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Weerachai Siripunvaraporna,∗, Gary Egbertb, Yongwimon Lenburyc,
Makoto Uyeshimad

a Department of Physics, Faculty of Science, Mahidol University, Rama VI Road, Rachatawee, Bangkok 10400, Thailand
b College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA

c Department of Mathematics, Faculty of Science, Mahidol University, Rama VI Road, Rachatawee, Bangkok 10400, Thailand
d Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Received 28 January 2003; received in revised form 24 October 2003; accepted 16 August 2004

Abstract

A three-dimensional magnetotelluric (MT) minimum structure inversion algorithm has been developed based on a data-space
variant of the Occam approach. Computational costs associated with construction and inversion of model-space matrices make
a model-space Occam approach to 3D MT inversion impractical. These difficulties are overcome with a data-space approach,
where matrix dimensions depend on the size of the data set, rather than the number of model parameters. With the transformation
to data space it becomes feasible to invert modest 3D MT data sets on a PC. To reduce computational time, a relaxed convergence
criterion is used for the iterative forward modeling code used to compute the sensitivity matrix. This allows reduction in
computational time by more than 70%, without affecting the inversion results. Numerical experiments with synthetic data show
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hat reasonable fits can be obtained within a small number of iterations, with a few additional iterations required to
nnecessary structure and find the model with minimum norm.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The capability for routine three-dimensional inver-
ion is a requirement for further progress with the
agnetotelluric (MT) method, since two-dimensional

2D) interpretations frequently cannot explain impor-
ant features present in field data sets from geologically
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complex regions. There have been many recent e
to develop 3D MT inversion algorithms, using a fa
broad range of approaches (e.g.,Mackie and Madden
1993; Zhdanov et al., 2000a; Newman and Alumba
2000; Farquharson et al., 2002). These schemes ha
been shown to recover conductivity variations rea
ably well, at least for simple test cases with synth
data. However, the 3D MT inverse problem is far fr
solved. Routine application of 3D inversion is still h
dered by the requirement of a high-end workstatio

031-9201/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.pepi.2004.08.023



4 W. Siripunvaraporn et al. / Physics of the Earth and Planetary Interiors 150 (2005) 3–14

a parallel machine, and issues of robustness and relia-
bility with real data have barely been addressed for any
of the proposed methods. Improvements in algorithms
for routine 3D inversion are highly desirable.

One promising approach to improve efficiency is
based on use of rapid approximate modeling schemes,
such as the quasi-linear or quasi-analytic approxima-
tions (Torress-Verdin and Habashy, 1994; Zhdanov and
Fang, 1996a; Tseng et al., 2003). Because the model re-
sponse in these approximations is quasi-linear with re-
spect to the modified conductivity tensor, simplified in-
version methods are possible (e.g.,Zhdanov and Fang,
1996b; Zhdanov et al., 2000b). Depending on the de-
gree of simplification used, schemes like this can pro-
duce images of earth structure very rapidly. However,
such approximate methods have their limitations, e.g.,
they work best when conductivity contrasts are low, and
the general reliability and accuracy of these inversions
are open to question. Although these rapid schemes are
of unquestionable value, methods based on full solu-
tion of the EM induction equations will still be needed
for many purposes.

Most 3D MT inversions have taken this more tra-
ditional inversion approach, based on minimizing a
functional penalizing both misfit to the data and model
“roughness” (e.g.,Parker, 1994). To minimize the
penalty functional gradients are computed, model pa-
rameters are adjusted, and the full forward problem
is solved numerically to assess model fit. For ex-
ample, Mackie (personal communication, 2002) has
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easily be so large that this would be impossible, both
in terms of computational time and, especially, RAM.
One way around this difficulty (e.g.,Sasaki, 2001;
Newman and Alumbaugh, 2000) is to use a very
coarse parameterization of the conductivity variations,
so thatM remains small. But then results will depend
strongly on the choice of model parameters, and unless
one has strong a priori constraints on earth structure,
results of such an inversion may be very misleading.
Iterative inversion methods, such as conjugate gradient
(CG; Mackie and Madden, 1993) or NLCG (Newman
and Alumbaugh, 2000), avoid explicitly forming and
storing theM×M coefficient matrix for the normal
equations, and this can allow for more general and geo-
logically realistic model parameterization. This general
iterative approach has come to be seen as the only prac-
tical computational scheme for over-parameterized
minimum structure 3D inversion whereM is large.

