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and the number of 210Po decays, respectively. The neutron energy
distribution is calculated using the measured neutron angular
distributions in the centre of mass frame25,26. Including the efficiency
for passing the ne candidate cuts, the number of (a,n) background
events is estimated to be 42 ^ 11.
There is a small contribution to the background from random

coincidences, nes from the b2 decay of long lived nuclear reactor
fission products, and radioactive isotopes produced by cosmic rays.
Using an out-of-time coincidence cut from 10ms to 20 s, the random
coincidence background is estimated to be 2.38 ^ 0.01 events. Using
the expected ne energy spectrum27 for long lived nuclear reactor
fission products, the corresponding background is estimated to be
1.9 ^ 0.2 events. Themost significant background due to radioactive
isotopes produced by cosmic rays is from the b2 decay
9Li! 2aþ nþ e2 þ ne, which has a neutron in the final state. On
the basis of events correlated with cosmic rays, the estimated number
of background events caused by radioactive 9Li is 0.30 ^ 0.05. Other
backgrounds considered and found to be negligible include spon-
taneous fission, neutron emitters and correlated decays in the
radioactive background decay chains, fast neutrons from cosmic
ray interactions, (g,n) reactions and solar ne induced break-up of
2H. The total background is estimated to be 127 ^ 13 events (1j
error).
The total number of observed ne candidates is 152, with their

energy distribution shown in Fig. 3. Including the geoneutrino
detection systematic errors, parts of which are correlated with
the background estimation errors, a ‘rate only’ analysis gives 25þ19

218
geoneutrino candidates from the 238U and 232Th decay chains.
Dividing by the detection efficiency, live-time, and number of
target protons, the total geoneutrino detected rate obtained is
5:1þ3:9

23:6 £ 10231 ne per target proton per year.
We also perform an un-binned maximum likelihood analysis of

the ne energy spectrum between 1.7 and 3.4MeV, using the known
shape of the signal and background spectra. As the neutrino oscil-
lation parameters do not significantly affect the expected shape of the
geoneutrino signal, the un-oscillated shape is assumed. However, the

oscillation parameters are included in the reactor background shape.
Figure 4a shows the confidence intervals for the number of observed
238U and 232Th geoneutrinos. Based on a study of chondritic
meteorites28, the Th/U mass ratio in the Earth is believed to be
between 3.7 and 4.1, and is known better than either absolute
concentration. Assuming a Th/U mass ratio of 3.9, we estimate the
90% confidence interval for the total number of 238U and 232Th
geoneutrino candidates to be 4.5 to 54.2, as shown in Fig. 4b. The
central value of 28.0 is consistent with the ‘rate only’ analysis. At this
point, the value of the fit parameters are Dm2

12 ¼ 7:8£ 1025 eV2;
sin22v12 ¼ 0:82, pa ¼ 1:0, and qa ¼ 1:0, where these last two param-
eters are defined in the Methods section. The 99% confidence upper
limit obtained on the total detected 238U and 232Th geoneutrino rate
is 1.45 £ 10230 ne per target proton per year, corresponding to a flux
at KamLAND of 1.62 £ 107 cm22 s21. On the basis of our reference
model, this corresponds to an upper limit on the radiogenic power
from 238U and 232Th decay of 60 TW.
As a cross-check, an independent analysis29 has been performed

using a partial data set, including detection efficiency, of 2.6 £ 1031

target proton years. In this analysis, the 13C(a,n)16O background was

Figure 3 | ne energy spectra in KamLAND. Main panel, experimental points
together with the total expectation (thin dotted black line). Also shown are
the total expected spectrum excluding the geoneutrino signal (thick solid
black line), the expected signals from 238U (dot-dashed red line) and 232Th
(dotted green line) geoneutrinos, and the backgrounds due to reactor ne
(dashed light blue line), 13C(a,n)16O reactions (dotted brown line), and
random coincidences (dashed purple line). Inset, expected spectra extended
to higher energy. The geoneutrino spectra are calculated from our reference
model, which assumes 16TW radiogenic power from 238U and 232Th. The
error bars represent ^ 1 standard deviation intervals.

Figure 4 | Confidence intervals for the number of geoneutrinos
detected. Panel a shows the 68.3% confidence level (CL; red), 95.4% CL
(green) and 99.7% CL (blue) contours for detected 238U and 232Th
geoneutrinos. The small shaded area represents the prediction from the
geophysical model. The vertical dashed line represents the value of
(NU 2 NTh)/(NU þ NTh) assuming the mass ratio, Th/U ¼ 3.9, derived
from chondritic meteorites, and accounting for the 238U and 232Th decay
rates and the ne detection efficiencies in KamLAND. The dot represents our
best fit point, favouring 3 238U geoneutrinos and 18 232Th geoneutrinos.
Panel b shows Dx2 as a function of the total number of 238U and 232Th
geoneutrino candidates, fixing the normalized difference to the chondritic
meteorites constraint. The grey band gives the value ofNU þ NTh predicted
by the geophysical model.
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Figure 4 |Measured geoneutrino flux and models. a, Measured
geoneutrino flux at Kamioka and Gran Sasso, and expected fluxes at these
sites and Hawaii4. The solid and dashed red lines represent, respectively,
the fluxes for a fully radiogenic model assuming the homogeneous and
sunken-layer hypotheses. b, Measured geoneutrino flux after subtracting
the estimated crustal contribution. No modelling uncertainties are shown.
The right axis shows the corresponding radiogenic heat production
assuming a homogeneous mantle. The solid red line indicates the fully
radiogenic model where the contributions from the crust (7.0 TW) and the
other isotopes6,24 (4.3 TW) are subtracted from the total heat flow7

(44.2 TW). Error bars, see text.

on the mantle by making simple but appropriate assumptions to
constrain the model.

We take the Th:U ratio for each contributing layer to be fixed at
the standard BSEmodel value of 3.9 (ref. 5). The composition of the
crust is derived from a BSE model that incorporates the crust and a
detailed description of the local geology4. As a simplifying hypothe-
sis, U and Th are assumed to be uniformly distributed in themantle.
Figure 4a shows the measured geoneutrino fluxes at the Kamioka
and Gran Sasso experimental sites along with the predictions for
these locations and Hawaii, as an example of an oceanic site with a
significantly smaller crustal contribution. Combining the 238U and
232Th geoneutrino measurements of Borexino3 and KamLAND we
obtain 20.0+8.8

�8.6 TW. The result is in good agreement with the BSE
model prediction of 16 TW (ref. 5), as illustrated in Fig. 4b, where
the crust contribution is subtracted for clarity.

The fraction of the global heat production from radioactive
decay is called the ‘Urey ratio’. The mantle contribution alone is
referred to as the ‘convective Urey ratio’22. Most models, including
the BSEmodel used here, set the convective Urey ratio to about 0.3,
allowing for a substantial fraction of the heat to be of primordial
origin. Other models require convective Urey ratios up to⇠1.0 (see
discussion in ref. 23). Assuming extra mantle heat contributions
of 3.0 TW from other isotope decays6,24, the convective Urey ratio
deduced from the KamLAND and Borexino data is between 0.18
and 0.67 at the 68%CL, consistent with 0.3 from the BSEmodel.

