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Abstract

A three-dimensional magnetotelluric (MT) minimum structure inversion algorithm has been developed based on a data-space
variant of the Occam approach. Computational costs associated with construction and inversion of model-space matrices make
a model-space Occam approach to 3D MT inversion impractical. These difficulties are overcome with a data-space approach,
where matrix dimensions depend on the size of the data set, rather than the number of model parameters. With the transformation
to data space it becomes feasible to invert modest 3D MT data sets on a PC. To reduce computational time, a relaxed convergence
criterion is used for the iterative forward modeling code used to compute the sensitivity matrix. This allows reduction in
computational time by more than 70%, without affecting the inversion results. Numerical experiments with synthetic data show
that reasonable fits can be obtained within a small number of iterations, with a few additional iterations required to eliminate
unnecessary structure and find the model with minimum norm.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction complex regions. There have been many recent efforts
to develop 3D MT inversion algorithms, using a fairly
The capability for routine three-dimensional inver- broad range of approaches (eMdackie and Madden,
sion is a requirement for further progress with the 1993;Zhdanov etal., 2000a; Newman and Alumbaugh,
magnetotelluric (MT) method, since two-dimensional 2000; Farquharson et al., 2002’ hese schemes have
(2D) interpretations frequently cannot explain impor- been shown to recover conductivity variations reason-
tant features presentin field data sets from geologically ably well, at least for simple test cases with synthetic
data. However, the 3D MT inverse problem is far from
* Corresponding author. Tel.: +662 201 5770; fax: +662 354 7159. SOlved. Routine application of 3D inversion is still hin-
E-mail addressscwsp@mabhidol.ac.th (W. Siripunvaraporn). dered by the requirement of a high-end workstation or
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a parallel machine, and issues of robustness and relia-easily be so large that this would be impossible, both

bility with real data have barely been addressed for any in terms of computational time and, especially, RAM.

of the proposed methods. Improvements in algorithms One way around this difficulty (e.gSasaki, 2001;

for routine 3D inversion are highly desirable. Newman and Alumbaugh, 20P0s to use a very
One promising approach to improve efficiency is coarse parameterization of the conductivity variations,

based on use of rapid approximate modeling schemes,so thatM remains small. But then results will depend

such as the quasi-linear or quasi-analytic approxima- strongly on the choice of model parameters, and unless

tions (Torress-Verdin and Habashy, 1994; Zhdanov and one has strong a priori constraints on earth structure,

Fang, 1996a; Tseng et al., 2Q0Because the model re-
sponse in these approximations is quasi-linear with re-
spect to the modified conductivity tensor, simplified in-
version methods are possible (eZhdanov and Fang,
1996b; Zhdanov et al., 200RDepending on the de-

results of such an inversion may be very misleading.
Iterative inversion methods, such as conjugate gradient
(CG; Mackie and Madden, 199®r NLCG (Newman
and Alumbaugh, 2000 avoid explicitly forming and
storing theM x M coefficient matrix for the normal

gree of simplification used, schemes like this can pro- equations, and this can allow for more general and geo-
duce images of earth structure very rapidly. However, logically realistic model parameterization. This general
such approximate methods have their limitations, e.g., iterative approach has come to be seen as the only prac-
they work best when conductivity contrasts are low, and tical computational scheme for over-parameterized

the general reliability and accuracy of these inversions

are open to question. Although these rapid schemes are

of unquestionable value, methods based on full solu-
tion of the EM induction equations will still be needed
for many purposes.

Most 3D MT inversions have taken this more tra-
ditional inversion approach, based on minimizing a
functional penalizing both misfit to the data and model
“roughness” (e.g.Parker, 19941 To minimize the
penalty functional gradients are computed, model pa-
rameters are adjusted, and the full forward problem
is solved numerically to assess model fit. For ex-
ample, Mackie (personal communication, 2002) has
extended the non-linear conjugate gradients (NLCG;
Rodi and Mackie, 2001method to 3D, with the help
of message passing interface (MPI) running on PC-
clustersNewman and Alumbaugh (2000ave applied
a similar technique to 3D inversion, but on a mas-
sively parallel systenSasaki (2001andFarquharson
et al. (2002)have developed 3D inversions based on
a Gauss—Newton (GN) method. All of these schemes

minimum structure 3D inversion whel is large.

