299 1.555 1.299 1.299 1.299 1.400 1.400 1.400 1.110				(cm/s) 0.349 0.423 0.540 0.571 0.571 0.807 0.519 0.525 0.606
OK WS KH FN	4 –20 OBS SYN OBS SYN OBS SYN OBS SYN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WWW MMM WWW WWW WWW WWW WWW WWW WWW	(cm/s) 1.617 			(cm/s) 1.266 1.266 1.266 1.299 1.555 1.299 1.400 1.400 1.400 1.400 1.400 1.110			, , , , , , , , , , , , , , , , , , ,	(cm/s) 0.349 0.423 0.540 0.571 0.807 0.519 0.525 0.606 0.351
NS	4 –20 OBS SYN OBS SYN OBS SYN OBS SYN		mm mm mm mm mm mm mm mm mm mm mm mm mm	WWW MMM WWW WWW WWW WWW WWW WWW WWW WWW	(cm/s) 1.617 .0.773 .0.773 .0.773 .0.617 .0.773 .0.773 .0.617 .0.617 .0.617 .0.617 .0.617 .0.94 .0.773 .0.94 .0.773 .0.94 .0.773 .0.94 .0.773 .0.617 .0.773 .0.773 .0.617 .0.773 .0.773 .0.617 .0.773 .0.617 .0.773 .0.694 .0.763 .0.945 .0.763 .0.939 .0.939 .1.288			(cm/s) 1.266 1.266 1.269 1.555 1.299 1.400 1) 	(cm/s) 0.349 0.423 0.540 0.571 0.571 0.507 0.519 0.525 0.606 0.351 0.654

図4 1990年2月20日伊豆大島近海の地震による地震動のシミュレーション結果 (SYN) と観測記録 (OBS)の比較.各波形は周期4~20秒の速度である。

図5 1990年2月20日伊豆大島近海の地震による地震動の速度応答スペクトルの観測値 (OBS)と計算値の比較.山中・山田(2002)のモデル(YY2002)を用いた計算結果も示さ れている。

(c) 結論ならびに今後の課題

関東平野における既存の微動アレイ観測によるやや長周期帯域でのレイリー波の位相速 度を収集し、それらの逆解析を統一した基準で行い、各地点で地震基盤にいたるまでの1 次元S波速度構造を明らかにした。さらに、その結果をまとめて堆積層の3次元S波速度 構造を構築した。このモデルの妥当性を確認するために、1990年2月20日の伊豆大島近 海の地震の強震動シミュレーションを行った。その結果、既往の3次元モデルを用いた場 合と比較して、計算結果と観測結果により良い一致が認められ、モデルの改良の効果を確 認できた。今後、関東平野で蓄積されつつある強震動データを用いた地下構造情報の抽出 とそれによるモデルの改良を実施するとともに、複数の中小地震による3次元モデルのバ リデーションを行う必要がある。

(d) 引用文献

- 1)山中浩明,山田伸之:微動アレイ観測による関東平野の3次元S波速度構造モデルの構築,物理探査, Vol.55, pp.26-38, 2002.
- 2) 山田伸之,山中浩明:関東平野における地下構造モデルの比較のための中規模地震の地

震動シミュレーション, pp. 111-123, 地震2, 56, 2003.

(e) 成果の論文発表・口頭発表等

著者	題名	発表先	発表年月日
山田伸之,	微動アレイ観測による首都圏の	第2回地震防災シンポジウ	平成 18 年 1
山中浩明,	深部地盤構造	ム「首都圏の地下構造と地	月
		震防災」,物理探査学会,	
		29-34, 2006.	
山中浩明,	関東平野のやや長周期地震動と	海溝型巨大地震を考える-	平成 18 年 3
山田伸之,	深部地盤構造	広帯域強震動も予測2-シ	月
江藤公信		ンポジウム論文集, 27-31,	
		2006	

(g) 特許出願, ソフトウエア開発, 仕様・標準等の策定

1) 特許出願

なし

2) ソフトウエア開発

なし

3) 仕様・標準等の策定

なし

(2-2) 関東平野の3次元基盤構造と1944年東南海地震による長周期地震動

古村孝志 (東京大学地震研究所)

furumura@eri.u-tokyo.ac.jp

(a) 業務の要約

関東平野の深部基盤構造で強く生成する長周期の盆地生成表面波(長周期地震動) の生成過程と、南海トラフの巨大地震で想定される長周期地震動特性を明らかにする ために、1944年東南海地震(Mw8.1)における千葉(東金)と都心部(大手町)の2地 点の煤書き記録を復元し、コンピュータシミュレーションにより強震動を再現した。 シミュレーション波形と観測データとの良い一致から、H17年までに作成した地下構造 モデル(陸域、海域モデル)の有効性を確認した。この成果により、1944年東南海地 震に加えて、将来発生の恐れがある東海地震における関東平野の強震動特性をシミュ レーションにより正しく評価できる目処を得た。

(b)業務の実施方法

2004 年紀伊半島南東沖の地震(M7.6) において、震源から 400km 以上も離れた千葉 県市原市の石油コンビナートでスロッシング被害が起きたことが問題となっている。 南海トラフでは、今後 30 年以内に 60%の確率で東南海地震(M8.1)が、また駿河トラ フでは東海地震(M8)が 80~90%の高い確率で発生する恐れがある。このとき、関東平 野では数倍以上大きく継続時間の長い長周期地震動が強く生成することが心配される。