A fully radiogenic model (Urey ratio of 1) is constructed by
introducing U and Th uniformly in the mantle (homogeneous
hypothesis) or, alternatively, by putting all of the U and Th at
the mantle–core interface (sunken-layer hypothesis). The latter
assumption is used in an attempt to test the compatibility of a
fully radiogenic model with the observed geoneutrino flux, by
distributing the source as far from the detectors as possible. The
fully radiogenic, homogeneous hypothesis is disfavoured at the
97.2% CL with the combination of KamLAND and Borexino data,
or at the 98.1% CL by KamLAND alone. Even within the sunken-
layer hypothesis, the fully radiogenic model is still disfavoured at
the 87%CL using KamLAND data alone.

The radiogenic heat estimation from the geoneutrino flux
depends on the modelling of the geology. We account for crustal
uncertainties by assuming 17% and 10% errors for the U and
Th content, including correlated errors as suggested in ref. 9. We
use the crustal model of ref. 25, assuming independent errors for
each layer (upper, middle and lower crust), and include extra

contributions from the error in the mass distribution and the
fractional uncertainty in the Th:U ratio9. The radiogenic heat
contribution from 238U and 232Th is estimated to be 19.9+9.2

�9.1 TW
by KamLAND and Borexino data, excluding the fully radiogenic
model at the 96.6% CL. If we use the more recently determined
heat-loss rate of 46±3 TW (ref. 26) the fully radiogenic exclusion
increases to 98.0% CL, slightly enhanced owing to the larger mean
value of the heat flow as compared with ref. 7, despite its larger
error. We conclude that these uncertainties have little impact on
the results at this stage.

It is expected that geoneutrino detectors operated at different
locations will significantly improve our knowledge of radiogenic
sources in the Earth. Larger detectors distant from commercial
reactors will reduce the uncertainties on the measured geoneutrino
flux. The geoneutrino flux strongly depends on the distance from
thick continental crusts, so the exposure to ⌫es at different locations
will provide better knowledge of the crustal contribution and
greater insight into the mantle. A detector in an oceanic location
with small crustal contribution would be very interesting in this
regard. The present detectors are all insensitive to 40K, and this will
remain an uncertainty unless new geoneutrino detectors with lower
threshold are developed.

Methods
The KamLAND inner detector consists of 1 kt of ultrapure LS contained
within a 13-m-diameter spherical balloon made of 135-µm-thick transparent
nylon/EVOH (ethylene vinyl alcohol copolymer) composite film. The balloon is
suspended in a bath of purified non-scintillating mineral oil contained inside an
18-m-diameter stainless-steel sphere. The LS contains 80% dodecane and 20%
pseudocumene (1,2,4-trimethylbenzene) by volume, as well as 1.36±0.03 g l�1

PPO (2,5-diphenyloxazole) as a fluorophore. The inner surface of the containment
sphere is covered by an array of 1,325 specially developed fast 20-inch-diameter
photomultiplier tubes (PMTs) masked to 17 inch diameter, and 554 older
unmasked 20 inch PMTs. The PMTs provide 34% solid-angle coverage in total. The
containment sphere is surrounded by a 3.2 kt cylindrical water–Cherenkov outer
detector instrumented with 225 PMTs of 20 inch diameter. The outer detector acts
as a veto counter for muons and helps shield the inner detector from �-rays and
neutrons produced in the surrounding rock.

Radioactive sources are periodically deployed inside the detector to calibrate
its energy response and position-reconstruction accuracy. The reconstruction of
event location is important to establish the prompt–delayed event correlation
and to define the fiducial volume used in the measurement. After accounting for
systematic effects, we find that the deviation of reconstructed event locations from
the actual locations is less than 3 cm, from which we derive a 1.8% uncertainty
in the absolute size of the fiducial volume. Source calibration data for the entire
fiducial volume are available only for the data recorded before the start of the LS
purification campaign in 2007. For the remaining data we carried out calibrations
along the vertical axis only. These calibrations were augmented with a study of
muon-induced 12B/12N decays27, resulting in a larger uncertainly of 2.5% on the
absolute size of the fiducial volume for the post-purification data.

KamLAND was designed and sited primarily to study the phenomenon of
neutrino oscillations using reactor ⌫e s. Therefore, such ⌫e s represent the largest
background in the present measurement because their energy spectrum partially
overlaps that of geoneutrinos. Substantial discrimination between the two is
achieved not only by fitting their energy spectra but also by exploiting the fact
that the reactor ⌫e rate varies with the output of the power plants whereas the
geoneutrino rate can be taken as constant over the timescale of the experiment.

The ⌫e event-selection criteria are optimized as a function of energy to
maximize the sensitivity to geoneutrinos while rejecting the accidental background
from radioactive contaminants in the detector. The event selection is based on the
discriminant L= f⌫e/(f⌫e + facc), where f⌫e and facc are probability density functions
for ⌫e signals and accidental backgrounds, respectively. These probability density
functions are based on six parameters (Ep, Ed, 1R, 1T , Rp, Rd), which represent,
respectively, the prompt and delayed event energies, their relative separations
in space and time and their radial distances from the detector centre. Owing to
an observed variation of the background rate with time, the probability density
function for accidental backgrounds is a time-dependent function constructed by
dividing the data set into five time periods. For the discrimination of accidental
backgrounds, we determine a selection value, Lcut(Ep), to maximize the figure of
merit S/

p
S+Bacc for each prompt energy interval of 0.1MeV, where S denotes

the expected signal rate and Bacc corresponds to the accidental background rate.
The selection efficiency and its uncertainty are obtained by comparing Monte
Carlo simulations with 68Ge and 241Am9Be source calibration data. The selection
efficiencies for geoneutrino signals produced by U and Th decays with energies
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The differential geoneutrino flux at a position r is determined
from the isotopic abundances ai(r0) at the location of the sources, r0,

d8(E⌫,r)
dE⌫

=
isotopesX

i

Ai
dni(E⌫)
dE⌫

Z

�
d3r0 ai(r

0)⇢(r0)P(E⌫,|r�r0|)
4⇡ |r�r0|2 (1)

where the integration extends over the Earth’s volume, Ai is the
decay rate per unit mass, dni(E⌫)/dE⌫ is the ⌫e energy spectrum for
each mode of decay, ai(r0) is in units of isotope mass per unit rock
mass, ⇢(r0) is the rock density and P(E⌫,|r� r0|) is the ⌫e ‘survival’
probability due to the phenomenon of oscillation after travelling a
distance |r�r0|. For the present purpose, the ⌫e survival probability
is well approximated by the two-flavour oscillation formula,

P(E⌫,L)' 1� sin22✓12 sin2
✓
1.271m2

21[eV2]L[m]
E⌫[MeV]

◆
(2)

where L = |r � r0|. ‘Matter effects’ on neutrino oscillations10
are expected to change equation (2) by about 1%, which is
negligible compared with the statistical uncertainty. The oscillation
parameters 1m2

21 and sin2 2✓12 are determined with substantial
accuracy by a combined statistical analysis with KamLAND’s
measurement of ⌫es produced at nuclear reactors and data from
solar-neutrino experiments (assuming charge–parity–time (CPT)
symmetry10), and are given in the next section. Given the size of the
Earth and the values of the neutrino oscillation parameters, for the
energy range of detectable geoneutrinos the second sine function
in equation (2) is well averaged over the volume of the Earth, giving
P(E⌫,L)'1�0.5sin22✓12 to an excellent approximation.