In this paper, we present results from a newly de-
veloped data-space 3D MT inversion, in which mini-
mization of the penalty functional is conducted in the
N dimensional data space. With a data-space approach
the null space (i.e., the part of the parameter space that
has no effect on the data) is eliminated at the outset,
and theM x M system of normal equations is replaced
by anN x N system. Thus, the size of all computations
and required arrays depends primarily on the number
of independent dathl, which for 3D geologically re-
alistic modeling will generally be much less thish
Data-space methods have in fact been widely applied
to inverse problems in geophysics (eRarker, 1994

and other fieldsEgbert et al., 1994; Chua and Bennett,
2007). The data-space approach allows us to consider
inversion algorithms other than the CG approach, with-
out severe restrictions on model parameterizations. The
approach we explicitly consider here is a data-space
variant on the Occam scheme. The original Occam’s
inversion Constable et al., 1987; deGroot-Hedlin and

can be classified as model-space inversions, in the sens&€onstable, 1990method was formulated in the model

that search for the optimal conductivity is conducted in
theM dimensional model parameter space.

With a model-space method, both the number of op-
erations and required random access memory (RAM)

space. Here, we reformulate Occam in the data space,
as in Siripunvaraporn and Egbert (200®)r the 2D

MT inverse problem. As discussedSiripunvaraporn
and Egbert (2000data-space algorithms can be made

depend strongly on the number of model parameters significantly more efficient by using a reduced basis

M. In particular, the most straightforward approach
to penalty functional minimization in the model space
(e.g., GN) requires forming and solving Bthx M sys-
tem of linear normal equations. For 3D inversibhcan

approach. In this paper, we only consider implemen-
tation of the most straightforward data-space variant
on Occam, as a test of the practicality of a data-space
approach.
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2. Occam’s inversion

Occam'’s inversion seeks the “smoothest”, or mini-
mum norm, model subject to an appropriate fit to the
data Constable et al., 1987Mathematically, this ob-
jective is achieved by finding stationary points of an
unconstrained function&(m, 1):

U(m, 1) = (m—mg) " C{(m—mg)
+ 27 Y{(d—F[m])TC Y (d—F[m]) — x*?).
1)

Herem is the resistivity modelng the prior modelCn,

the model covariance matrix which defines the model
norm,d the observed dat&[m] the model response,
Cq the data covariance matriX; the desired level of
misfit, andi~1 a Lagrange multiplier. Assuming the
data covariance is correctly specifiéd,should in the-
ory be one Constable et al., 1987and we use this
value for our experiments with synthetic data. With
real dataX” must generally be set to a somewhat higher
level.

To find the stationary points of (1), instead of work-
ing with (1) directly, we differentiate the penalty func-
tional W\ (m):

Wr(m) = (m — mo)"Crt(m — mo)
+.7H(d - FIm)TC(d — FImD),  (2)

with respect tan. Whena is fixed, bothU andW, have
the same stationary points. By minimiziig, with a
series ofj, the stationary points dfl can be obtained
(i.e., 2 can be found such that the data misfiki$).

2.1. Model-space method

Because of non-linearity of the MT inverse problem,

proximate solutions:

_ -1 _
Mi+1(t) = [ACl + T3/ C3 X + mo, (4)

whereXy =d — F[my] + Jx(mk — mg), and the “model-
space cross-product” matriX}" = J{Cgl\]k is an
M x M positive semi-definite symmetric matrix.

To reach the ultimate goal of finding the stationary
points of (1), in each iteration (4) is computed with a
series of trial values of to minimize the misfit among
solutions of this form. The goal of iterations in the
early stage (Phase ) is to bring the misfit down to the
target level X2. Once the misfit reaches the desired
level, the next stage begins by keeping the misfit at the
desired level, varying to seek the model of smallest
norm (Phase Il) achieving the target misfit. For a variety
of reasons, one may never reach the target misfit. An
improvement of misfit from iteration to iteration can
be expected, but even this is not guaranteed.