In this paper, we present results from a newly de-
veloped data-space 3D MT inversion, in which mini-
mization of the penalty functional is conducted in the
N dimensional data space. With a data-space approach
the null space (i.e., the part of the parameter space that
has no effect on the data) is eliminated at the outset,
and theM×M system of normal equations is replaced
by anN×N system. Thus, the size of all computations
and required arrays depends primarily on the number
of independent dataN, which for 3D geologically re-
alistic modeling will generally be much less thanM.
Data-space methods have in fact been widely applied
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xtended the non-linear conjugate gradients (NL
odi and Mackie, 2001) method to 3D, with the he
f message passing interface (MPI) running on
lusters.Newman and Alumbaugh (2000)have applied
similar technique to 3D inversion, but on a m

ively parallel system.Sasaki (2001)andFarquharso
t al. (2002)have developed 3D inversions based
Gauss–Newton (GN) method. All of these sche

an be classified as model-space inversions, in the
hat search for the optimal conductivity is conducte
heM dimensional model parameter space.

With a model-space method, both the number of
rations and required random access memory (R
epend strongly on the number of model parame
. In particular, the most straightforward appro

o penalty functional minimization in the model spa
e.g., GN) requires forming and solving anM×M sys-
em of linear normal equations. For 3D inversion,Mcan
o inverse problems in geophysics (e.g.,Parker, 1994)
nd other fields (Egbert et al., 1994; Chua and Benn
001). The data-space approach allows us to con

nversion algorithms other than the CG approach, w
ut severe restrictions on model parameterizations
pproach we explicitly consider here is a data-s
ariant on the Occam scheme. The original Occa
nversion (Constable et al., 1987; deGroot-Hedlin a
onstable, 1990) method was formulated in the mod
pace. Here, we reformulate Occam in the data s
s in Siripunvaraporn and Egbert (2000)for the 2D
T inverse problem. As discussed inSiripunvaraporn
nd Egbert (2000), data-space algorithms can be m
ignificantly more efficient by using a reduced ba
pproach. In this paper, we only consider implem

ation of the most straightforward data-space var
n Occam, as a test of the practicality of a data-s
pproach.
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2. Occam’s inversion

Occam’s inversion seeks the “smoothest”, or mini-
mum norm, model subject to an appropriate fit to the
data (Constable et al., 1987). Mathematically, this ob-
jective is achieved by finding stationary points of an
unconstrained functionalU(m, λ):

U(m, λ) = (m−m0)TC−1
m (m−m0)

+ λ−1{(d−F[m])TC−1
d (d−F[m]) − X∗2}.

(1)

Herem is the resistivity model,m0 the prior model,Cm
the model covariance matrix which defines the model
norm,d the observed data,F[m] the model response,
Cd the data covariance matrix,X* the desired level of
misfit, andλ−1 a Lagrange multiplier. Assuming the
data covariance is correctly specified,X* should in the-
ory be one (Constable et al., 1987), and we use this
value for our experiments with synthetic data. With
real dataX* must generally be set to a somewhat higher
level.

To find the stationary points of (1), instead of work-
ing with (1) directly, we differentiate the penalty func-
tionalW�(m):

W�(m) = (m − m0)TC−1
m (m − m0)

+λ−1{(d − F[m])TC−1
d (d − F[m])}, (2)

w
t
s d
(

2

m,
a izing
F

F

H nd
J -
l e
s ap-

proximate solutions:

mk+1(λ) = [λC−1
m + �m

k ]
−1

JT
kC

−1
d Xk + m0, (4)

whereXk =d−F[mk] + Jk(mk−m0), and the “model-
space cross-product” matrix�m

k = JT
kC

−1
d Jk is an

M×M positive semi-definite symmetric matrix.
To reach the ultimate goal of finding the stationary

points of (1), in each iteration (4) is computed with a
series of trial values ofλ to minimize the misfit among
solutions of this form. The goal of iterations in the
early stage (Phase I) is to bring the misfit down to the
target level,X*2. Once the misfit reaches the desired
level, the next stage begins by keeping the misfit at the
desired level, varyingλ to seek the model of smallest
norm (Phase II) achieving the target misfit. For a variety
of reasons, one may never reach the target misfit. An
improvement of misfit from iteration to iteration can
be expected, but even this is not guaranteed.