Geoneutrino detection
KamLAND is located under Mount Ikenoyama (36.42� N,
137.31� E), near the town of Kamioka, Japan. The underground
site provides an effective overburden of 2,700m water equivalent,
reducing the cosmic-ray-induced atmospheric muon flux to
5.37 ± 0.41m�2 h�1 (ref. 11). The ⌫e s are detected in 1 kt of
liquid scintillator (LS) through the inverse �-decay reaction,
⌫e + p ! e+ + n, with a 1.8MeV neutrino energy threshold. This
threshold cuts off much of the geoneutrino signal from the 238U
and 232Th decay chains and renders the detector insensitive to 40K
(other unobserved isotopes such as 235U contribute negligibly to
the heating). Using the cross-section from ref. 12, the expected
rate of geoneutrino events from the geological reference model4 is
3.80⇥10�31⌫e per target proton per year. 79% of this rate is due to
238U decays. The prompt scintillation light from the e+ provides an
estimate of the incident ⌫e energy, E⌫e ' Ep +En +0.8MeV, where
Ep is the sum of the positron’s kinetic energy and its annihilation
energy, and En is the average neutron recoil energy of O(10 keV).
The neutron is captured on a proton, emitting a 2.2MeV �-ray
after a mean delay time of 207.5± 2.8 µs following the positron’s
annihilation. The delayed-coincidence signal is a powerful tool for
reducing backgrounds.

The data collected between 9 March 2002 and 4 November
2009 represents a total live-time of 2,135 days. The number of
target protons in the spherical fiducial volume of radius 6.0m is
estimated to be (5.98± 0.12)⇥ 1031, resulting in a total exposure
of (3.49± 0.07)⇥ 1032 target proton years. Data taken during the
LS purification activities exhibited increased PMT noise and were
excluded from the data set.

The fluxes of reactor ⌫es are analysed together with the
geoneutrinos and are calculated using instantaneous thermal
power, burnup and refuelling records for all commercial reactors
in Japan, as provided by a consortium of Japanese electric
power companies. Only four fissile isotopes, 235U, 238U, 239Pu and
241Pu, contribute significantly to the ⌫e spectrum13–15. Spectral
uncertainties were further constrained according to ref. 16.
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Figure 1 | Prompt energy spectrum and event selection efficiency.
a, Prompt energy spectrum of low-energy ⌫e s in KamLAND. The
histograms indicate the backgrounds, whereas the best fit (including
geoneutrinos) is shown in blue. b, Background-subtracted energy spectrum.
The blue shaded spectrum is the expectation from the reference model,
consisting of contributions from U (dashed curve) and Th (dotted curve). c,
Energy dependence of the geoneutrino event selection efficiency averaged
over the data-taking period. Statistical uncertainties are shown for the data
in a, and uncertainties on the background estimation are added in b.

Taking the neutrino oscillation parameter values 1m2
21 =

7.50+0.19
�0.20 ⇥ 10�5 eV2 and sin22✓12 = 0.84± 0.03 from the fit to the

data discussed below, the expected number of reactor ⌫e events
in the geoneutrino energy region (defined as 0.9MeV < Ep <
2.6MeV) is 484.7±26.5, including a small contribution from the
�-decay of the long-lived fission products 90Sr, 106Ru and 144Ce
in spent reactor fuel17. Other backgrounds for ⌫e detection are
mostly from the 13C(↵,n)16O reaction in the LS. Including the
smaller contributions from accidental coincidences, cosmic-ray-
muon-induced radioactive isotopes, fast neutrons and atmospheric
neutrinos, the total number of events between 0.9MeV and 2.6MeV
is estimated to be 244.7±18.4 (SupplementaryNote S2).

We observe 841 candidate ⌫e events between 0.9MeV and
2.6MeV, whereas the predicted number of reactor ⌫e events
and other backgrounds is 729.4 ± 32.3. Taking the excess as
the geoneutrino signal, we obtain 111+45

�43, that is, event yield
analysis without energy and time information. The statistical
significance is 99.55%.

Figure 1a shows the fit from a more powerful unbinned
maximum-likelihood analysis, which takes into account the event
rate, energy and time information in the energy range 0.9MeV<
Ep <8.5MeV, and simultaneously fits geoneutrinos and reactor ⌫e s
including the effect of neutrino oscillations. The oscillation parame-
ters are constrained by solar neutrino flux experiments18, including
the most recent measurement by Sudbury Neutrino Observatory
(SNO; ref. 19). The time of each event gives extra discriminating
power because the reactor ⌫e background varies with time, as shown
in Fig. 2a, as do the accidental and 13C(↵,n)16O backgrounds,
whereas the geoneutrino rate is constant. As the backgrounds vary,
the event rate demonstrates a consistent excess attributable to
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The differential geoneutrino flux at a position r is determined
from the isotopic abundances ai(r0) at the location of the sources, r0,
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where the integration extends over the Earth’s volume, Ai is the
decay rate per unit mass, dni(E⌫)/dE⌫ is the ⌫e energy spectrum for
each mode of decay, ai(r0) is in units of isotope mass per unit rock
mass, ⇢(r0) is the rock density and P(E⌫,|r� r0|) is the ⌫e ‘survival’
probability due to the phenomenon of oscillation after travelling a
distance |r�r0|. For the present purpose, the ⌫e survival probability
is well approximated by the two-flavour oscillation formula,
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where L = |r � r0|. ‘Matter effects’ on neutrino oscillations10
are expected to change equation (2) by about 1%, which is
negligible compared with the statistical uncertainty. The oscillation
parameters 1m2

21 and sin2 2✓12 are determined with substantial
accuracy by a combined statistical analysis with KamLAND’s
measurement of ⌫es produced at nuclear reactors and data from
solar-neutrino experiments (assuming charge–parity–time (CPT)
symmetry10), and are given in the next section. Given the size of the
Earth and the values of the neutrino oscillation parameters, for the
energy range of detectable geoneutrinos the second sine function
in equation (2) is well averaged over the volume of the Earth, giving
P(E⌫,L)'1�0.5sin22✓12 to an excellent approximation.

Geoneutrino detection
KamLAND is located under Mount Ikenoyama (36.42� N,
137.31� E), near the town of Kamioka, Japan. The underground
site provides an effective overburden of 2,700m water equivalent,
reducing the cosmic-ray-induced atmospheric muon flux to
5.37 ± 0.41m�2 h�1 (ref. 11). The ⌫e s are detected in 1 kt of
liquid scintillator (LS) through the inverse �-decay reaction,
⌫e + p ! e+ + n, with a 1.8MeV neutrino energy threshold. This
threshold cuts off much of the geoneutrino signal from the 238U
and 232Th decay chains and renders the detector insensitive to 40K
(other unobserved isotopes such as 235U contribute negligibly to
the heating). Using the cross-section from ref. 12, the expected
rate of geoneutrino events from the geological reference model4 is
3.80⇥10�31⌫e per target proton per year. 79% of this rate is due to
238U decays. The prompt scintillation light from the e+ provides an
estimate of the incident ⌫e energy, E⌫e ' Ep +En +0.8MeV, where
Ep is the sum of the positron’s kinetic energy and its annihilation
energy, and En is the average neutron recoil energy of O(10 keV).
The neutron is captured on a proton, emitting a 2.2MeV �-ray
after a mean delay time of 207.5± 2.8 µs following the positron’s
annihilation. The delayed-coincidence signal is a powerful tool for
reducing backgrounds.