1944年の東南海地震(M8.1)による長周期地震動の励起特性を調査するために、地 震研究所および気象庁の古記録データベース(マイクロフィルム)を調査し、本郷、 大手町、東金の3地点の強震記録の現存を確認した。このうち本郷の記録は完全に振 り切れていたが、東金地点では一部を除いて記録は良好であった。煤書きの原記録を 高分解能でデジタイズし、円弧補正等の一連の波形復元処理を行った。強震計の特性 (固有周期、減衰定数)は、記録紙に同時に記録されていた、検定結果(インパルス 応答)を解析して正確に求めた。地震計記録に対して計器特性を補正し、最終的に地 動に復元した。これを用いて、大手町と東金地点における地震動の特性(地震波形、 速度応答スペクトル)を評価した。

H17年度に本研究プロジェクトで作成した南海トラフ海域モデル、関東および西南日 本堆積構造モデルを用いて東南海地震の波動伝播・強震動シミュレーションを実施し、 シミュレーション結果が復元した強震波形によく一致することを確認した。

(c)業務の成果

紀伊半島南東沖の地震による関東平野での長周期地震動の生成

図1は2004年紀伊半島南東沖の地震の揺れの伝わる様子をK-NET、KiK-net強震観測網、 および首都圏強震動総合ネットワーク(SK-net)の記録データを総括して可視化表示したも のである。地震発生から約 90 秒でS波が南関東へと到達し、その後強い揺れが5分以上に わたって長く続いたことがわかる。このとき関東の震度は1~2程度にすぎなかったが、長 周期の表面波が強く発達したことにより、最大5cmを超える大きな地動となったことがわか る(図1右)。このときの卓越周期は、基盤深度のやや浅い(3500~4000m)都心部では7秒、 また、基盤岩の深い(6000m以上)千葉県市原市では12秒であった。長周期地震動は名古屋 や大阪などの他の平野でも発生し、それぞれ2秒と3秒前後の周期を中心に強い速度応答が 現れた(図2)。

1944年東南海地震の強震動記録の復元

1944 年東南海地震における千葉県東金地点と大手町の2地点の強震記録の復元に成功した。また、強震計の特性は、地震直前に行われた地震計の検定結果(インパルス応答)を用いることにより、固有周期と減衰率を正確に求めることができた。地震計記録から計器特性を取り除き、地動に復元した。この結果、東南海地震時には、紀伊半島南東沖の地震の揺れの2倍以上の強さにあたる、最大10cmの揺れが、10分以上にわたって長く続いたことが確認できた。長周期地震動の固有周期は、大手町では8秒、東金では12秒であり、これらは紀伊半島南東沖の地震よりもやや長周期化していることがわかった(図3)。

1944年東南海地震の強震動シミュレーション

H17 年度までに大大特プロジェクトで開発した、西南日本の堆積構造モデルと、南海トラフの海域地下構造モデルを用いて、1944 年東南海地震の波動伝播シミュレーションを実施した。震源モデルには、近地実体波のインバージョン解析から求められた最新の成果(山中、2004)を用いた。波動伝播の FDM 計算は地球シミュレータ(海洋研究開発機構)を用いて行い、周波数 0.5Hz 以下の地震動を求めた。

大手町と東金地点の地動速度波形とシミュレーション波形をくわしく検討し、表面波の卓 越周期、振動継続時間などの主要特性が両者で良く一致することを確認した(図3)。

想定東海地震の強震動シミュレーション

上記のモデルを用いて、想定東海地震の強震動シミュレーションを実施した。ここでは、 1854年安政東南海地震のように、東南海地震(M8.1)と東海地震(M8.0)が連続して発生した 場合を想定したシナリオを考えた。東海地震の震源モデルは中央防災会議(2002)のものを 参考にして与えた。

想定東海地震による都心部(新宿)と千葉県北西部(千葉)速度応答を図4に示す。東南 海地震と東海地震が連動して起きた場合には、都心部では最大 150cm/s、千葉では最大 110cm/sの強い応答が起きることが推察される。

(d) 結論および今後の課題

2004 年紀伊半島南東沖の地震の高密度地震観測データの解析により、以下の結論を得た: (1) 都心部で周期7秒前後の長周期地震動が強く生成され、10~20cm/sを超える強い 速度応答(h=5%)が起きた。また、震動継続時間は10分を超えた。

- (2) この大きく長い揺れの原因は、震源から関東に至る伝播経路に厚く堆積した海洋 性堆積物において表面波が強く発達し、これが関東平野でさらに別種の表面波 (盆地転換表面波)に変換したためである。
- (3) この理由により、南海トラフで発生する地震では、他の地域の地震(内陸地震、 日本海溝の地震など)と比べて、関東平野においてずっと強い長周期地震動が生 まれる可能性が高い。
- 次に、1944年東南海地震の強震計解析から以下を確認した:
 - (1) 都心部(大手町)では、周期7秒の長周期地震動が最大変位10cm以上の大きさで 10分以上にわたって長く継続した。この揺れにより、最大40cm/sの速度応答が起 きた。
 - (2) 千葉県北西部(東金)では、周期12秒の長周期地震動が最大5cm以上の大きさで10 分間以上にわたって長く続いた。最大応答は30cm/sであった。

