7/25/2013

### Uranium-series Disequilibrium in Subduction Zone Volcanic Rocks

T. Yokoyama<sup>1</sup>, H. Iwamori<sup>1</sup> and K. Ueki<sup>1</sup> <sup>1</sup>Dept. of Earth and Planet. Sci., Tokyo Institute of Technology, Japan

### Subduction zone magmatism



- Subducting slabs release fluid components due to mineralogical reactions during progressive metamorphic dehydration.
- The fluid released from the slab subsequently induces mantle melting as it ascends, resulting in subduction zone magmatism.

# Secular equilibrium and U-series disequilibrium



# <sup>238</sup>U-<sup>230</sup>Th equiline diagram



Equiline  

$$\lambda_{238U}N_{238U} = \lambda_{230Th}N_{230Th} \quad (Activity)$$

$$\left(\frac{2^{30}Th}{2^{32}Th}\right) = \left(\frac{2^{38}U}{2^{32}Th}\right)^{0} \cdot \left(1 - e^{-\lambda_{230}t}\right) + \left(\frac{2^{30}Th}{2^{32}Th}\right)^{0} \cdot e^{-\lambda_{230}t}$$

$$\boxed{slope} \quad intercept$$

$$\left(\frac{1}{10} \sqrt{10} \sqrt{10$$

(<sup>238</sup>U/<sup>232</sup>Th)

### <sup>238</sup>U-<sup>230</sup>Th disequilibrium and tectonic settings





| 300 | 600km |
|-----|-------|
|     | 300   |

|          | Iwate |       |       | Akitakoma |        |      | Hachi<br>mantai | Yake<br>yama | Kampu |       |       |
|----------|-------|-------|-------|-----------|--------|------|-----------------|--------------|-------|-------|-------|
| Sample#  | IW1   | IW4   | IW7   | 0415      | 0426   | 0607 | HM04            | 0508         | KAM60 | KAM64 | KAM65 |
| SiO2 (%) | 53.6  | 50.9  | 52.8  | 52.3      | 51.5   | 53.4 | 55.3            | 57.4         | 63.8  | 54.1  | 53.0  |
| MgO (%)  | 6.50  | 5.80  | 7.24  | 3.92      | 6.37   | 5.26 | 5.94            | 5.62         | 2.04  | 5.29  | 5.80  |
| Age      | 1732  | <10ka | <10ka | 5-10ka    | 5-10ka | 2ka  | ?               | 0Ma          | <30ka | <30ka | <30ka |

- Chemical separation: U/TEVA spec (Eichrom)
   Th and U isotopes: TIMS (TRITON plus)
- > Th and U abundances: ID-ICP-MS (X-series II)



**TRITON plus @ Titech** 

#### X series II @ Titech

# U-Th disequilibrium of NEJ volcanic rocks



- Fore arc lavas:
   <sup>238</sup>U-excesses
- Rear arc lavas: <sup>230</sup>Th-excesses
- The extent of <sup>238</sup>U enrichment decreases as the slab depth increases.

Gradual decrease of the amount of slab derived fluid mixed into the wedge mantle.



Model 1) Dynamic melting of enriched mantle

Model 2) Flux melting of enriched mantle induced by the addition of <sup>230</sup>Th-rich slab-derived fluid.

# U-Th age of Kampu



▶ <sup>238</sup>U-<sup>230</sup>Th age and eruption age are decoupled.

- A long (>80kyr) residence time before eruption?  $\rightarrow$  NO
- Assimilation and fractional crystallization?  $\rightarrow$  NO
- Mixing line produced by the addition of Th enriched slabderived fluid w/o age significance.

# Frontal-arc samples (NE Japan and Izu arc)



- Miyakejima: DMM-like source mantle
- Fuji+Oshima+Komagatake: E-DMM source mantle
- Iwate: More enriched source mantle ?



<sup>238</sup>U-<sup>230</sup>Th age and eruption age are decoupled.

- A long (>90kyr) residence time before eruption?  $\rightarrow$  NO
- Addition of slab derived fluid to extremely enriched mantle wedge

### Summary

- Rear arc samples have <sup>230</sup>Th excesses due either to the dynamic melting of enriched source mantle or flux melting by the addition of Th-rich slab-derived fluid.
- Frontal arc samples have <sup>238</sup>U excesses due to the addition of U-rich slab-derived fluid to the mantle wedge that is more enriched than E-DMM.
- Wedge mantle beneath NE Japan can be heterogeneous regarding U/Th and Th isotope ratios due to ancient mantle metasomatism.