The data collected between 9 March 2002 and 4 November
2009 represents a total live-time of 2,135 days. The number of
target protons in the spherical fiducial volume of radius 6.0m is
estimated to be (5.98± 0.12)⇥ 1031, resulting in a total exposure
of (3.49± 0.07)⇥ 1032 target proton years. Data taken during the
LS purification activities exhibited increased PMT noise and were
excluded from the data set.

The fluxes of reactor ⌫es are analysed together with the
geoneutrinos and are calculated using instantaneous thermal
power, burnup and refuelling records for all commercial reactors
in Japan, as provided by a consortium of Japanese electric
power companies. Only four fissile isotopes, 235U, 238U, 239Pu and
241Pu, contribute significantly to the ⌫e spectrum13–15. Spectral
uncertainties were further constrained according to ref. 16.
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Figure 1 | Prompt energy spectrum and event selection efficiency.
a, Prompt energy spectrum of low-energy ⌫e s in KamLAND. The
histograms indicate the backgrounds, whereas the best fit (including
geoneutrinos) is shown in blue. b, Background-subtracted energy spectrum.
The blue shaded spectrum is the expectation from the reference model,
consisting of contributions from U (dashed curve) and Th (dotted curve). c,
Energy dependence of the geoneutrino event selection efficiency averaged
over the data-taking period. Statistical uncertainties are shown for the data
in a, and uncertainties on the background estimation are added in b.

Taking the neutrino oscillation parameter values 1m2
21 =

7.50+0.19
�0.20 ⇥ 10�5 eV2 and sin22✓12 = 0.84± 0.03 from the fit to the

data discussed below, the expected number of reactor ⌫e events
in the geoneutrino energy region (defined as 0.9MeV < Ep <
2.6MeV) is 484.7±26.5, including a small contribution from the
�-decay of the long-lived fission products 90Sr, 106Ru and 144Ce
in spent reactor fuel17. Other backgrounds for ⌫e detection are
mostly from the 13C(↵,n)16O reaction in the LS. Including the
smaller contributions from accidental coincidences, cosmic-ray-
muon-induced radioactive isotopes, fast neutrons and atmospheric
neutrinos, the total number of events between 0.9MeV and 2.6MeV
is estimated to be 244.7±18.4 (SupplementaryNote S2).

We observe 841 candidate ⌫e events between 0.9MeV and
2.6MeV, whereas the predicted number of reactor ⌫e events
and other backgrounds is 729.4 ± 32.3. Taking the excess as
the geoneutrino signal, we obtain 111+45

�43, that is, event yield
analysis without energy and time information. The statistical
significance is 99.55%.

Figure 1a shows the fit from a more powerful unbinned
maximum-likelihood analysis, which takes into account the event
rate, energy and time information in the energy range 0.9MeV<
Ep <8.5MeV, and simultaneously fits geoneutrinos and reactor ⌫e s
including the effect of neutrino oscillations. The oscillation parame-
ters are constrained by solar neutrino flux experiments18, including
the most recent measurement by Sudbury Neutrino Observatory
(SNO; ref. 19). The time of each event gives extra discriminating
power because the reactor ⌫e background varies with time, as shown
in Fig. 2a, as do the accidental and 13C(↵,n)16O backgrounds,
whereas the geoneutrino rate is constant. As the backgrounds vary,
the event rate demonstrates a consistent excess attributable to
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‣Terrestrial Heat - Geophysical Activity

formation of 
mountains

earthquake
•volcano

geomagnetic 
reversal

mantle 
convection

plate motion

Question on geophysical activity
• What are energy sources? How much energy?
• How is the mantle convecting, single or multi-layer convection?
• Why is the frequency of geomagnetic reversals random?

→ It is important to find out the terrestrial heat.
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‣Terrestrial Heat - Heat Sources in the Earth
(1) Radiogenic heat from U, Th, K decay
(2) Release of gravitational energy through accretion or metallic core separation
(3) Latent heat from the growth of inner core

U-series Th-series

β-decay
α-decay

anti-neutrino 
from β-decay

Radiogenic heat :
α-decay or
β-decay emitting “anti-neutrinos”



Surface heat flow
44.2±1.0 TW

Radiogenic heat in the Earth
地球の熱収支

地球ニュートリノ検出によって放射化熱を直接テストできる

核の熱源
外核（金属流体）の対流によって地磁気が発生している

対流させるための熱源が必要 潜熱や重力エネルギーの解放
 or 放射性熱源が存在？

44TW

地表からの熱流量

U : 8 TW

Th : 8 TW

K : 3 TW

隕石の成分解析

放射化熱
19 TW

ケイ酸塩地球モデル (BSE model)

>

地球内部で発生する熱（放射化熱）は地表から放出される熱の約半分
地球は冷却中

U : 8 TW
Th : 8 TW
K : 3TW

Bulk Silicate Earth (BSE) model

20 TW>

Almost half of radiogenic heat contributes to the surface heat flow.
Why?

‣Terrestrial Heat - Heat Balance

4

Rev. of Geophys. 31, 267-280 (1993)

crust heat flux measurement & calculation componential analysis of chondrite meteorite

This is not “direct measurement”. 

Geo-neutrino can directly test radiogenic heat production.
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‣Analysis  - Observed Energy Spectrum (0.9-2.6 MeV)ARTICLES
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The differential geoneutrino flux at a position r is determined
from the isotopic abundances ai(r0) at the location of the sources, r0,

d8(E⌫,r)
dE⌫

=
isotopesX

i

Ai
dni(E⌫)
dE⌫

Z

�
d3r0 ai(r

0)⇢(r0)P(E⌫,|r�r0|)
4⇡ |r�r0|2 (1)

where the integration extends over the Earth’s volume, Ai is the
decay rate per unit mass, dni(E⌫)/dE⌫ is the ⌫e energy spectrum for
each mode of decay, ai(r0) is in units of isotope mass per unit rock
mass, ⇢(r0) is the rock density and P(E⌫,|r� r0|) is the ⌫e ‘survival’
probability due to the phenomenon of oscillation after travelling a
distance |r�r0|. For the present purpose, the ⌫e survival probability
is well approximated by the two-flavour oscillation formula,

P(E⌫,L)' 1� sin22✓12 sin2
✓
1.271m2

21[eV2]L[m]
E⌫[MeV]

◆
(2)

where L = |r � r0|. ‘Matter effects’ on neutrino oscillations10
are expected to change equation (2) by about 1%, which is
negligible compared with the statistical uncertainty. The oscillation
parameters 1m2

21 and sin2 2✓12 are determined with substantial
accuracy by a combined statistical analysis with KamLAND’s
measurement of ⌫es produced at nuclear reactors and data from
solar-neutrino experiments (assuming charge–parity–time (CPT)
symmetry10), and are given in the next section. Given the size of the
Earth and the values of the neutrino oscillation parameters, for the
energy range of detectable geoneutrinos the second sine function
in equation (2) is well averaged over the volume of the Earth, giving
P(E⌫,L)'1�0.5sin22✓12 to an excellent approximation.