2.2. Data-space method

As shown byParker (1994)and summarized in Ap-
pendix A, the solution for iteratiok can be expressed
as a linear combination of rows of the smoothed sensi-
tivity matrix CpJ7, i.e.

()

whereBy+1 is an unknown expansion coefficient vector
of the basis functionsquZ]j; j=1. ..N. Substituting

(5) into a linearized form of (2), and solving for its
stationary point, we again obtain a series of iterative
solutions:

Bii1 = [ACq+ T} Xy, (6)

whereI'} = JkaJZ is theN x N “data-space cross-
product” matrix, which is symmetric and positive semi-
definite. Similarly to the standard model-space Oc-

.
My 1 — Mo = CmJy Bri1,

an iterative approach is required, based on linearizing cam’s inversion, we can solve f8.+1 using (6), update

F[m] such that:

FIMital=F[mg + Am]=F[m¢] + Je(My41 — Mg).
3)

Here the subscripk denotes iteration number, and
Jk=(0F/om)y is the N x M sensitivity matrix calcu-
lated atmy. Substituting (3) into (2), and finding the
stationary points, we obtain a series of iterative ap-

the model, and then compute the misfit. All of these
calculations are done with various values.dor both
Phases | and Il, just as in the model-space approach.
The solutions obtained from both approaches, i.e.,
from (4) for the model-space method and from (6) and
(5) for the data-space method, should in theory be iden-
tical if all parameters used are the same. The major dif-
ference between (4) and (6) is that the dimension of the
system of equations to be solved can be significantly
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reduced, fromM x M in the model-space method, to order Maxwell’s equations with a staggered grid finite
N x N in the data-space method. In very many practi- difference numerical approximation. This approach to
cal casesN will be much less thaM, especially for 3D forward modeling is flexible and allows large and
the 3D MT inversion problem we consider here. This complicated model structures (depending on computer
reduction means a great saving on computational costsresources) in an efficient way.

of both memory and CPU time. There are two forms of the second order Maxwell's

Another distinction between the two methods is that equation: in terms of electric fields:
the model covarianc€, is directly required for the
data-space method, while its inverse is required in the V x V x E = iouoE, (7a)
model-space method. In the model-space method, the o
inverse of the model covariance {§) is, for reasons ~ Or in terms of magnetic fields
of efficiency, usually implemented as a sparse model
roughness operatoCpnstable et al., 1987; deGroot-
Hedlin and Constable, 1990The exact inverse of a
specific roughness operat@{) cannot be determined
in practice, because of the size of this matrix, which in
general will be full. Conversely, a model covariance
matrix Cr,, which is efficient for data-space computa-
tions (e.g. Siripunvaraporn and Egbert, 200€annot
be inverted both due to size and ill-conditioning. It is
thus impractical to compare directly model and data-
space calculations with identical model covariances,
for even a small model grid. Note that prior informa-
tion, such as faults or an ocean, can be readily included
in the model covarianc€n,, which is another advan-
tage of the data-space method.

For further details on the Occam’s inversion in
both the model and data space, $earker (1994)
Siripunvaraporn and Egbert (200@onstable et al.
(1987) anddeGroot-Hedlin and Constable (1990)

V x pV x H =iouH. (7b)

Herep is the air magnetic permeability, the angular
frequency,o the conductivity (the inverse of resistiv-
ity, p), E the electric field, andH the magnetic field.
Siripunvaraporn et al. (2002)ave shown that solu-
tions obtained from equations formulated in terms of
the electric fields (7a), with a staggered grid finite dif-
ference are less sensitive to grid resolution than those
obtained from the magnetic formulation (7b). We there-
fore use (7a) rather (7b) for modeling.

With a staggered grid finite difference approxima-
tion to (7), we obtain the discrete system of equa-
tions Ax =b, whereb is the boundary electric fields,

x the interior unknown electric fields, adthe sym-
metric coefficient matrix (bufA is not Hermitian; it

is complex only on the diagonal). The linear system
of equations is then solved via the quasi-minimum
residual (QMR) method, with a preconditioner formed
by an incomplete LU decomposition of the diagonal
sub-matrix ofA (Siripunvaraporn et al., 2002A di-
vergence correction, similar t8mith (1996) is also
applied to speed up convergence. The iterative solu-
tion is terminated once the level of normalized mis-
fit, r =||Ax — b||/||b]|, is below 108, After solving

for the interior electric fields, the magnetic fields at
the surface are then computed and interpolated in the
usual way (e.g., via the first order Maxwell's equa-
tions).