2.2. Data-space method

As shown byParker (1994), and summarized in Ap-
pendix A, the solution for iterationk can be expressed
as a linear combination of rows of the smoothed sensi-
tivity matrix CmJT, i.e.

mk+1 − m0 = CmJT
k �k+1, (5)

where�k+1 is an unknown expansion coefficient vector
of the basis functions [CmJT

k ]
j
; j = 1,. . .N. Substituting
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ith respect tom. Whenλ is fixed, bothU andW� have
he same stationary points. By minimizingW� with a
eries ofλ, the stationary points ofU can be obtaine
i.e.,λ can be found such that the data misfit isX*2).

.1. Model-space method

Because of non-linearity of the MT inverse proble
n iterative approach is required, based on linear
[m] such that:

[mk+1]=F[mk + �m]=F[mk] + Jk(mk+1 − mk).

(3)

ere the subscriptk denotes iteration number, a
k = (∂F/∂m)k is theN×M sensitivity matrix calcu
ated atmk. Substituting (3) into (2), and finding th
tationary points, we obtain a series of iterative
5) into a linearized form of (2), and solving for
tationary point, we again obtain a series of itera
olutions:

k+1 = [λCd + �n
k ]−1Xk, (6)

here�n
k = JkCmJT

k is theN×N “data-space cros
roduct” matrix, which is symmetric and positive se
efinite. Similarly to the standard model-space
am’s inversion, we can solve for�k+1 using (6), updat
he model, and then compute the misfit. All of th
alculations are done with various values ofλ for both
hases I and II, just as in the model-space approa
The solutions obtained from both approaches,

rom (4) for the model-space method and from (6)
5) for the data-space method, should in theory be i
ical if all parameters used are the same. The majo
erence between (4) and (6) is that the dimension o
ystem of equations to be solved can be significa
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reduced, fromM×M in the model-space method, to
N×N in the data-space method. In very many practi-
cal cases,N will be much less thanM, especially for
the 3D MT inversion problem we consider here. This
reduction means a great saving on computational costs
of both memory and CPU time.

Another distinction between the two methods is that
the model covarianceCm is directly required for the
data-space method, while its inverse is required in the
model-space method. In the model-space method, the
inverse of the model covariance (C−1

m ) is, for reasons
of efficiency, usually implemented as a sparse model
roughness operator (Constable et al., 1987; deGroot-
Hedlin and Constable, 1990). The exact inverse of a
specific roughness operator (Cm) cannot be determined
in practice, because of the size of this matrix, which in
general will be full. Conversely, a model covariance
matrixCm, which is efficient for data-space computa-
tions (e.g.,Siripunvaraporn and Egbert, 2000) cannot
be inverted both due to size and ill-conditioning. It is
thus impractical to compare directly model and data-
space calculations with identical model covariances,
for even a small model grid. Note that prior informa-
tion, such as faults or an ocean, can be readily included
in the model covarianceCm, which is another advan-
tage of the data-space method.

For further details on the Occam’s inversion in
both the model and data space, seeParker (1994),
Siripunvaraporn and Egbert (2000), Constable et al.
(1987), anddeGroot-Hedlin and Constable (1990).
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order Maxwell’s equations with a staggered grid finite
difference numerical approximation. This approach to
3D forward modeling is flexible and allows large and
complicated model structures (depending on computer
resources) in an efficient way.

There are two forms of the second order Maxwell’s
equation: in terms of electric fields:

∇ × ∇ × E = iωµσE, (7a)

or in terms of magnetic fields

∇ × ρ∇ × H = iωµH. (7b)

Hereµ is the air magnetic permeability,ω the angular
frequency,σ the conductivity (the inverse of resistiv-
ity, ρ), E the electric field, andH the magnetic field.
Siripunvaraporn et al. (2002)have shown that solu-
tions obtained from equations formulated in terms of
the electric fields (7a), with a staggered grid finite dif-
ference are less sensitive to grid resolution than those
obtained from the magnetic formulation (7b). We there-
fore use (7a) rather (7b) for modeling.