Geoneutrino detection
KamLAND is located under Mount Ikenoyama (36.42� N,
137.31� E), near the town of Kamioka, Japan. The underground
site provides an effective overburden of 2,700m water equivalent,
reducing the cosmic-ray-induced atmospheric muon flux to
5.37 ± 0.41m�2 h�1 (ref. 11). The ⌫e s are detected in 1 kt of
liquid scintillator (LS) through the inverse �-decay reaction,
⌫e + p ! e+ + n, with a 1.8MeV neutrino energy threshold. This
threshold cuts off much of the geoneutrino signal from the 238U
and 232Th decay chains and renders the detector insensitive to 40K
(other unobserved isotopes such as 235U contribute negligibly to
the heating). Using the cross-section from ref. 12, the expected
rate of geoneutrino events from the geological reference model4 is
3.80⇥10�31⌫e per target proton per year. 79% of this rate is due to
238U decays. The prompt scintillation light from the e+ provides an
estimate of the incident ⌫e energy, E⌫e ' Ep +En +0.8MeV, where
Ep is the sum of the positron’s kinetic energy and its annihilation
energy, and En is the average neutron recoil energy of O(10 keV).
The neutron is captured on a proton, emitting a 2.2MeV �-ray
after a mean delay time of 207.5± 2.8 µs following the positron’s
annihilation. The delayed-coincidence signal is a powerful tool for
reducing backgrounds.

The data collected between 9 March 2002 and 4 November
2009 represents a total live-time of 2,135 days. The number of
target protons in the spherical fiducial volume of radius 6.0m is
estimated to be (5.98± 0.12)⇥ 1031, resulting in a total exposure
of (3.49± 0.07)⇥ 1032 target proton years. Data taken during the
LS purification activities exhibited increased PMT noise and were
excluded from the data set.

The fluxes of reactor ⌫es are analysed together with the
geoneutrinos and are calculated using instantaneous thermal
power, burnup and refuelling records for all commercial reactors
in Japan, as provided by a consortium of Japanese electric
power companies. Only four fissile isotopes, 235U, 238U, 239Pu and
241Pu, contribute significantly to the ⌫e spectrum13–15. Spectral
uncertainties were further constrained according to ref. 16.
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Figure 1 | Prompt energy spectrum and event selection efficiency.
a, Prompt energy spectrum of low-energy ⌫e s in KamLAND. The
histograms indicate the backgrounds, whereas the best fit (including
geoneutrinos) is shown in blue. b, Background-subtracted energy spectrum.
The blue shaded spectrum is the expectation from the reference model,
consisting of contributions from U (dashed curve) and Th (dotted curve). c,
Energy dependence of the geoneutrino event selection efficiency averaged
over the data-taking period. Statistical uncertainties are shown for the data
in a, and uncertainties on the background estimation are added in b.

Taking the neutrino oscillation parameter values 1m2
21 =

7.50+0.19
�0.20 ⇥ 10�5 eV2 and sin22✓12 = 0.84± 0.03 from the fit to the

data discussed below, the expected number of reactor ⌫e events
in the geoneutrino energy region (defined as 0.9MeV < Ep <
2.6MeV) is 484.7±26.5, including a small contribution from the
�-decay of the long-lived fission products 90Sr, 106Ru and 144Ce
in spent reactor fuel17. Other backgrounds for ⌫e detection are
mostly from the 13C(↵,n)16O reaction in the LS. Including the
smaller contributions from accidental coincidences, cosmic-ray-
muon-induced radioactive isotopes, fast neutrons and atmospheric
neutrinos, the total number of events between 0.9MeV and 2.6MeV
is estimated to be 244.7±18.4 (SupplementaryNote S2).

We observe 841 candidate ⌫e events between 0.9MeV and
2.6MeV, whereas the predicted number of reactor ⌫e events
and other backgrounds is 729.4 ± 32.3. Taking the excess as
the geoneutrino signal, we obtain 111+45

�43, that is, event yield
analysis without energy and time information. The statistical
significance is 99.55%.

Figure 1a shows the fit from a more powerful unbinned
maximum-likelihood analysis, which takes into account the event
rate, energy and time information in the energy range 0.9MeV<
Ep <8.5MeV, and simultaneously fits geoneutrinos and reactor ⌫e s
including the effect of neutrino oscillations. The oscillation parame-
ters are constrained by solar neutrino flux experiments18, including
the most recent measurement by Sudbury Neutrino Observatory
(SNO; ref. 19). The time of each event gives extra discriminating
power because the reactor ⌫e background varies with time, as shown
in Fig. 2a, as do the accidental and 13C(↵,n)16O backgrounds,
whereas the geoneutrino rate is constant. As the backgrounds vary,
the event rate demonstrates a consistent excess attributable to

2 NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience

- exposure : 4126 ton-year
(4.9 times larger the 2005 result)

- result

9Li 2.0 ± 0.1
Accidental 77.4 ± 0.1

Fast neutron < 2.8
(α, n) 165.3 ± 18.2

Reactor ν 484.7 ± 26.5

candidate 841

BG total 729.4 ± 32.3
excess 111    events+45

-45

Null signal exclusion (rate)
99.55 % C.L.
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Figure 2 | Event-rate correlation. a, Expected and measured rates at KamLAND for ⌫e s with energies between 0.9 MeV and 2.6 MeV. The points indicate
the measured rates, whereas the curves show the expected rates for reactor ⌫e s, reactor ⌫e s + other backgrounds, and reactor ⌫e s + backgrounds +
geoneutrinos. The vertical bands correspond to data periods not used owing to high noise resulting from purification activities. b, Measured ⌫e event rates
plotted against the expected rate from reactor ⌫e s + other backgrounds. The dotted line is the best linear fit. The shaded region is the ±1� fit envelope.
The error bars are statistical only.

geoneutrinos, as clarified by Fig. 2b. The best fit gives 65 and 33
geoneutrino events from 238U and 232Th, respectively, when the
concentrations of the two isotopes are varied independently. The
confidence intervals are shown in Fig. 3a. The result is consistent
with the geological reference model4 and provides best-fit values
for the oscillation parameters of 1m2

21 = 7.50+0.19
�0.20 ⇥ 10�5 eV2 and

sin2 2✓12 = 0.84± 0.03, as noted above. These results are slightly
more precise than previous measurements2,19. Fixing the Earth’s
Th:U ratio at 3.9, as predicted by the BSE model of ref. 5 from the
abundances observed in chondritic meteorites, the total number of
geoneutrino events is 106+29

�28, as shown in Fig. 3b. This corresponds
to an (oscillated) electron antineutrino flux of 4.3+1.2

�1.1⇥106 cm�2 s�1

from 238U and 232Th at the Earth’s surface, whereas the total active
geoneutrino flux including all flavours is 7.4+2.1

�1.9 ⇥ 106 cm�2 s�1.
The uncertainties of the Th:U ratio and oscillation parameters
have a negligible effect on the measured geoneutrino flux. The null
hypothesis is disfavoured at the 99.997% confidence level (CL) from
assessing the1� 2-profile (Fig. 3b).