東南海地震のコンピュータシミュレーションにより以下を確認した:

- (1) これまでに本研究プロジェクトで開発した、西南日本地下構造モデルと南海トラフ 海域構造モデルを用いた波動伝播計算により、東南海地震の大手町と東金地点の地 震動が良く再現できた。
- (2) 東南海地震(M8.1)と東海地震(M8.0)が同時に発生した場合には、都心部では最大150cm/s、千葉では最大110cm/sの強い応答が起きる。この応答のレベルは、1944 年東南海地震の約3~4倍、また2004年紀伊半島南東沖地震(Mw6.7)の10~12倍になる。
- 今後の課題として以下の事項があげられる:
 - (1) 南海トラフの大地震では、伝播経路において周期数秒~12秒の長周期の表面波 が関東平野に向けて強く発達する。同規模の内陸地震と比べて継続時間は2倍 ~4倍以上、振幅が2倍以上の強い長周期地震動が生成さるため、十分な対策 が必要である。
 - (2) 東南海、東海地震における関東平野での震度は4~5程度と予想されているが、 これとは別に長周期地震動の防災対策をたてる必要がある。
 - (3) 日本海溝で発生する大地震(宮城県沖地震や茨城県沖の地震など)について近年の高密度強震観測データと過去の被害地震の解析、そしてコンピュータシミュレーションの統合研究を進める。大大特プロジェクトで開発した地下構造・ 海域モデルの有効性の確認と、日本海溝の地震の地震動伝播・長周期地震動の 生成特性について研究をさらに進める。

(e)引用文献

(f)成果の論文発表・口頭発表など

著者	題名	発表先	発表年月日
古村孝志	関東平野での長周期地震動の生	日本構造協会誌 JSSC No60,	平成 18 年 4
	成メカニズム	2006	月
古村孝志	観測とシミュレーションで見	物理探查学会第2回地震防	平成 18 年 1
	る、首都圏を襲う大地震の揺れ	災シンポジウム「首都圏の	月
		地下構造と地震防災」	

(g)特許出願、ソフトウエア開発、仕様・標準等の作成

1) 特許出願

- なし
- 2) ソフトウエア開発

なし

- 3) 仕様・標準等の策定
 - なし
- (a)

2004年中越地震の地震波動伝播の様子。(a)K-NET, KiK-net, SK-net 高密度地震観 図 1 測網による観測結果(地震発生から 90 秒、311 秒後)。(b)最大地動変位分布。

図 2 2004 年紀伊半島南東沖の地震による、(a) 大阪、(b) 愛知、(c)東京における地震 動特性とその速度応答スペクトル(右上)。

図3 1944 年東南海地震による、大手町と東金(千葉県)地点における強震観測波形記録 (速度に変換)と、そのコンピュータシミュレーション波形の比較。図右は速度応答 スペクトルの比較。

図4 (A)想定東海地震(東海地震 M8.0と東南海地震 M8.1の同時発生)のシミュレーション、(B)1944 年東南海地震(M8.1)、(C)紀伊半島南東沖の地震(M7.6)の速度応答スペクトルの比較。(a)新宿地点、(b)千葉地点。

佐藤浩章(電力中央研究所)

hiroakis@criepi.denken.or.jp

東 貞成 (電力中央研究所)

higashi@criepi.denken.or.jp

芝 良昭 (電力中央研究所)

cbar@criepi.denken.or.jp

(a) 業務の要約

関東平野における堆積層-基盤系の減衰構造は、これまで鉛直アレイ観測記録を用いた 地震基盤に到達する鉛直アレイ観測記録が少なかったことから、木下・大池¹⁾によって関 東平野中央部の下総(SHM)および岩槻(IWT)の地震観測井で求められた同定結果以外に はほとんど得られていない。しかしながら、最近では関東平野においても防災科学技術研 究所によるKiK-netの整備に伴い地震基盤に達する鉛直アレイ観測記録がいくつか使用可 能となった。そこで本研究では、KiK-netの成田観測点NRT(CHBH13)を対象として、鉛直ア レイ記録によるスペクトル比の逆解析から堆積層-基盤系の減衰構造を求めた。さらに、 既往の関東平野における堆積層-基盤系の減衰構造と比較することにより、平均的な減衰 構造について検討した。また、NRT(CHBH13)では、防災科学技術研究所の研究資料²⁾におい て地震基盤までの速度検層結果(P波速度)も得られており、堆積層-基盤系の減衰構造と 堆積層の不均質構造の関係について検討するための基礎資料として速度構造の揺らぎの統 計的な性質について検討を行った。

(b) 業務の実施方法

1) 堆積層 - 基盤系の減衰構造(Qs⁻¹)の同定

前述の木下・大池¹⁾による関東平野における堆積層-基盤系のQs⁻¹の同定結果では、Qs⁻¹ はおよそ 2Hzから 16Hzで一定値となる性質を示すことが指摘されている。これは、従来の 鉛直アレイ記録によるスペクトル比の逆解析^{例えば3)}のように、周波数のべき乗で単調に減 少するようなQs⁻¹の関数モデルを設定せずに、1/3 オクターブバンドで平滑化された各中心 周波数のスペクトル比に対してQs⁻¹を個別に求めたことによる。そこで本研究では、Qs⁻¹ に一定値(下限値)が存在するという結果を考慮して、既往の研究で多く用いられている 周波数のべき乗で単調に減少するQs⁻¹のモデルに代わり、ある周波数(以下、f₀と呼ぶ) より低周波数側ではQs⁻¹のべき乗で減少し、f₀より高周波数側では一定値(下限値)とな る次式のモデル⁴⁾を用いて、スペクトル比の逆解析により対象地点の堆積層-基盤系のQs⁻¹ を同定した。

