

Detector Requirements for Neutrino Oscillation Tomography Carsten Rott The Ohio State University Center for Cosmology and AstroParticle Physics, USA

Sungkyunkwan University, Korea rott@skku.edu

Seismological profile of the Earth

Motivation - Methodology

- The Earth matter density profile can be determined from seismic measurements
- Matter induced neutrino oscillation effects however dependent on the electron density
- Given a matter density profile the composition (or Z/A) along the neutrino path can be determined using neutrino signals (Oscillation tomography)

Preliminary Reference Earth Model

 The PREM - Preliminary Reference Earth Model is based on a paper by Dziewonski and Anderson in 1981. It still still represents the standard framework for interpretation of seismological data

Oscillograms

Oscillograms

Impact of core electron density

Change in electron neutrino survival probability if the electron density in the core is change. Mantle density is assumed constant.

Considerations

- $Y=Z/A\approx 0.5$ is very similar for all elements
 - Even relatively large change in composition could result in small change in $Y \sim 1\%$
 - Exception Hydrogen Y=1
- To measure an effect due to the core composition we need:
 - good energy resolution -> fully contained events, good optical coverage
 - good angular resolution -> precise timing, good optical coverage
 - high statistics sample -> large effective detector volume

Neutrino Source - Atmospheric neutrinos

Potential Detectors

Oscillation Tomography

PINGU LOI Tomography Stefan Coenders Kotoyo Hoshina Carsten Rott

© [2011] The Pygos Group

Carsten Rott Akimichi Taketa

Can we exploit Earth matter effects to measure the Earth composition ?

Neutrino oscillations depend on the electron density and hence can determine Z/A for a given matter density profile

In PINGU we expect approximately **30000** upward-going neutrinos per year, with many coming from the energy region between **5–10 GeV**.

PINGU Tomography

Carsten Rott

PINGU Detector Performance

PINGU performance simulated using DeepCore algorithms

- Energy resolution: ~(0.7 GeV + 0.2E_v)
- Angular resolution: 15° to 8° as energy increases from 5 GeV to 20 GeV

More computationally intensive algorithms can improve on this

- Two different Earth models (extreme case) are compared:
 - a pure iron core (Yc=0.4656)
 - a core with a composition similar to the mantle (Yc= 0.497)

Exclusion limits are calculated using a likelihood ratio analysis: - 5 years of PINGU data, including reconstruction

Earth Core Measurement

- Detector requirements
 - very large high statistics sample
 - good energy resolution and angular resolutions
- Oscillation Tomography seems feasible at next generation detectors to exclude extreme models
- To study more realistic models we might have to wait for the next-next generation
- More studies are needed

MICA - Megaton Ice Cherenkov Array

Courtesy E. de Wolf & P. Kooijman

- In-fill of a few hundred strings
 - String spacings ~5 m, sensors spaced by ~1 m on a string
 - The Medium is the support structure
- An ambitious vision worth working towards:
 - Fiducial volume > IMTon
 - Photo coverage ~10%
 - O(10 MeV) threshold for bursts
 - O(100 MeV) for single events
- IceCube and DeepCore provide active veto
 - No excavation is necessary, drilling/ deployment has been refined to an industrial process – deployment costs would be well below 10% of total
- Physics extraction from Cherenkov ring imaging in the ice