3. Inversion algorithm details

Our implementation of the 3D data-space Occam’s
inversion closely follows the 2D inversion described by
Siripunvaraporn and Egbert (200Bjere, we briefly
summarize algorithm details specific to the 3D imple-
mentation.

3.1. Three-dimensional forward modeling

Inversion relies heavily on forward modeling, both  3.2. Data and model responses for 3D inversion
for computing model responses, and sensitivities.
An efficient and accurate forward modeling code is Two polarizationsEx — Hy andEy — Hy, are com-
thus essential (e.gMackie et al., 1994; Smith, 1996; puted via the forward modeling algorithm to generate
Newman and Alumbaugh, 2000; Siripunvaraporn the model responses. Each polarization has its own
et al., 2002; Avdeev et al., 20D2Ve solve the second  electric and magnetic fields. The fields from both
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polarizations are related via the impedance terior,

EER kR [

Here E1 and E? are the x-component of electric
fields for the Ex—Hy and Ey—Hy polarizations,
respectively, and similarly for other field components.
Note that to calculate any parts of the impedance
tensor, fields from both polarizations are required.
Model responses for 2D MT inversions are usually

E;
1
Ey

=
et

ZX)C
Zyx

Z.
Z,

H H2

8)
1 2 (
H H2

solving a diffusion equation with initial conditiores
(Egbertetal., 1994; Siripunvaraporn and Egbert, 2000
To avoid solving the 3D diffusion equation, we in-
stead solve 1D diffusion equations alternatively be-
tween vertical and horizontal directions (bothand
y-directions). Our approach can be viewed as a sim-
ple operator splitting solution (e.¢Press et al., 1992
of the 3D diffusion equation. The decorrelation scale
for the diffusion equation in all directions varied in
space, with length scales proportionaktf4st) of the
local grid resolution, wheré (between 0 and 1) and

the apparent resistivities and phases calculated from are given by users. For the two example cases pre-

the off-diagonal terms o . However, for the 3D case,
the diagonal termsZxx andZyy) can also become sig-
nificant, and should be included in the inversion. In
our algorithm, we invert the full impedance tensor,
including both real and imaginary parts.

3.3. Sensitivity matrix

The sensitivity calculation is essential to our inver-
sion approach. We follow the general approach de-
scribed inSiripunvaraporn and Egbert (2006) Rodi
(1976) using reciprocity. For the 3D case, as we in-
vert the full impedance tensor, the sensitivity calcu-
lation at each station (and for each period) requires
solving two forward problems, one for each polariza-
tion. For example, computingZ,/dm requires cal-
culating 9EY/am and 9E2/dm, and likewise for other
sensitivity terms. This is not the case for 2D where
only one forward calculation is required for each sen-
sitivity term. Our mathematical derivation for the sen-
sitivity matrix of the MT impedance tensor is very
similar to that presented iNewman and Alumbaugh
(2000)

3.4. Model covariance

The model covariance matr@n, characterizes the

expected magnitude and smoothness of resistive vari-

ation relative to the base model. Here, a model covari-
ance similar to that used ISjripunvaraporn and Egbert
(2000)for the 2D case is applied and extended to the 3D

sented below, values éfare 0.2 and 0.1, respectively,
while 7 is 10 for both cases. Alternative approaches for
selecting decorrelation length scales are discussed in
Siripunvaraporn and Egbert (2000)

4. Synthetic data example and discussions

To test the 3D data-space algorithm, we have run
the inversion program on two synthetic data sets. All
computations are performed on a Dec Alpha 666 MHz
machine with 1 Gbyte of RAM, so these computations
could easily be reproduced on a common modern PC.
However, the size of the data and model used in these
inversion tests are rather limited. Faster computers with
more RAM will be required for more realistic applica-
tions.