 $\begin{array}{cccc}
Q_{s}^{-1}(f) = Q_{s0}^{-1}f^{-\alpha} & (f \le f_{0}) \\
Q_{s}^{-1}(f) = Q_{s0}^{-1}f_{0}^{-\alpha} & (f > f_{0})
\end{array}$ (1)

スペクトル比の逆解析に用いる地震記録の選択については、まず、マグニチュードが原 則として 6.5 以上、かつ木下・大池¹⁾ と同様に変位記録に変換したtransverse成分の地表 と地中の観測記録のS波初動部から20秒間の相互相関関数が偶関数となる地震のスペクトル比をとした。NRT (CHBH13)で解析の対象とした地震の諸元を表1に示す。なお、スペクトル比の計算では、対象周波数を0.2Hzから20Hzとし、0.5HzのParzenウィンドウで平滑化を施した。

Site	Event	Date	М	Focal depth (km)	Epicentral distance (km)
NDT	EQ1	2003/9/26 4:50	8.0	42	737
(CHBH13)	EQ2	2004/10/23 17:56	6.8	13	207
(CHBH13)	EQ3	2004/10/23 18:34	6.5	14	204

表1 NRT (CHBH13) で解析に用いた地震の諸元

スペクトル比の逆解析は、高速焼きなまし法(以下、VFSA)により行い、逆解析におい て最小化する目的関数(Misfit)Eについては、観測スペクトル比0(f)と理論伝達関数S(f) との差(L1ノルム)を用いて、次式のように設定した。

$$E = \frac{1}{K} \sum_{k=1}^{K} \left[\frac{1}{L} \sum_{j=1}^{L} \left\{ \frac{1}{N} \sum_{i=1}^{N} \left({}^{j}O_{k}\left(f_{i}\right) \right| \log_{10} \left\{ {}^{j}O_{k}\left(f_{i}\right) \right\} - \log_{10} \left\{ {}^{j}S(f_{i}) \right\} \right) \right\} \right]$$
(2)

ここに、Kは地震数、Lはスペクトル比の数、Nはスペクトル比に含まれるデータ数である。 なお本研究ではQs⁻¹に着目していることから、目的関数にはスペクトル比のピークレベル を優先的に合わせることを目的とした観測スペクトル比の振幅値による重みづけを行なっ た。

逆解析では、 Qs^{-1} と同時にS波速度を同定の対象とし、またさらに地震毎の地震波の入射 角についても未知数として同定した。同定する各変数の探索範囲は、S波速度は検層結果²⁾ の±20%、 Qs_0^{-1} は0.01~2.0、 α は0.01~1.5、 f_0 は0.2~20 Hz、入射角は0~45 度とした。 これらの変数の最終的な同定結果としては、異なる初期乱数により10回の試行を行った平 均値を採用した。なお、VFSAのパラメータ⁵⁾は試行錯誤により T_0 =0.1、a=0.4、c=1.0とし、 繰り返し回数は、同一温度での繰り返しを5回、温度低下を320回行なった。ここに、 T_0 は初期温度、aおよびcは繰り返し計算に伴う温度低下のスケジュールを決める定数であり、 どちらの定数も大きければ温度低下が早く進むことになる。なお、VFSAの詳細については 山中(2001)⁵⁾等を参照されたい。

2) 堆積層の揺らぎの統計的性質

本研究では、堆積層-基盤系の減衰構造と堆積層の速度構造の揺らぎの統計的性質との 関係について、基礎的な考察を行うことを目的として、堆積層を地質年代毎に区分せず堆 積層を一つの層として、揺らぎの統計的性質を新たに求めた。以下に、本研究で用いた解 析方法について述べる。

解析は、初期解析として、まず、P 波速度データに対して(1)式をフィッティングする ことにより深さ方向に漸増するトレンド成分を推定する。 $V(z) = V_0 + V_1 \cdot z + \xi_0(z)$

ここで、検層データはV(z)、 V_0 は初期値(切片)、 V_1 はトレンド成分、 $\xi_0(z)$ は揺らぎ成分、 zは深さである。次に、(4)式により、検層データV(z)から(3)式で求めたトレンド成分を除 去し、さらに無次元化することにより最終的な速度構造の揺らぎデータ $\xi(z)$ を作成する。

$$\xi(z) = \frac{\xi_0(z)}{\left(V_0 + V_1 \cdot z\right)} \tag{4}$$

本研究では、この揺らぎデータ ξ (z)を用いて不均質性の統計的性質を求めるが、その際、 既往の検層データにおいて深部の岩盤に対する説明性のよいフォンカルマン型の自己相関 関数を仮定して解析を行なうこととした⁶⁾。なお、フォンカルマン型の自己相関関数につ いては次式のとおりである。

$$N(r) = \frac{\varepsilon^2 2^{1-\nu}}{\Gamma(\nu)} \left(\frac{|r|}{a}\right)^{\nu} K_{\nu}\left(\frac{|r|}{a}\right)$$
(5)