With a staggered grid finite difference approxima-
tion to (7), we obtain the discrete system of equa-
tionsAx =b, whereb is the boundary electric fields,
x the interior unknown electric fields, andA the sym-
metric coefficient matrix (butA is not Hermitian; it
is complex only on the diagonal). The linear system
of equations is then solved via the quasi-minimum
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. Inversion algorithm details

Our implementation of the 3D data-space Occa
nversion closely follows the 2D inversion described
iripunvaraporn and Egbert (2000). Here, we briefly
ummarize algorithm details specific to the 3D imp
entation.

.1. Three-dimensional forward modeling

Inversion relies heavily on forward modeling, b
or computing model responses, and sensitivi
n efficient and accurate forward modeling code

hus essential (e.g.,Mackie et al., 1994; Smith, 199
ewman and Alumbaugh, 2000; Siripunvarap
t al., 2002; Avdeev et al., 2002). We solve the secon
esidual (QMR) method, with a preconditioner form
y an incomplete LU decomposition of the diago
ub-matrix ofA (Siripunvaraporn et al., 2002). A di-
ergence correction, similar toSmith (1996), is also
pplied to speed up convergence. The iterative s

ion is terminated once the level of normalized m
t, r = ||Ax −b||/||b||, is below 10−8. After solving
or the interior electric fields, the magnetic fields
he surface are then computed and interpolated i
sual way (e.g., via the first order Maxwell’s eq

ions).

.2. Data and model responses for 3D inversion

Two polarizations,Ex−Hy andEy−Hx, are com
uted via the forward modeling algorithm to gene

he model responses. Each polarization has its
lectric and magnetic fields. The fields from b
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polarizations are related via the impedance tensor,Z:[
E1

x E2
x

E1
y E1

y

]
=

[
Zxx Zxy

Zyx Zyy

] [
H1

x H2
x

H1
y H2

y

]
. (8)

Here E1
x and E2

x are the x-component of electric
fields for the Ex−Hy and Ey−Hx polarizations,
respectively, and similarly for other field components.
Note that to calculate any parts of the impedance
tensor, fields from both polarizations are required.

Model responses for 2D MT inversions are usually
the apparent resistivities and phases calculated from
the off-diagonal terms ofZ. However, for the 3D case,
the diagonal terms (Zxx andZyy) can also become sig-
nificant, and should be included in the inversion. In
our algorithm, we invert the full impedance tensor,Z,
including both real and imaginary parts.

3.3. Sensitivity matrix

The sensitivity calculation is essential to our inver-
sion approach. We follow the general approach de-
scribed inSiripunvaraporn and Egbert (2000)or Rodi
(1976), using reciprocity. For the 3D case, as we in-
vert the full impedance tensor, the sensitivity calcu-
lation at each station (and for each period) requires
solving two forward problems, one for each polariza-
tion. For example, computing∂Zxy/∂m requires cal-
culating∂E1/∂m and∂E2/∂m, and likewise for other
sensitivity terms. This is not the case for 2D where
o en-
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solving a diffusion equation with initial conditionsa
(Egbert et al., 1994; Siripunvaraporn and Egbert, 2000).

To avoid solving the 3D diffusion equation, we in-
stead solve 1D diffusion equations alternatively be-
tween vertical and horizontal directions (bothx- and
y-directions). Our approach can be viewed as a sim-
ple operator splitting solution (e.g.,Press et al., 1992)
of the 3D diffusion equation. The decorrelation scale
for the diffusion equation in all directions varied in
space, with length scales proportional to

√
(4δτ) of the

local grid resolution, whereδ (between 0 and 1) and
τ are given by users. For the two example cases pre-
sented below, values ofδ are 0.2 and 0.1, respectively,
while τ is 10 for both cases. Alternative approaches for
selecting decorrelation length scales are discussed in
Siripunvaraporn and Egbert (2000).