4.1. Synthetic case |

The first data set is generated from a very simple
model fig. 1), consisting of a conductive block of
1em (16 kmx 16 kmx 5km) buried 100 m beneath
the surface of a 10@m half space. Data for 36 sites,
distributed as shown iRig. 1 as solid dots, were gen-
erated by solving (7a) on 5656 x 28 (+7 air layers)
grid. The complex impedance tens@kg, Zxy, Zyx and
Zyy) for five periods (0.1, 1, 10, 100 and 1000s) are
inverted with 5% Gaussian noise. The data variance
is assumed to be 5% ¢Zy,Zyx/*/?. The model mesh

case. For the data-space method, the model covariancaised for the inversion is 28 28 x 21 (+7 air layers).

itself is never constructed. Only the product with the
sensitivity matrix,Cn,J7, is required. For a model co-
variance with a Gaussian correlation function the prod-
uct of C, with any model vectoa can be computed by

Note that this discretization is different from that used
to generate the data. In this simple test, the total num-
ber of dataN=1440, and the total number of model
parameterd! = 16,464.
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Plan View
100 Q-m
10Q-m 2
3
X
y 16 km
Cross-section View Surface
100 m
100 Q-m 1Q-m 5 km

Fig. 1. A simple synthetic model used in the first test of the inversion. The solid dots indicate the observation sites. The cross-section in the
lower panel picture is not to scale.

The inversion is started from a 5&m half space, with most of this time spent solving forward problems.
which is also used as the base modej,for the inver- To construct the sensitivity matrix, the number of for-
sion. Theinitial RMS for this starting model isabout23. ward solutions per iteration is aboulgx Np, where
Fig. 2 displays the convergence of the algorithm. For N is the number of periods, ads is the number of
each iteration a series divalues are used to search for  station. Reducing the time required for solving the for-
the minimum RMS; these are marked by solid symbols. ward problem when constructing the sensitivity matrix
Note that the value of at the minimum changes sig- would significantly speed up the inversion. To achieve
nificantly with iterations. The dotted and dashed lines accuracy in forward computations, we usually termi-
give results for two variants, which we discuss below. nate the QMR iterations when the normalized residual
Within three iterations, the inversion has converged to is less than 108. For our first tests with the inversion
the desired level of misfit, i.e., completing Phase I. The (dashed lines ifig. 2), we used the same convergence
inversion spends another two iterations to search for the criterion for computation of the sensitivities. We will
model with minimum norm (Phase I1), while keeping refer to this sensitivity calculation as “the full conver-
the misfit at the target misfit. The program is termi- gence case”.
nated once the model norm changes only slightly. For  In an effort to reduce computational time, we set
Phase Il is slightly perturbed to a higher value, and the termination condition to a minimum number of 40
unnecessary structures are removed from the model. iterations, and a normalized residual of f0This re-

For each iteration, the required calculation time is quires about 1/3 to 1/4 of the iterations used for the full
about 17 h (for the dashed lineskfy. 2), for a total of convergence case. We will refer to this as “the relaxed
84 h for five iterations. More than 90% of the comput- convergence case”. The solid lines fify. 2 display
ing time is used in constructing the sensitivity matrix, the convergence of the relaxed convergence case, and
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Fig. 2. Plots of RMS vs. for each iteration for inverting synthetic data generated from the mod&bofl. The dashed lines indicate the full
convergence scheme, while the solid lines indicate a relaxed convergence scheme, when computing for the sensitivities. For most outer-loop
iterations, the two lines appear to be on top of each others. Solid marks indicate the minimum RMS value for each iteration. lterations 1-3
indicate Phase I, and iterations 4 and 5 (plotted only at the desired misfit) display Phase Il of the inversion.