ここに、aは相関距離、 ϵ は揺らぎの標準偏差、K_vはv次修正ベッセル関数、 Γ はガンマ 関数、vはHurst指数である。したがって、不均質性の統計的性質を求めるには、 $\xi(z)$ の 自己相関関数を求め、(5)式をそれにフィッティングすることにより、最適な相関距離a、 標準偏差 ϵ 、Hurst指数 vを推定すればよい。しかしながら、相関距離aと Hurst指数 vに はトレードオフがあるため、安定してそれらの値を推定するのは難しい場合がある。そこ で本研究では、相関距離aと Hurst指数 vを安定して求めるため、まず、パワースペクトル 密度を用いてHurst指数 vを事前に推定する方法を適用した。

ー般に、揺らぎデータはパワースペクトル密度が波数kに対し 1/k^{α}型となることから、 揺らぎデータ $\xi(z)$ のパワースペクトル密度に対して、1/k^{α}をフィッティングすることに よりスペクトル指数 α を求めることができる。ここで、スペクトル指数 α については、Hurst 指数 ν と (6) 式のような関係にあることから、パワースペクトル密度のフィッティグから 推定された α を用いてHurst指数 ν は求めることができる^{例えば7)}。

$\sqrt{(\alpha-1)/2}$	$(1 \le \alpha < 3)$	(a)
$v = \int 0$	$(0 \le \alpha < 1)$	(6)

したがって、Hurst 指数 ν は既知の値となり、最終的な揺らぎデータ ξ(z)の自己相関関数 に対する (5) 式のフィッティングでは相関距離 a と標準偏差 ε のみを推定すればよいこと となる。

なお、以上の解析におけるパワースペクトル密度と自己相関関数のフィッティングについては、それぞれVFSA⁵⁾を用いた。

(c) 業務の成果

(3)

I	V. (m/z)		Damping		Incid	lent angle ((deg.)	Thickness
Layer	VS (m/s)	$1/Q_{s0}$	α	$f_0(Hz)$	EQ.1	EQ.2	EQ.3	(m)
1	234							24
2	300							76
3	396			3.7	38.7	24.1	24.3	100
4	639	1/25	1.50					350
5	805	1/23	1.50		30.7	24.1		300
6	2343							200
7	3450							250
8	5450							_

表 2 NRT (CHBH13) における同定結果

図1 NRT (CHBH13) における同定結果の理論伝達関数と観測スペクトル比の比較

1) 堆積層 - 基盤系の減衰構造の同定

減衰定数の下限値を考慮したモデルを用いてNRT (CHBH13)における堆積層-基盤系のQs⁻¹ を同定した結果については、表 2 に同定結果のまとめて示す。なお、これらの同定結果は、 前述のように 10 回の逆解析による試行結果の平均値である。図 1 には、同定結果から計算 される理論伝達関数と観測スペクトル比の比較を示す。全体として同定結果による理論伝 達関数は、観測スペクトル比の特徴をおおむね説明できていることが分かる。図 2 には、 NRT (CHBH10) の堆積層-基盤系のQs⁻¹を示す。図には、木下・大池による下総 (SHM) お よび岩槻 (IWT) のQs⁻¹も併せて示されている。NRT (CHBH13) ではQs⁻¹が一定値 (下限値) となる周波数f₀が 3.7Hzと求められており、図からは下総 (SHM) および岩槻 (IWT) とほ ぼ同様の周波数で一定値 (下限値) が現れていることが分かる。また、周波数f₀以下にお けるNRT (CHBH13)のQs⁻¹は、1/25f^{1.5}であり、図からは岩槻 (IWT) での結果とほぼ同様であ った。周波数f₀以上におけるNRT (CHBH13)のQs⁻¹は、355 であり下総 (SHM) および岩槻 (IWT) における下限に近い結果となっている。

図2 同定結果と既往の関東平野における堆積層-基盤系の減衰構造(Qs⁻¹)の比較

ここで、下総(SHM) については、SHM(CHBH04) として鉛直アレイ観測記録が公開され ていることから、NRT(CHBH13)と同様に(1)式のモデル⁴⁾を用いて、スペクトル比の逆解析 により堆積層-基盤系のQs⁻¹を同定した。同定されたQs⁻¹は図2に併せて示されているが、 同定する方法は若干異なるものの、木下・大池による下総(SHM)のQs⁻¹と調和的な結果が

	平均速度 (km/s)	深さトレンド (1/s)	スペクトル指数 α	ν	a(m)	ε (%)
NRT (CHBH13)	1.91	0.39	1.46	0.23	37.1	2.6
SHM	2.23	0.77	1.52	0.26	108.3	4.3

表3 P波速度の速度検層結果に基づくランダムな不均質性の統計的性質

得られていることが分かる。このことは本研究の同定結果が、信頼性のある結果であるこ とを示唆していると考えられる。図 2 から、これら 3 地点の減衰構造を比較すると、SHM (CHBH04)が上限、NRT(CHBH13)が下限とする領域内に岩槻(IWT)の結果が分布する傾向 がみられる。したがって、現状では図 2 に示すSHM(CHBH04)とNRT(CHBH13)の間の領域が、 関東平野における堆積層-基盤系のQs⁻¹の現実的な範囲として考えられる。