4. Synthetic data example and discussions

To test the 3D data-space algorithm, we have run
the inversion program on two synthetic data sets. All
computations are performed on a Dec Alpha 666 MHz
machine with 1 Gbyte of RAM, so these computations
could easily be reproduced on a common modern PC.
However, the size of the data and model used in these
inversion tests are rather limited. Faster computers with
more RAM will be required for more realistic applica-
tions.
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nly one forward calculation is required for each s
itivity term. Our mathematical derivation for the s
itivity matrix of the MT impedance tensor is ve
imilar to that presented inNewman and Alumbaug
2000).

.4. Model covariance

The model covariance matrixCm characterizes th
xpected magnitude and smoothness of resistive
tion relative to the base model. Here, a model co
nce similar to that used bySiripunvaraporn and Egbe
2000)for the 2D case is applied and extended to the
ase. For the data-space method, the model covar
tself is never constructed. Only the product with
ensitivity matrix,CmJT, is required. For a model c
ariance with a Gaussian correlation function the p
ct ofCm with any model vectoracan be computed b
.1. Synthetic case I

The first data set is generated from a very sim
odel (Fig. 1), consisting of a conductive block
�m (16 km× 16 km× 5 km) buried 100 m benea

he surface of a 100�m half space. Data for 36 site
istributed as shown inFig. 1as solid dots, were ge
rated by solving (7a) on 56× 56× 28 (+7 air layers
rid. The complex impedance tensor (Zxx,Zxy,Zyxand
yy) for five periods (0.1, 1, 10, 100 and 1000 s)

nverted with 5% Gaussian noise. The data varia
s assumed to be 5% of|ZxyZyx|1/2. The model mes
sed for the inversion is 28× 28× 21 (+7 air layers)
ote that this discretization is different from that u

o generate the data. In this simple test, the total n
er of dataN= 1440, and the total number of mod
arametersM= 16,464.
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Fig. 1. A simple synthetic model used in the first test of the inversion. The solid dots indicate the observation sites. The cross-section in the
lower panel picture is not to scale.

The inversion is started from a 50�m half space,
which is also used as the base model,m0 for the inver-
sion. The initial RMS for this starting model is about 23.
Fig. 2 displays the convergence of the algorithm. For
each iteration a series ofλ values are used to search for
the minimum RMS; these are marked by solid symbols.
Note that the value ofλ at the minimum changes sig-
nificantly with iterations. The dotted and dashed lines
give results for two variants, which we discuss below.
Within three iterations, the inversion has converged to
the desired level of misfit, i.e., completing Phase I. The
inversion spends another two iterations to search for the
model with minimum norm (Phase II), while keeping
the misfit at the target misfit. The program is termi-
nated once the model norm changes only slightly. For
Phase II,λ is slightly perturbed to a higher value, and
unnecessary structures are removed from the model.

For each iteration, the required calculation time is
about 17 h (for the dashed lines ofFig. 2), for a total of
84 h for five iterations. More than 90% of the comput-
ing time is used in constructing the sensitivity matrix,

with most of this time spent solving forward problems.
To construct the sensitivity matrix, the number of for-
ward solutions per iteration is about 2Ns×Np, where
Np is the number of periods, andNs is the number of
station. Reducing the time required for solving the for-
ward problem when constructing the sensitivity matrix
would significantly speed up the inversion. To achieve
accuracy in forward computations, we usually termi-
nate the QMR iterations when the normalized residual
is less than 10−8. For our first tests with the inversion
(dashed lines inFig. 2), we used the same convergence
criterion for computation of the sensitivities. We will
refer to this sensitivity calculation as “the full conver-
gence case”.