shows that using this scheme does not have much effect0.1 s) would undoubtedly improve resolution of the thin
on the outcome of the inversion. However, the compu- resistive surface layer. In addition, structures near the
tational time per iteration is significantly reduced to bottom of the conductive block are not well resolved.
about 5.8 h per iteration (about 29 h for five iterations) Again, longer period data may help further constrain
or only about 30% of the total calculation time with the structure at depth. However, it is well-known that
the full convergence case. Tests on other synthetic datathe bottom of a conductive layer is difficult to recover
sets yielded similar results. with MT data. This difficulty is intrinsic to induction
Fig. 3 displays an inverse solution obtained at the data, and is not specific to our inversion approach; e.g.,
target misfit with the minimum model norm using the seeSiripunvaraporn and Egbert (20G@)Newman and
relaxed convergence case after the fifth iteration. The Alumbaugh (2000)among many others for examples.
upper panels ofig. 3 displays the plan view at the As suggested b¥ig. 2 the inverted model from the
surface, at 200 m depth and at 3km depth, while the full convergence case is very similar to the model of
lower panel displays the cross-section view through Fig. 3
the middle of the conductive block a=0km. The In comparison with the model-space method, com-
plan view at the surface reflects the thin resistive layer puting requirements for building the sensitivity ma-
on top of the conductive block, while at 200m and trix and for computing the responses and misfit are
3 km depth the conductive block is clearly seEig. 3 about the same. The main difference lies in solving
shows that the inversion recovers the conductivity and the system of Eqs(6) or (4) for eacha value. For
position of the block. The image is not perfect near this synthetic case, the coefficient matrices are of size
the block edges, primarily due to the limited number 1440x 1440 and 16,464 16,464, respectively. Solv-
of sites. Additional short period data (e.g., lower than ing the 16,464« 16,464 would require a factor of 31
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(a) Plan View at Surface (c) Plan View at Z=3 km

15(b) Plan View at Z=200 m

X [km]
X [km]

B5.90-5 0 5 10 15

Y [km]

185.10 5 0 5 10 15

Y [km]

-15
45-10 -5 0 5 10 15
Y [km]

(d) Cross Section View at X=0 km

E
. g
E* CY
— o
T —
" 2
9 —
11 !
-6 -12 -9 -6 -3 0 3 6 9 12 15

Y [km]

Fig. 3. An inverted model after the fifth iterations with an RMS value at 1, from synthetic d&ig.id The top panels (a)-(c) is a plan view
at the surface, at 200 m and at 3 km depth, and the bottom panel (d) is a cross section view cutting across the conductide-l0lGok dthe
solution is shown only in the central area around the anomalies, not in the fulP88nodel domain.

more operations. Since the system must be solved for 1991; Mackie et al., 1994; Siripunvaraporn et al., 2002;
eachi (an average of four per iteration for Phase |, Avdeev et al., 199/ The model consists of resistive
and 3 for Phase II), this would push the computational and conductive blocks buried in a two-layered Earth
time per iteration to an unacceptable level. In addition, (Fig. 4). The observation sites are shown as solid dots
storage of the coefficient matrix would require a fac- in Fig. 4 for 40 sites, in a 5 8 grid. Data for 5 pe-

tor of 130 times more memory than is required by the riods at 0.1, 1, 10, 100 and 1000s are inverted. The
data-space method, making a model-space Occam’s in-full complex impedance tensor is inverted, so the total
version impractical unless the model is severely under number of data iN=1600. The data are added with
parameterizedSasaki, 200L Other model-space ap- 5% noise. The mesh used in the inversion is discretized
proaches, which do not require computation or storage at 21 blocks inx, 28 blocks iny, and 21 blocks irz

of full sensitivity matrix, such as the NLCG scheme (with seven air layers on top), & =12,348. Note that

of Newman and Alumbaugh (20Q@yould perhaps be  a different mesh (at 42 56 x 42) is used to generate
more practical. However, to find a minimum structure the synthetic data. The initial model and also the base
model subject to specified data misfit with such ap- model fng) for the inversion is the same, i.e., aGtn
proaches multiple inversion runs with different values half space.

of A would be required. The convergence plot is shown Kig. 5 and the
inverted model is shown iRig. 6 (after the sixth itera-
tion). The inversion spends roughly 6.5 h per iteration,
using the relaxed convergence scheme when comput-

4.2. Synthetic case Il

We also tested the inversion on a more complex
model, one that is similar to a model previously used in
many 3D forward modeling studies (S&&nnamaker,

ing the sensitivity matrix. FrorRig. 5, the inversion has
reached the desired RMS within three iterations (Phase
1), and spends another three iterations to search for the
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Plan View
' 3
10 Q-m 1Q-m 100 Q-m 10 Q-m &
3
X
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20 km 20 km
Cross-section surface
10 Q-m 1Q-m 100 Q-m 10 Q-m
10 km

100 Q-m

Fig. 4. Another synthetic model used to test the inversion. A cross-section view is a profile cutting across the middle of the conductive block
and resistive block in the plan view (upper panel). The solid dots indicate the observation sites. A lower panel picture is not on-scale.