2) 堆積層の速度構造の揺らぎの統計的性質

本研究では、現状における関東平野における堆積層-基盤系のQs⁻¹の現実的な範囲の上限および下限を与えるSHM (CHBH04) およびNRT (CHBH13)の堆積層の速度構造の揺らぎの統計的性質を求めた。なお、使用した数値データは、佐藤・他(2005)⁸⁾によって数値化されたデータである。表3には、統計的性質の推定結果を示す。初期解析の結果としてP波速度の検層データに対して(3)式をフィッティングして求められた各パラメータの結果が示されている。SHM (CHBH04) の平均値は 2.23 (km/s)、NRT (CHBH13)の平均値は 2.00 (km/s)であり、深さ方向のトレンド(直流成分)については、SHM (CHBH04)が 0.77(1/s)、NRT (CHBH13)が 0.39(1/s)である。最終的な無次元化された揺らぎデータξ(z)に対して求められたパワースペクトル密度と 1/k^αの関数をフィッティグした結果については、表3のように、SHM (CHBH04)ではα=1.52、NRT (CHBH13)ではα=1.46であり、したがって(6)式からHurst指数 v はSHM (CHBH04)では 0.22、NRT (CHBH13)では 0.23 と求められる。なお、パワースペクトル密度のフィッティングでは、Shiomi et al.⁹⁾と同様に対象とした波数範囲を波長にして 2mからデータ長の 1/8 までのデータを対象として解析を行なった。例と

図 3 NRT (CHBH13) におけるパワースペクトル密度と自己相関関数

して、NRT (CHBH13)におけるフィッティグの様子が図3に示されている。また、図3には、NRT (CHBH13)における揺らぎデータ $\xi(z)$ の、分散 ϵ^2 で正規化した自己相関関数と(5)式をフィッティングさせた結果も示されている。このような自己相関関数のフィッティングから、SHM(CHBH04)の相関距離は108m、標準偏差 ϵ は4.3%、NRT(CHBH13)の相関距離は37.1m、標準偏差 ϵ は2.6%という速度構造の揺らぎの統計的な性質が得られた。

(d) 結論ならびに今後の課題

関東平野における堆積層-基盤系の平均的な減衰構造について検討するとともに、堆積 層-基盤系の減衰構造と堆積層の不均質構造の関係について検討するための基礎資料とし て速度構造の揺らぎの統計的な性質について検討を行った。本研究と既往の研究結果を含 めて検討した結果、関東平野における堆積層-基盤系のQs⁻¹の現実的な範囲としては、SHM (CHBH04)を上限、NRT(CHBH13)を下限とする範囲が現状では妥当と考えられる。これらの 上限と下限を与える観測点における堆積層の不均質構造(揺らぎの統計的性質)について は、相関距離と標準偏差において両地点での差が顕著であった。したがって今後は、堆積 層における速度構造の統計的性質として得られる相関距離と標準偏差が、堆積層-基盤系の減衰構造に及ぼす影響を明らかにすることが、より詳細に減衰構造を評価する上で重要であると考えられる。

(e) 引用文献

- 木下繁夫、大池美保:関東地域の堆積層-基盤系におけるS波の減衰特性-0.5~16Hz
 -,地震2, Vol.55, pp.19-31, 2002
- 2) 鈴木宏芳・小村健太郎:関東地域の孔井データ資料集,防災科学技術研究資料,191, 1-80,1999
- 3) 武村雅之,池浦友則,高橋克也,石田寛,大島豊:堆積地盤における地震波減衰特性 と地震動評価,日本建築学会構造系論文報告集,446,1-11,1993
- 4) 佐藤浩章・金谷守・大鳥靖樹:減衰定数の下限値を考慮したスペクトル比の逆解析に よる同定手法の提案-岩盤における鉛直アレイ記録への適用と減衰特性の評価-,日 本建築学会構造系論文集,604,2006 (印刷中)
- 5) 山中浩明:焼きなまし法による位相速度の逆解析-遺伝的アルゴリズムとの性能比較 -,物理探査, Vol.54, No.4, pp.197-206, 2001
- 6) 佐藤春夫:リソスフェアにおける地震波の散乱と減衰-ランダムな不均質構造による 一次散乱理論-,防災科学技術センター研究報告, No. 33, pp. 101-186, 1984
- 7) Turcotte, D. : Fractals in Geology and Geophysics, Cambridge University Press, Cambridge, 1992
- 8) 佐藤浩章・山中浩明・古村孝志・早川崇・岡嶋眞一,関東平野における堆積層の速度. 構造の揺らぎの統計的性質,地球惑星科学合同大会,2005
- 9) Shiomi, K., H. Sato and M. Ohtake : Broad-band power-law spectra of well-log data in Japan, Geophys. J. Int., 130, pp. 57-64 ,1997
- (f) 成果論文の発表・口頭発表等
 - 1) 論文発表
 - なし
 - 2) 口頭発表、その他

なし

- (g)特許出願、ソフトウエア開発、仕様・標準等の作成
- 1) 特許出願
 - なし
- 2) ソフトウエア開発
 - なし
- 3) 仕様・標準等の策定

なし

(2-4)より短周期地震動予測をめざした複雑な地下構造のモデル化に関する考察

早川崇(清水建設(株)技術研究所)

takashi.hayakawa@shimz.co.jp

佐藤俊明(清水建設(株)技術研究所)