In an effort to reduce computational time, we set
the termination condition to a minimum number of 40
iterations, and a normalized residual of 10−4. This re-
quires about 1/3 to 1/4 of the iterations used for the full
convergence case. We will refer to this as “the relaxed
convergence case”. The solid lines ofFig. 2 display
the convergence of the relaxed convergence case, and
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Fig. 2. Plots of RMS vs.λ for each iteration for inverting synthetic data generated from the model ofFig. 1. The dashed lines indicate the full
convergence scheme, while the solid lines indicate a relaxed convergence scheme, when computing for the sensitivities. For most outer-loop
iterations, the two lines appear to be on top of each others. Solid marks indicate the minimum RMS value for each iteration. Iterations 1–3
indicate Phase I, and iterations 4 and 5 (plotted only at the desired misfit) display Phase II of the inversion.

shows that using this scheme does not have much effect
on the outcome of the inversion. However, the compu-
tational time per iteration is significantly reduced to
about 5.8 h per iteration (about 29 h for five iterations)
or only about 30% of the total calculation time with
the full convergence case. Tests on other synthetic data
sets yielded similar results.

Fig. 3 displays an inverse solution obtained at the
target misfit with the minimum model norm using the
relaxed convergence case after the fifth iteration. The
upper panels ofFig. 3 displays the plan view at the
surface, at 200 m depth and at 3 km depth, while the
lower panel displays the cross-section view through
the middle of the conductive block atX= 0 km. The
plan view at the surface reflects the thin resistive layer
on top of the conductive block, while at 200 m and
3 km depth the conductive block is clearly seen.Fig. 3
shows that the inversion recovers the conductivity and
position of the block. The image is not perfect near
the block edges, primarily due to the limited number
of sites. Additional short period data (e.g., lower than

0.1 s) would undoubtedly improve resolution of the thin
resistive surface layer. In addition, structures near the
bottom of the conductive block are not well resolved.
Again, longer period data may help further constrain
the structure at depth. However, it is well-known that
the bottom of a conductive layer is difficult to recover
with MT data. This difficulty is intrinsic to induction
data, and is not specific to our inversion approach; e.g.,
seeSiripunvaraporn and Egbert (2000)orNewman and
Alumbaugh (2000), among many others for examples.
As suggested byFig. 2, the inverted model from the
full convergence case is very similar to the model of
Fig. 3.

In comparison with the model-space method, com-
puting requirements for building the sensitivity ma-
trix and for computing the responses and misfit are
about the same. The main difference lies in solving
the system of Eqs.(6) or (4) for eachλ value. For
this synthetic case, the coefficient matrices are of size
1440× 1440 and 16,464× 16,464, respectively. Solv-
ing the 16,464× 16,464 would require a factor of 113
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Fig. 3. An inverted model after the fifth iterations with an RMS value at 1, from synthetic data inFig. 1. The top panels (a)–(c) is a plan view
at the surface, at 200 m and at 3 km depth, and the bottom panel (d) is a cross section view cutting across the conductive block atX= 0 km. The
solution is shown only in the central area around the anomalies, not in the full 28× 28 model domain.

more operations. Since the system must be solved for
eachλ (an average of four per iteration for Phase I,
and 3 for Phase II), this would push the computational
time per iteration to an unacceptable level. In addition,
storage of the coefficient matrix would require a fac-
tor of 130 times more memory than is required by the
data-space method, making a model-space Occam’s in-
version impractical unless the model is severely under
parameterized (Sasaki, 2001). Other model-space ap-
proaches, which do not require computation or storage
of full sensitivity matrix, such as the NLCG scheme
of Newman and Alumbaugh (2000), would perhaps be
more practical. However, to find a minimum structure
model subject to specified data misfit with such ap-
proaches multiple inversion runs with different values
of λ would be required.

4.2. Synthetic case II

We also tested the inversion on a more complex
model, one that is similar to a model previously used in
many 3D forward modeling studies (seeWannamaker,

1991; Mackie et al., 1994; Siripunvaraporn et al., 2002;
Avdeev et al., 1997). The model consists of resistive
and conductive blocks buried in a two-layered Earth
(Fig. 4). The observation sites are shown as solid dots
in Fig. 4 for 40 sites, in a 5× 8 grid. Data for 5 pe-
riods at 0.1, 1, 10, 100 and 1000 s are inverted. The
full complex impedance tensor is inverted, so the total
number of data isN= 1600. The data are added with
5% noise. The mesh used in the inversion is discretized
at 21 blocks inx, 28 blocks iny, and 21 blocks inz
(with seven air layers on top), orM= 12,348. Note that
a different mesh (at 42× 56× 42) is used to generate
the synthetic data. The initial model and also the base
model (m0) for the inversion is the same, i.e., a 50�m
half space.

