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SUMMARY

The observation of seismic hum from 2 to 20 mHz, also known as Earth’s background

free oscillations, has been established. Recent observations by broadband seismometers

show simultaneous excitation of Love waves (fundamental toroidal modes) and Rayleigh

waves (fundamental spheroidal modes). The excitation amplitudes above 10 mHz can be

explained by random shear traction sources on Earth’s surface. With estimated source dis-

tributions, the most likely excitation mechanism is a linear coupling between ocean infra-

gravity waves and seismic surface waves through seafloor topography. Observed Love and

Rayleigh wave amplitudes below 5 mHz suggest that surface pressure sources could also

contribute to their excitations, although the amplitudes have large uncertainties due to the

high noise levels of the horizontal components. To quantify the observation, we develop

a new method for estimation of the source spectra of random tractions on Earth’s surface

by modelling cross-spectra between pairs of stations. The method is to calculate synthetic

cross-spectra for spatially isotropic and homogeneous excitations by random shear trac-

tion and pressure sources, and invert them with the observed cross-spectra to obtain the

source spectra. We applied this method to the IRIS, ORFEUS, and F-net records from 618

stations with three components of broadband seismometers for 2004–2011. The results

show the dominance of shear traction above 5 mHz, which is consistent with past studies.

Below 5 mHz, however, the spectral amplitudes of the pressure sources are comparable

to those of shear traction. Observed acoustic resonance between the atmosphere and the

solid earth at 3.7 and 4.4 mHz suggests that atmospheric disturbances are responsible for

the surface pressure sources, although nonlinear ocean wave processes are also candidates

for the pressure sources. Excitation mechanisms of seismic hum should be considered as
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a superposition of the processes of the solid earth, atmosphere, and ocean as a coupled

system.

Key words: Seismic hum, seismic surface waves, ocean infragravity waves, atmospheric

disturbance

1 INTRODUCTION

It has long been understood that only very large earthquakes and volcanic eruptions excite Earth’s

free oscillations at observable levels. In 1998, some Japanese groups discovered persistent excitation
of normal modes in the mHz band even on seismically quiet days (Nawa et al. 1998; Suda et al.

1998; Kobayashi & Nishida 1998). They are known as seismic hum or background free oscillations.

Currently at more than a hundred quiet broadband stations, the power spectra of the vertical com-

ponents exhibit many spectral peaks at eigenfrequencies of fundamental spheroidal modes (Nishida

2013a). The root mean squared amplitudes of each mode from 2 to 8 mHz are on the order of 0.5 ngal

(10−11 m s−2) with little frequency dependence. These observations show that the excitation sources
are persistent disturbances distributed over Earth’s entire surface.

To constrain their excitation mechanisms, source distributions of background Rayleigh waves

were inferred from an array analysis of the vertical components of broadband seismometers and a

cross-correlation analysis of the signals. In the northern hemisphere winter, they were dominant in the

northern Pacific ocean, whereas in the southern hemisphere winter, they were dominant in the Antarc-

tic Ocean (Rhie & Romanowicz 2004, 2006; Nishida & Fukao 2007; Bromirski & Gerstoft 2009; Traer

et al. 2012). Throughout the years, excitation sources on the continents are too weak to detect. These
results suggest that the activity of ocean infragravity waves is a dominant source of seismic hum (e.g.

Watada & Masters 2001; Rhie & Romanowicz 2004; Webb 2007).

Observation of background Love waves (or background excitation of fundamental toroidal modes)

is crucial for constraining the excitation mechanisms. Because the noise levels of the horizontal com-

ponents are higher than those of the vertical components, background Love waves were detected at the

four quietest sites by a single station analysis. Background Rayleigh and Love waves exhibit similar

horizontal amplitudes from 3.2 to 4.2 mHz (Kurrle & Widmer-Schnidrig 2008), although the estimated
amplitude by the single station analysis had a large intrinsic uncertainty due to high noise levels of the

horizontal components. In ten years, dense arrays of broadband seismometers have been developed

in the US, Japan, and Europe (e.g. USArray, Hi-net). Horizontal records from more than 500 stations

enabled us to estimate precise amplitudes of the background Love and Rayleigh waves. A recent result

by the array data showed that the observed kinetic energy of background Love waves was as large as

that of background Rayleigh waves from 10 to 100 mHz (Nishida et al. 2008).