Toshiaki.sato@shimz.co.jp

(a) 業務の要約

近年、関東平野では大深度のボーリングが多く実施され、厚い堆積層における詳細な鉛 直一次元の速度構造データが蓄積されつつある。それらのデータをみるとP波速度の鉛直一 次元構造は、深さとともに漸増する構造(以下、トレンド構造)とランダムな揺らぎの構 造から構成されていることが認められる。S波速度に関してはこのような速度構造がP波速 度のように直接計測されていないが、P波速度とS波速度には強い相間があることを考える と、同様にトレンド構造と揺らぎの構造から構成されているものと考えられる。現在関東 平野の三次元地下構造モデルは幾つか提案されている(例えば、Sato *et al*、1999、山中 他、2002)。これらのモデルは未だ周期1、2秒といった構造物の破壊に大きく影響する周 期域まで十分に検証がなされていない。今後そのような短周期域までの強震動予測に有用 な、高精度な地下構造モデルの構築にはトレンド構造や揺らぎの構造の反映が重要となる 可能性がある。

昨年度は既往の深層観測井で実施された音波検層によるP波速度構造を数値化し、関東 平野のトレンド構造を抽出した。今年度は、強震動予測用の地下構造モデルの高度化に資 するため、周期1.5秒以上においてトレンド構造が地震動特性与える影響をKiK-netの TKYH11(江東)観測点において調査した。まずは昨年度数値化された音波検層によるP波速 度構造から堆積層のトレンド構造が反映された一次元地下構造モデルを作成し、同モデル が地震観測記録とよく対応する高精度なモデルであることを確認した。次にトレンド構造 が考慮されていない、上総層群や三浦層群で一定速度を付与した一次元地下構造モデルを 作成し、両モデルの理論S波増幅率、Medium Response、地震動シミュレーション波をトレ ンド構造の有無で比較し、トレンド構造のモデル化の必要性を調査した。検討の結果江東 では、周期5秒程度以下のS波増幅率、表面波励起率または計算波の位相特性にトレンド構 造の影響が確認され、地盤特性の正しい評価にはトレンド構造のモデル化が重要であると 考えられた。

(b) 業務の実施方法

・はじめに

江東では地下約3000mの地震基盤まで達する観測井が掘削され、同観測井においては音 波検層により一次元のP波速度構造と地震基盤深さが明らかになっている。そのためトレン ド構造の抽出が可能で、同地点直下の高精度な一次元地下構造モデルが作成可能である。 またKiK-netのTKYH11(江東)では2005年4月から地表およびGL-3000mで地震観測が開始さ れ、近年有用な観測記録が蓄積されつつある。本検討は強震動および地下構造のデータが 充実し、防災的に重要な東京都心に近いTKYH11地点で実施した。図1にTKYH11地点を示す。

·解析方法

音波検層によるP波速度構造で漸増構造が認められるGL-210 m~GL-2580mまでの堆積 層の区間に対し、Vp=a*Z^bで回帰してトレンド構造の抽出をおこなった。この区間では上 総層群と三浦層群の堆積層に大別されるが、各層でP波速度のトレンド構造の特性が顕著に 異なっていたため、別々にトレンド構造を抽出した。その結果、上総層群では Vp(km/s)=0.769Z^0.155、三浦層群ではVp(km/s)=0.728Z^0.487が得られた。Zは深度(m) である。S波速度構造はP波速度構造からVs=0.8Vp-800(川崎市、1998)の関係から求め た。図2に音波検層によるP波速度創造とP波およびS波のトレンド構造を比較して示す。ト レンド構造の影響を検討するために図3に示すように、上総層群と三浦層群それぞれで抽出 された漸増構造を各層1層でモデル化したトレンド構造を反映しないモデル(2層モデル) と、各層を8層でモデル化したトレンド構造を詳細に反映したモデル(16層モデル)、中間 のモデル(4層モデル)を作成した。トレンド構造を水平成層構造に置換する際、GL-210 m~GL-2580mの区間でS波速度の伝播時間がトレンド構造と等しくなるように多層化した。 音波検層結果が存在しないGL-210 m以浅は江東区越中島のPS検層結果を参考にモデル化 した。TKYH11地点と江東区越中島はおよそ5km程度離れており、極表層の軟弱層は異なる可 能性が高いと考えられるため、ここではPS検層の極表層の影響が少ない周期1.5秒以上を対 象とした。図3にS波速度のトレンド構造と比較して2層モデル、4層モデル、16層モデルを 示す。

トレンド構造が高精度なモデルであることを確認するため、16層モデルが、常時微動の H/Vスペクトル、地震観測記録の地表/地中のS波のスペクトル比、千葉県北西部の地震(図 1)の地震動速度波形、が説明可能であることを確認した。図4は江東区越中島で観測され た常時微動のH/Vスペクトルと16層モデルのレイリー波基本モードの水平/上下比の理論 値の比較である。0.13Hzのピークや0.3Hzに向かって低下する様子が観測と理論で対応して いる。図5はMj4.5以上の深い地震(図1参照)の観測記録(トランスバース成分)のS波部 分から得られた地表/地中のスペクトル比を、S波重複反射理論によるS波増幅率と比較し たものである。観測スペクトル比には0.12Hz、0.32Hz、0.46Hzにピークが存在する。16層 モデルの理論S波増幅率のピークはこれらのピーク振動数に対応している。図6に16層モデ ルを用いた千葉県北西部の地震のシミュレーション(1.5秒以上)でのEW成分の結果を示す。 EW成分は地震動が卓越した方向である。シミュレーションは波数積分法(Hisada、1994) で実施し、震源メカニズムと深さはF-netによる推定値、震源時間関数と地震モーメントは GL-3000mの観測波EW成分の直達S波が説明できるように設定した。地表のS波主要動や25 秒付近のGL-3000mにおける反射波がよく再現されている。