Finally, the suggestion that there may exist a natural nuclear
reactor in the Earth’s core producing ⌫es (ref. 20) was tested by
adding to the fit a reactor spectrum with a varying amplitude.
The spectrum from the hypothetical natural reactor is different
from that of power reactors because there is no distortion due to
neutrino oscillations over the long path from the Earth’s core, only
an energy-independent flux suppression. The flux from the natural
reactor is assumed constant over the duration of the measurement.
In this analysis, solar-neutrino data are used to constrain the
neutrino oscillation parameters, and the 238U and 232Th geoneutrino
rates are allowed to vary. An upper limit of 5.2 TW at the 90%
CL was obtained assuming a fission ratio 235U: 238U ' 0.75:0.25
(ref. 21), slightly more stringent than a previous KamLAND result2.
Borexino, being much farther from man-made reactors, provides a
significantly lower upper limit of 3 TWat the 95%CL (ref. 3).

Radiogenic heat estimation and outlook
Radiogenic contributions to the heating of the Earth in the
framework of the BSE model can be determined from the present
flux measurement. Variations in the compositional model can be
parameterized by weighting factors that multiply the quantities
ai(r0) in equation (1) differently for each region4. The mantle
is of particular interest because radioactivity is suspected to
contribute significantly to mantle convection, which drives plate
tectonics and geophysical activity. With existing geochemical and
geophysical evidence, there is no consensus on whether two-layer
convection, whole-volume convection or something in between is
the appropriate description of the mantle. We attempt to focus
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Figure 3 | CL of geoneutrino events. a, CL contours and best-fit point for
the observed geoneutrino event rates. The small shaded region is favoured
by the reference model4. The dashed line is the locus of points expected
from the BSE model of ref. 5, Th:U = 3.9. b, 1�2-profile from the fit to the
total number of geoneutrino events discussed in the text. In this case the
Th:U ratio is fixed at 3.9. The BSE model prediction is represented by the
shaded band5.
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- U/Th mass ratio fixed (Th/U = 3.9)

earth model prediction
EPSL 258, 147 (2007)

Ngeo = 106     events+29
-28

Fgeo = 4.3     × 106/cm2/sec+1.2
-1.1

(38.3      TNU)+10.3
-9.9

0 signal rejected at 
99.997% C.L.

(> 4σ C.L.)
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Figure 4 |Measured geoneutrino flux and models. a, Measured
geoneutrino flux at Kamioka and Gran Sasso, and expected fluxes at these
sites and Hawaii4. The solid and dashed red lines represent, respectively,
the fluxes for a fully radiogenic model assuming the homogeneous and
sunken-layer hypotheses. b, Measured geoneutrino flux after subtracting
the estimated crustal contribution. No modelling uncertainties are shown.
The right axis shows the corresponding radiogenic heat production
assuming a homogeneous mantle. The solid red line indicates the fully
radiogenic model where the contributions from the crust (7.0 TW) and the
other isotopes6,24 (4.3 TW) are subtracted from the total heat flow7

(44.2 TW). Error bars, see text.

on the mantle by making simple but appropriate assumptions to
constrain the model.

We take the Th:U ratio for each contributing layer to be fixed at
the standard BSEmodel value of 3.9 (ref. 5). The composition of the
crust is derived from a BSE model that incorporates the crust and a
detailed description of the local geology4. As a simplifying hypothe-
sis, U and Th are assumed to be uniformly distributed in themantle.
Figure 4a shows the measured geoneutrino fluxes at the Kamioka
and Gran Sasso experimental sites along with the predictions for
these locations and Hawaii, as an example of an oceanic site with a
significantly smaller crustal contribution. Combining the 238U and
232Th geoneutrino measurements of Borexino3 and KamLAND we
obtain 20.0+8.8

�8.6 TW. The result is in good agreement with the BSE
model prediction of 16 TW (ref. 5), as illustrated in Fig. 4b, where
the crust contribution is subtracted for clarity.

The fraction of the global heat production from radioactive
decay is called the ‘Urey ratio’. The mantle contribution alone is
referred to as the ‘convective Urey ratio’22. Most models, including
the BSEmodel used here, set the convective Urey ratio to about 0.3,
allowing for a substantial fraction of the heat to be of primordial
origin. Other models require convective Urey ratios up to⇠1.0 (see
discussion in ref. 23). Assuming extra mantle heat contributions
of 3.0 TW from other isotope decays6,24, the convective Urey ratio
deduced from the KamLAND and Borexino data is between 0.18
and 0.67 at the 68%CL, consistent with 0.3 from the BSEmodel.

A fully radiogenic model (Urey ratio of 1) is constructed by
introducing U and Th uniformly in the mantle (homogeneous
hypothesis) or, alternatively, by putting all of the U and Th at
the mantle–core interface (sunken-layer hypothesis). The latter
assumption is used in an attempt to test the compatibility of a
fully radiogenic model with the observed geoneutrino flux, by
distributing the source as far from the detectors as possible. The
fully radiogenic, homogeneous hypothesis is disfavoured at the
97.2% CL with the combination of KamLAND and Borexino data,
or at the 98.1% CL by KamLAND alone. Even within the sunken-
layer hypothesis, the fully radiogenic model is still disfavoured at
the 87%CL using KamLAND data alone.

The radiogenic heat estimation from the geoneutrino flux
depends on the modelling of the geology. We account for crustal
uncertainties by assuming 17% and 10% errors for the U and
Th content, including correlated errors as suggested in ref. 9. We
use the crustal model of ref. 25, assuming independent errors for
each layer (upper, middle and lower crust), and include extra

contributions from the error in the mass distribution and the
fractional uncertainty in the Th:U ratio9. The radiogenic heat
contribution from 238U and 232Th is estimated to be 19.9+9.2

�9.1 TW
by KamLAND and Borexino data, excluding the fully radiogenic
model at the 96.6% CL. If we use the more recently determined
heat-loss rate of 46±3 TW (ref. 26) the fully radiogenic exclusion
increases to 98.0% CL, slightly enhanced owing to the larger mean
value of the heat flow as compared with ref. 7, despite its larger
error. We conclude that these uncertainties have little impact on
the results at this stage.

It is expected that geoneutrino detectors operated at different
locations will significantly improve our knowledge of radiogenic
sources in the Earth. Larger detectors distant from commercial
reactors will reduce the uncertainties on the measured geoneutrino
flux. The geoneutrino flux strongly depends on the distance from
thick continental crusts, so the exposure to ⌫es at different locations
will provide better knowledge of the crustal contribution and
greater insight into the mantle. A detector in an oceanic location
with small crustal contribution would be very interesting in this
regard. The present detectors are all insensitive to 40K, and this will
remain an uncertainty unless new geoneutrino detectors with lower
threshold are developed.