RMS

Desired RMS Misfit

0 1 2 3 4
Iteration Number

Fig. 5. RMS plots vs. iteration number for the inversion of the synthetic data generated from mbiglbf
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(c) Plan View at Z =7.5km
30 -
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(d) Cross Section View at X=0 km
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Fig. 6. An inverted model after the sixth iterations, with an RMS value at 1 from synthetic daig #h The top panels (a)—(c) is a plan view
at the surface, at 3km and at 7.5 km depth, and the bottom panel (d) is a cross section view cutting across the conductie-lfl&ok. s
in Fig. 3the solution is shown only in the central part of the model domain.

model with minimum structure (Phase Il). The inver- larger thanM, for example if we inverted many more
sion can recover both conductive and resistive bodies frequencies in our test problems. In this case, the data-
from the 102m background host(g. 6), eventhough  space method would not be superior to the model space
not perfect near the edges and at great depths. Simi-in term of the computational costs. However, as shown
lar to case I, if this inversion were performed in the in Siripunvaraporn and Egbert (200@ata redundancy
model space, it would require a huge amount of both (which is manifested in the near linear dependence of
computational time and RAM, which would make it the columns ofc,J7) implies that the effective value
impractical to run on a regular PC. of N can always be significantly reduced by restrict-
ing trial solutions to a subspace of the columns of
CmJT. Such data sub-space methods guarantee signif-
5. Discussions and conclusions icant computational savings regardless of the values of
N andM.

A three-dimensional MT inversion algorithm based The data-space approach we have discussed here is
on the Occam approach has been developed to seekiot limited to an Occam (or reduced basis Occam) ap-
the smoothest model subject to an appropriate fit to proach. Other inversion approaches may also be com-
the data. By transforming from model space to data bined with or adapted to a data-space formulation. For
space its computational costs are significantly reduced, example, it may not be necessary to compute and store
allowing us to invert modest 3D MT data sets on a the full sensitivity and cross-product matrices. A con-
personal computer (PC) in a relatively short time. jugate gradient method, in which multiplication of the

In the two examples presented hake M, the effi- sensitivity matrix by an arbitrary vector is achieved
ciency advantage of the data-space method is evident.by solving several forward problems (without comput-
More generally it is possible th&t could be equal or  ing or storing the matrix of sensitivitiesflackie and
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Madden, 199Bcould also be implemented in the data my1(A) — mg

space. Such a data-space conjugate gradients scheme 1 Tee1e -l
would allow solution of much larger inverse prob- =[ACh” + Cy ] I Cy Xk
lems. Compared to a model-space CG inversion, the T—1 LT 1
system of equations to be solved would be signifi- — Cr[Al + ¢ Cq " JCrm] e Cq Xs

cantly reduced by transformation to the data space. In TA-1 -1 111
oceanographic data assimilation problems a data-space CmlAl + 3¢ Cq IiCml " 97) ~Co ™

CG approach has proven to be more stable and effec- _ CmlCad; (M + JZCgleCm)]lek

tive than comparable model-space approadBesifett

etal., 1997; Egbert, 1997; Chua and Bennett, 2081 = CmJJ [MCq + JkaJz]flxk

a data-space variant on the CG approach to MT inver- T

sion deserves consideration. = CmJiPitr (A1)

Note that _the CG and NL.CG. schemes only really whereBis1 = [+Cq + CmIk]~ X« We therefore ob-
make sense in the case wheris fixed. Foran Occam — (4in Eq.(5). In derivation presented in (A1), we used
algorithm, where the normal equations of (4) or (6) properties: J~ 7)1 =J and @B)"1=B~1A~1L.
are solved a number of times in each linearization step
(to search for the minimum misfit or minimum norm
model) a CG approach probably would not be prac- References
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