(c) 業務の成果

図5に示す2層、4層モデルによるS波増幅率は5秒以下で16層モデルとは大きく異なる。4 層モデルでは0.32Hzと0.46Hzのスペクトル比のピークが説明できない。図6はMedium Responseの比較である。Love波、Rayleigh波ともに2層モデルと4層モデルの励起効率は16 層モデルと相違が認められる。特にレイリー波は周期5秒以下で非常に大きな違いがあり、 S波の増幅率と比べてもより大きなトレンド構造の影響が認められる。図7は2層モデルと4 層モデルを用いた16層モデルと同様な地震動シミュレーション結果である。両モデルとも 直達S波(▽)の振幅はほぼ観測と一致している。しかし4層モデルの結果では▼で示した 計算波の位相で観測と比較的大きく異なっている。これは4層モデルの堆積層中の大きな速 度不連続による人工的な反射波の影響と考えられる。以上2層モデル、4層モデルでは周期5 秒以下で16層モデルの振動特性が十分再現できないことから、正しい地盤の振動特性が表 現できないと考えられる。

(d) 結論ならびに今後の課題

江東においてトレンド構造の影響を周期1.5秒以上で検討した。その結果、トレンド構造が考慮されていない地下構造モデルでは、周期5秒以下でのS波の増幅率、表面波の励起率、位相特性の正しい評価は困難であると考えられた。構造物の耐震に重要な周期1、2秒程度までの短周期までの強震動予測に有用な、高精度な三次元地下構造のモデル化にはトレンド構造の反映は必要であると考えられる。揺らぎの構造に関しては未だ地震動に及ぼす影響が十分に把握されていない。今後、ゆらぎ構造が強震動に及ぼす影響を検討する必要がある。

- (e) 引用文献
- T. Sato, Robert W. Graves, and Paul G. Somerville:Three-dimensional finite-difference simulations of long-period strong motions in the Tokyo metropolitan area during the 1990 Odawara Earthquake (Mj5.1) and the Great 1923 Kanto Earthquake (Ms8.2) in Japan, Bull. Seism. Soc. Am., 89(3) pp. 579-607, 1999.
- 2) 山中浩明,山田伸之:微動アレー観測による関東平野の3次元速度構造モデルの構築, 物理探査, 55(1) pp.53-65, 2002
- 3) 川崎市: http://www.hp1039.jishin.go.jp/kozo/kawasaki3/mokuji.htm
- 4) Y. Hisada: An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths (Part2), Bull. Seism. Soc. Am., 89(3) pp. 579-607, 1999
- 5) D. G. Harkrider:Surface waves in multilayered elastic media. PartII., Bull. Seism. Soc. Am., 60(6) pp.1937-1987, 1970.

著者	題名	発表先	発表年月日
早川崇,佐藤俊明	深度依存の速度勾配を考慮し	2005年日本	平成17年9月
	た関東平野の三次元速度構造	建築学会大	
	のモデル化	숲	

(f) 成果の論文発表・口頭発表等

 図1 TKYH11地点(●)、シミュレーションした千葉県北西部の地震(Mw5.9、深さ 68km[F-net])(★)、地表/地中のスペクトル比を算定した地震(▲)

図2 TKYH11地点におけるP波速度の音波検層結果と抽出したトレンド構造の比較

図4 H/Vスペクトルの観測値と16層モデルの理論値 (レイリー波基本モードの水平/上下比)

図6 2005年7月23日に発生した千葉県北西部の地震(Mw5.9、深さ68km)の 16層モデルを用いたTKYH11地点のシミュレーション(EW成分、上=GL-3000m、下=地表)

図7 2層モデルと4層モデルのMedium Response

2層モデル:地表

図8 2005年7月23日に発生した千葉県北西部の地震(Mw5.9、深さ68km)の 2層モデルと4層モデルを用いたTKYH11地点のシミュレーション(EW成分)

(g)特許出願、ソフトウエア開発、仕様・標準等の作成

- 1) 特許出願
 - なし
- 2) ソフトウエア開発
 - なし
- 3) 仕様・標準等の策定
- なし

(3) 平成18年度事業計画案

中小地震による観測記録の分析、数値シミュレーションなどを行ない、関東平野の堆積 層の3次元モデルを改良し、既存の3次元モデルとの地震動説明能力の差異を明らかにす る。また、関東平野に入射する地震動特性を評価する際に重要となる周辺の海域および陸 域の地下構造のモデル化についても検討する。さらに、高周波数帯域の強震動を予測する ために、堆積層のS波速度の不均質構造モデルの影響評価を行い、広帯域強震動シミュレ ーションのための地下構造のモデル化についても検討する。最後に、本研究で構築した地 下構造モデルを用いて過去の被害地震による強震動の評価を行なう。