Multiplexed Micromegas for muography

SIMON BOUTEILLE

CEA/Irfu/SPhN

The Micromegas Detector

Detector Principle

- Invented in 1996
 - G. Charpak, I. Giomataris, Ph. Rebourgeard
- Developped at CEA/Irfu
- High performance tracker detector
 - Spatial resolution < 300µm</p>
 - Time resolution ~ 10ns
 - Can stand high flux
- Gaseous Detector
 - Primary signal : ionization
 - Electron shower amplification
 - Copper strips/pad collects the signal
- Very robust
 - Bulk technology (2006)

Detector Principle

Detector Development

Genetic Multiplexing

particle

Multiplexing layout

- Use signal spread over strips
 - Detect unique k-uplets
 - Doublet of channel are connected to a unique doublet of consecutive strips
- 1037 strips read by 61 channels
 - Reduction factor > 15
- Multiplexing factor is adjustable w.r.t. flux inside the detector
 - Reduction factor vs ambiguities probability

Design

MultiGen detector inside Saclay cosmic test bench

- 50x50 cm² active area
- Bulk technology
 - Very robust
- ► Resistive $(1M\Omega/\Box)$
- 2D readout
 - 3 strip layers : resistive (X), Y readout and X readout
- Second prototype
- ▶ 1.5cm conversion gap
- Limited dead zone
 - Mosaic capable
- Industrialization nearly complete
 - Mostly made by circuit board industry

Performances

2D efficiency

- Operated with 2 gas mixtures
 - ▶ Ar-iC₄H₁₀ (95:5)
 - "T2K gas" : Ar-iC₄H₁₀-CF₄ (95:2:3)
- Over 96% 2D efficiency
 - Good homogeneity
- High capacitance (1nF) because of multiplexing
 - Decrease S/N
- ▶ 300µm resolution

Performances

Limited resolution

- Greater than pitch/ $\sqrt{12} = 140 \mu m$
- Charge spread
 - Signal can be discontinuous
- Solutions are currently investigated
 - New prototypes designed
 - Software reconstruction improvements

9

Signal amplitude vs sample bin, 1 plot by projection (5 detectors)

Electronics development

Readout Electronics

Anter Tarra Carra	
Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber Uber	
Uber Uber Uber Uber Uber Uber Uber Uber : Uber Uber Uber Uber : Uber Uber Uber Uber : Uber Uber Uber Uber	

- DREAM Chips in FEU Cards
 - CLAS 12 electronics
 - Jefferson Lab experiment
 - Adapted to high capacitance
 - Self triggering capability
 - No need for triggering detectors
 - Can read 4 detectors

High voltage power supply

- Need for low consumption power supply
- CAEN modules
 - Up to 2.1kV
 - Powered by 12V DC
 - <0.6W consumption</p>
- Dedicated control card
 - Designed in CEA/Irfu
 - Up to 6 HV channels
 - Control and monitoring
 - Temperature feedback

Data acquisition system

- Readout electronic control
- HV power supply control
- Data storage
 - Hard Disk (2To)
- Nano-PC
 - ARM based (smartphone)
- Total consumption : 30W
 - Less than light bulb
 - Include HV, readout and DAQ
 - Can be powered by battery and solar panels

The WatTo experiment

Simon Bouteille | 2016-11-07 CEA/Irfu/SPhN | Muographers 2016

Purpose

- Proof that Micromegas can work outside of labs
 - Worldwide first operation of a Micromegas tracker outside a lab
- Proof of concept validation
- Test self-trigger
- Test battery power operation
- Check noise levels
- Check outside environment influence
- Make an experiment in a semi-controlled environment
 - Inside Saclay center
 - Easy operation but in real conditions
 - Muography of the water tower

Experimental setup

- Telescope protected by tent
- First phase (end of may to mid july 2015)
 - With power plug and network
 - At 40m of the tower
 - Telescope at 30° from the horizontal
- Second phase (mid july to end of august 2015)
 - Battery/solar panel operation without remote access
 - 12V truck battery
 - ~1.5m² solar panel
 - At 25m of the tower
 - Telescope at 35° from the horizontal
 - More flux

Results

Results

- Dynamic studies done even with cosmic muon low flux
 - Tank water level monitoring
 - Do not need atmospheric pressure correction

ScanPyramids Mission

Experimental setup

- Scan of the Khufu pyramid of Gizah
- Focus on North-East edge
 - Telescopes placed 20m away from the pyramid
 - 1 already known cavity
 - Behind the notch (crumbling)
 - Highest expected contrast from outside
- 3 identical telescope deployed
 - I placed on the north side
 - 2 placed side by side on the east side
- 3 month of data taking
 - Beginning of june to end of august 2016

21

Simon Bouteille | CEA/Irfu/SPhN | Muographers 2016 2016-11-07

TomoMu Scattering Setup

Simon Bouteille 2016-11-07 CEA/Irfu/SPhN | Muographers 2016

Experimental setup

- Use the scattering technique
 - Faster
 - Can only scan small objects
- 2 doublet/trackers
 - 40cm lever arm to reach sufficient angular resolution
- Small portable device
 - Educational portable device
 - ▶ 0,25m² surface

Results

2 min

24

Simon Bouteille | CEA/Irfu/SPhN | Muographers 2016 2016-11-07

3.5

2.5

1.5

0.5

0

5cm height lead bricks

Conclusion

- We successfully operated Micromegas muography telescopes both in Paris and Egypt
- Attempt to make a full 3D view of an object using the scattering technique is ongoing
- 34 50x50cm² Micromegas had been made so far for the muography projects
 - 2/3 of them were made by Elvia (French industry)