Methods
The KamLAND inner detector consists of 1 kt of ultrapure LS contained
within a 13-m-diameter spherical balloon made of 135-µm-thick transparent
nylon/EVOH (ethylene vinyl alcohol copolymer) composite film. The balloon is
suspended in a bath of purified non-scintillating mineral oil contained inside an
18-m-diameter stainless-steel sphere. The LS contains 80% dodecane and 20%
pseudocumene (1,2,4-trimethylbenzene) by volume, as well as 1.36±0.03 g l�1

PPO (2,5-diphenyloxazole) as a fluorophore. The inner surface of the containment
sphere is covered by an array of 1,325 specially developed fast 20-inch-diameter
photomultiplier tubes (PMTs) masked to 17 inch diameter, and 554 older
unmasked 20 inch PMTs. The PMTs provide 34% solid-angle coverage in total. The
containment sphere is surrounded by a 3.2 kt cylindrical water–Cherenkov outer
detector instrumented with 225 PMTs of 20 inch diameter. The outer detector acts
as a veto counter for muons and helps shield the inner detector from �-rays and
neutrons produced in the surrounding rock.

Radioactive sources are periodically deployed inside the detector to calibrate
its energy response and position-reconstruction accuracy. The reconstruction of
event location is important to establish the prompt–delayed event correlation
and to define the fiducial volume used in the measurement. After accounting for
systematic effects, we find that the deviation of reconstructed event locations from
the actual locations is less than 3 cm, from which we derive a 1.8% uncertainty
in the absolute size of the fiducial volume. Source calibration data for the entire
fiducial volume are available only for the data recorded before the start of the LS
purification campaign in 2007. For the remaining data we carried out calibrations
along the vertical axis only. These calibrations were augmented with a study of
muon-induced 12B/12N decays27, resulting in a larger uncertainly of 2.5% on the
absolute size of the fiducial volume for the post-purification data.

KamLAND was designed and sited primarily to study the phenomenon of
neutrino oscillations using reactor ⌫e s. Therefore, such ⌫e s represent the largest
background in the present measurement because their energy spectrum partially
overlaps that of geoneutrinos. Substantial discrimination between the two is
achieved not only by fitting their energy spectra but also by exploiting the fact
that the reactor ⌫e rate varies with the output of the power plants whereas the
geoneutrino rate can be taken as constant over the timescale of the experiment.

The ⌫e event-selection criteria are optimized as a function of energy to
maximize the sensitivity to geoneutrinos while rejecting the accidental background
from radioactive contaminants in the detector. The event selection is based on the
discriminant L= f⌫e/(f⌫e + facc), where f⌫e and facc are probability density functions
for ⌫e signals and accidental backgrounds, respectively. These probability density
functions are based on six parameters (Ep, Ed, 1R, 1T , Rp, Rd), which represent,
respectively, the prompt and delayed event energies, their relative separations
in space and time and their radial distances from the detector centre. Owing to
an observed variation of the background rate with time, the probability density
function for accidental backgrounds is a time-dependent function constructed by
dividing the data set into five time periods. For the discrimination of accidental
backgrounds, we determine a selection value, Lcut(Ep), to maximize the figure of
merit S/

p
S+Bacc for each prompt energy interval of 0.1MeV, where S denotes

the expected signal rate and Bacc corresponds to the accidental background rate.
The selection efficiency and its uncertainty are obtained by comparing Monte
Carlo simulations with 68Ge and 241Am9Be source calibration data. The selection
efficiencies for geoneutrino signals produced by U and Th decays with energies
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Figure 4 |Measured geoneutrino flux and models. a, Measured
geoneutrino flux at Kamioka and Gran Sasso, and expected fluxes at these
sites and Hawaii4. The solid and dashed red lines represent, respectively,
the fluxes for a fully radiogenic model assuming the homogeneous and
sunken-layer hypotheses. b, Measured geoneutrino flux after subtracting
the estimated crustal contribution. No modelling uncertainties are shown.
The right axis shows the corresponding radiogenic heat production
assuming a homogeneous mantle. The solid red line indicates the fully
radiogenic model where the contributions from the crust (7.0 TW) and the
other isotopes6,24 (4.3 TW) are subtracted from the total heat flow7

(44.2 TW). Error bars, see text.

on the mantle by making simple but appropriate assumptions to
constrain the model.

We take the Th:U ratio for each contributing layer to be fixed at
the standard BSEmodel value of 3.9 (ref. 5). The composition of the
crust is derived from a BSE model that incorporates the crust and a
detailed description of the local geology4. As a simplifying hypothe-
sis, U and Th are assumed to be uniformly distributed in themantle.
Figure 4a shows the measured geoneutrino fluxes at the Kamioka
and Gran Sasso experimental sites along with the predictions for
these locations and Hawaii, as an example of an oceanic site with a
significantly smaller crustal contribution. Combining the 238U and
232Th geoneutrino measurements of Borexino3 and KamLAND we
obtain 20.0+8.8

�8.6 TW. The result is in good agreement with the BSE
model prediction of 16 TW (ref. 5), as illustrated in Fig. 4b, where
the crust contribution is subtracted for clarity.

The fraction of the global heat production from radioactive
decay is called the ‘Urey ratio’. The mantle contribution alone is
referred to as the ‘convective Urey ratio’22. Most models, including
the BSEmodel used here, set the convective Urey ratio to about 0.3,
allowing for a substantial fraction of the heat to be of primordial
origin. Other models require convective Urey ratios up to⇠1.0 (see
discussion in ref. 23). Assuming extra mantle heat contributions
of 3.0 TW from other isotope decays6,24, the convective Urey ratio
deduced from the KamLAND and Borexino data is between 0.18
and 0.67 at the 68%CL, consistent with 0.3 from the BSEmodel.

A fully radiogenic model (Urey ratio of 1) is constructed by
introducing U and Th uniformly in the mantle (homogeneous
hypothesis) or, alternatively, by putting all of the U and Th at
the mantle–core interface (sunken-layer hypothesis). The latter
assumption is used in an attempt to test the compatibility of a
fully radiogenic model with the observed geoneutrino flux, by
distributing the source as far from the detectors as possible. The
fully radiogenic, homogeneous hypothesis is disfavoured at the
97.2% CL with the combination of KamLAND and Borexino data,
or at the 98.1% CL by KamLAND alone. Even within the sunken-
layer hypothesis, the fully radiogenic model is still disfavoured at
the 87%CL using KamLAND data alone.

The radiogenic heat estimation from the geoneutrino flux
depends on the modelling of the geology. We account for crustal
uncertainties by assuming 17% and 10% errors for the U and
Th content, including correlated errors as suggested in ref. 9. We
use the crustal model of ref. 25, assuming independent errors for
each layer (upper, middle and lower crust), and include extra

contributions from the error in the mass distribution and the
fractional uncertainty in the Th:U ratio9. The radiogenic heat
contribution from 238U and 232Th is estimated to be 19.9+9.2

�9.1 TW
by KamLAND and Borexino data, excluding the fully radiogenic
model at the 96.6% CL. If we use the more recently determined
heat-loss rate of 46±3 TW (ref. 26) the fully radiogenic exclusion
increases to 98.0% CL, slightly enhanced owing to the larger mean
value of the heat flow as compared with ref. 7, despite its larger
error. We conclude that these uncertainties have little impact on
the results at this stage.