The convergence plot is shown inFig. 5, and the
inverted model is shown inFig. 6(after the sixth itera-
tion). The inversion spends roughly 6.5 h per iteration,
using the relaxed convergence scheme when comput-
ing the sensitivity matrix. FromFig. 5, the inversion has
reached the desired RMS within three iterations (Phase
I), and spends another three iterations to search for the
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Fig. 4. Another synthetic model used to test the inversion. A cross-section view is a profile cutting across the middle of the conductive block
and resistive block in the plan view (upper panel). The solid dots indicate the observation sites. A lower panel picture is not on-scale.

Fig. 5. RMS plots vs. iteration number for the inversion of the synthetic data generated from model ofFig. 4.



12 W. Siripunvaraporn et al. / Physics of the Earth and Planetary Interiors 150 (2005) 3–14

Fig. 6. An inverted model after the sixth iterations, with an RMS value at 1 from synthetic data inFig. 4. The top panels (a)–(c) is a plan view
at the surface, at 3 km and at 7.5 km depth, and the bottom panel (d) is a cross section view cutting across the conductive block atX= 0 km. As
in Fig. 3the solution is shown only in the central part of the model domain.

model with minimum structure (Phase II). The inver-
sion can recover both conductive and resistive bodies
from the 10�m background host (Fig. 6), even though
not perfect near the edges and at great depths. Simi-
lar to case I, if this inversion were performed in the
model space, it would require a huge amount of both
computational time and RAM, which would make it
impractical to run on a regular PC.

5. Discussions and conclusions

A three-dimensional MT inversion algorithm based
on the Occam approach has been developed to seek
the smoothest model subject to an appropriate fit to
the data. By transforming from model space to data
space its computational costs are significantly reduced,
allowing us to invert modest 3D MT data sets on a
personal computer (PC) in a relatively short time.

In the two examples presented hereN�M, the effi-
ciency advantage of the data-space method is evident.
More generally it is possible thatN could be equal or

larger thanM, for example if we inverted many more
frequencies in our test problems. In this case, the data-
space method would not be superior to the model space
in term of the computational costs. However, as shown
in Siripunvaraporn and Egbert (2000), data redundancy
(which is manifested in the near linear dependence of
the columns ofCmJT) implies that the effective value
of N can always be significantly reduced by restrict-
ing trial solutions to a subspace of the columns of
CmJT. Such data sub-space methods guarantee signif-
icant computational savings regardless of the values of
N andM.

The data-space approach we have discussed here is
not limited to an Occam (or reduced basis Occam) ap-
proach. Other inversion approaches may also be com-
bined with or adapted to a data-space formulation. For
example, it may not be necessary to compute and store
the full sensitivity and cross-product matrices. A con-
jugate gradient method, in which multiplication of the
sensitivity matrix by an arbitrary vector is achieved
by solving several forward problems (without comput-
ing or storing the matrix of sensitivities;Mackie and
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Madden, 1993) could also be implemented in the data
space. Such a data-space conjugate gradients scheme
would allow solution of much larger inverse prob-
lems. Compared to a model-space CG inversion, the
system of equations to be solved would be signifi-
cantly reduced by transformation to the data space. In
oceanographic data assimilation problems a data-space
CG approach has proven to be more stable and effec-
tive than comparable model-space approaches (Bennett
et al., 1997; Egbert, 1997; Chua and Bennett, 2001), so
a data-space variant on the CG approach to MT inver-
sion deserves consideration.

Note that the CG and NLCG schemes only really
make sense in the case whereλ is fixed. For an Occam
algorithm, where the normal equations of (4) or (6)
are solved a number of times in each linearization step
(to search for the minimum misfit or minimum norm
model) a CG approach probably would not be prac-
tical or efficient. Thus, the data-space formulation is
probably the only practical way to implement the Oc-
cam scheme in 3D. Furthermore, hybrid approaches
which combine elements of the data-space method,
CG, Occam, and other approaches are possible, and
should be explored. The data-space formulation dis-
cussed here should be kept in mind as we explore
efficient and robust solutions to the 3D MT inverse
problem.
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