It is expected that geoneutrino detectors operated at different
locations will significantly improve our knowledge of radiogenic
sources in the Earth. Larger detectors distant from commercial
reactors will reduce the uncertainties on the measured geoneutrino
flux. The geoneutrino flux strongly depends on the distance from
thick continental crusts, so the exposure to ⌫es at different locations
will provide better knowledge of the crustal contribution and
greater insight into the mantle. A detector in an oceanic location
with small crustal contribution would be very interesting in this
regard. The present detectors are all insensitive to 40K, and this will
remain an uncertainty unless new geoneutrino detectors with lower
threshold are developed.

Methods
The KamLAND inner detector consists of 1 kt of ultrapure LS contained
within a 13-m-diameter spherical balloon made of 135-µm-thick transparent
nylon/EVOH (ethylene vinyl alcohol copolymer) composite film. The balloon is
suspended in a bath of purified non-scintillating mineral oil contained inside an
18-m-diameter stainless-steel sphere. The LS contains 80% dodecane and 20%
pseudocumene (1,2,4-trimethylbenzene) by volume, as well as 1.36±0.03 g l�1

PPO (2,5-diphenyloxazole) as a fluorophore. The inner surface of the containment
sphere is covered by an array of 1,325 specially developed fast 20-inch-diameter
photomultiplier tubes (PMTs) masked to 17 inch diameter, and 554 older
unmasked 20 inch PMTs. The PMTs provide 34% solid-angle coverage in total. The
containment sphere is surrounded by a 3.2 kt cylindrical water–Cherenkov outer
detector instrumented with 225 PMTs of 20 inch diameter. The outer detector acts
as a veto counter for muons and helps shield the inner detector from �-rays and
neutrons produced in the surrounding rock.

Radioactive sources are periodically deployed inside the detector to calibrate
its energy response and position-reconstruction accuracy. The reconstruction of
event location is important to establish the prompt–delayed event correlation
and to define the fiducial volume used in the measurement. After accounting for
systematic effects, we find that the deviation of reconstructed event locations from
the actual locations is less than 3 cm, from which we derive a 1.8% uncertainty
in the absolute size of the fiducial volume. Source calibration data for the entire
fiducial volume are available only for the data recorded before the start of the LS
purification campaign in 2007. For the remaining data we carried out calibrations
along the vertical axis only. These calibrations were augmented with a study of
muon-induced 12B/12N decays27, resulting in a larger uncertainly of 2.5% on the
absolute size of the fiducial volume for the post-purification data.

KamLAND was designed and sited primarily to study the phenomenon of
neutrino oscillations using reactor ⌫e s. Therefore, such ⌫e s represent the largest
background in the present measurement because their energy spectrum partially
overlaps that of geoneutrinos. Substantial discrimination between the two is
achieved not only by fitting their energy spectra but also by exploiting the fact
that the reactor ⌫e rate varies with the output of the power plants whereas the
geoneutrino rate can be taken as constant over the timescale of the experiment.

The ⌫e event-selection criteria are optimized as a function of energy to
maximize the sensitivity to geoneutrinos while rejecting the accidental background
from radioactive contaminants in the detector. The event selection is based on the
discriminant L= f⌫e/(f⌫e + facc), where f⌫e and facc are probability density functions
for ⌫e signals and accidental backgrounds, respectively. These probability density
functions are based on six parameters (Ep, Ed, 1R, 1T , Rp, Rd), which represent,
respectively, the prompt and delayed event energies, their relative separations
in space and time and their radial distances from the detector centre. Owing to
an observed variation of the background rate with time, the probability density
function for accidental backgrounds is a time-dependent function constructed by
dividing the data set into five time periods. For the discrimination of accidental
backgrounds, we determine a selection value, Lcut(Ep), to maximize the figure of
merit S/

p
S+Bacc for each prompt energy interval of 0.1MeV, where S denotes

the expected signal rate and Bacc corresponds to the accidental background rate.
The selection efficiency and its uncertainty are obtained by comparing Monte
Carlo simulations with 68Ge and 241Am9Be source calibration data. The selection
efficiencies for geoneutrino signals produced by U and Th decays with energies
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Mantle+Crust Mantle

crust (238U, 232Th)  7.0 TW
40K, 235U                4.3 TW
mantle   (44.2-7.0-4.3)TW

uniform mantle
mantle bottom only

fully-radiogenic model
EPSL 258, 147 (2007)

238U, 232Th    16 TW
40K, 235U      4.3 TW

earth model prediction
EPSL 258, 147 (2007)

✓The observed flux is consistent with the 20 TW model
     238U+232Th (10±9 TW, KamLAND data) + crust (7.0 TW) + other isotopes (4.3 TW) ~ 21 TW
✓Fully-radiogenic models are disfavored

KamLAND only             2.4 σ C.L.
KamLAND + Borexino  2.3 σ C.L.

total heat flow (44.2 TW)
 - crust contribution (7.0 TW)
 - other isotopes (4.3 TW)

※ assume homogeneous mantle

 No modelling uncertainties are shown.
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surface heat flow 
44.2±1.0 TW

radiogenic heat 
~ 21 TW

(based on KamLAND measurement result)
inner coreouter core

mantle crustprimordial heat
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‣Analysis  - Earth’s Primordial Heat

KamLAND observation shows that heat from radioactive 
decay contributes about half of Earth’s total heat flux.
→ Earth’s primordial heat supply has not yet been exhausted.

surface heat flow 
44.2±1.0 TW

radiogenic heat 
~ 21 TWー

Earth’s primordial heat
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‣Analysis : Energy Spectrum (0.9-2.6 MeV)
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KamLAND 68.3% C.L.

- The measured KamLAND geo-neutrino flux translates to a total 
radiogenic heat production : 11.2 +7.9-5.1 TW
- The geodynamical prediction with the homogeneous hypothesis is 
disfavored at 89% C.L.
- The BSE composition models are still consistent within ~2 σ.
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‣Analysis  - Comparison with Models
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‣Future Prospects; geo-neutrino uncertainties

Simulation
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We will achieve 15~16% uncertainty 
with additional 5 year measurement.



13

‣Summary

44 
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Spatial event distribution Energy Spectrum 

Th. Lasserre – ν�geoscience 2013 
geo+reactor
+accidental

×20

Outer Detector Plan (0.5year)

- We reported the results of the first study of electron anti-neutrinos produced 
within the Earth in 2005

- 2011 : radiogenic heat direct measurement
  2013 : low-reactor phase data analysis

- We will achieve 15~16% uncertainty 
with additional 5 year measurement.

- Future plan at KamLAND
(around 2015) Ce-LAND :
strong neutrino source in outer detector
* It will be difficult to measure geo-neutrino...
* It will be good chance to study anti-neutrino 
directionality at KamLAND

- Next target
Separate measurement of U and Th geo-neutrino
search for geo-reactor
study of the mantle homogeneity

 It indicates the ability to discriminate between Earth models