The excitation sources above 10 mHz can be represented by random shear traction on Earth’s
surface. The only possible excitation mechanism is topographic coupling between ocean infragravity

waves and seismic surface waves (Nishida et al. 2008; Fukao et al. 2009; Saito2010 ). Below 5 mHz,

however, the shear traction sources over-predict Love wave amplitudes. They are much larger than the
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Figure 1. Schematic figure of possible excitation mechanisms of seismic hum.

ones observed in the frequency range from 3 to 7 mHz (Kurrle & Widmer-Schnidrig 2008), although

Rayleigh wave amplitudes are consistent with each other. To explain the amplitudes below 5 mHz,
Fukao et al. (2009) suggested that pressure sources also contribute to the excitation below 5 mHz

(Nishida 2013b). In this frequency range, the spectra of the vertical components show two resonant

peaks at 3.7 and 4.4 mHz, corresponding to acoustic coupling modes between the solid earth and

the atmosphere (Nishida et al. 2000). This observation suggests that atmospheric disturbances also

contribute to the excitation below 5 mHz as pressure sources (Figure 1).

For a quantitative discussion on excitation mechanisms, we inferred the source spectra of the

random pressure and shear traction on Earth’s surface by modelling the cross-spectra between every

pair of stations utilizing recent global data sets from broadband seismometers. For the modelling, we

developed a theory for a synthetic cross-spectrum between a pair of stations, assuming homogeneous

and isotropic excitation sources, which are composed of random pressure sources and random shear
traction sources on the whole Earth’s surface. Then, we fit the synthetics to the observed cross-spectra

to obtain the source spectra. Based on the source spectra, we will discuss two possible excitation

mechanisms: (1) atmospheric disturbances and (2) nonlinear effects of ocean infragravity waves at

shallow depths and deep oceans.

2 A THEORY OF SYNTHETIC CROSS-SPECTRA BETWEEN A PAIR OF STATIONS

To synthesize a cross-spectrum between a pair of seismograms at stations x1 and x2 on Earth’s surface,

we consider a stochastic stationary wavefield excited by a random surface traction τ acting upon

a surface element dΣ at a point x on Earth’s surface Σ. The displacement on Earth’s surface s at

location x and time t produced by such surface traction can be represented by convolution between
the Green’s function g and the surface traction τ as

s(x, t) =

∫ t

−∞

∫
Σ
g(x,x′; t− t′) · τ (x′; t′)dΣ′dt′. (1)
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The Green’s function g for a spherical symmetric earth can be written in terms of normal mode theory

(Dahlen & Tromp 1998) as

g(x,x′; t) =
∑
nl

nγ
S
l (t)

∑
m

(nUlP lm(r̂) + nVlBlm(r̂))(nUlP lm(r̂′) + nVlBlm(r̂′))

+
∑
nl

nγ
T
l (t)

∑
m

nWlC lm(r̂)nWlC lm(r̂′), (2)

where r̂ is a unit vector in the radial direction as shown in Figure 2(a), nUl is the vertical displacement

of spheroidal modes on Earth’s surface with a radial order n and an angular order l, nVl is the horizontal

displacement of the spheroidal mode, and nWl is the horizontal displacement of a toroidal mode. The
modal oscillation nγ

M
l (t) is given by

nγ
M
l (t) =


sin(nωM

l t)

nωM
k

exp
(
− nωM

l

2nQM
l

t
)

t >= 0,

0, t < 0,
(3)

where nω
M
l is the eigenfrequency of the mode, nQ

M
l is the quality factor of the mode, and M rep-

resents the mode type (S: a spheroidal mode or T: a toroidal mode). P lm, Blm, and C lm are vector

spherical harmonics, defined as

P lm = r̂Ylm, (4)

Blm =
∇1Ylm√
l(l + 1)

=
[θ̂∂θ + ϕ̂(sin θ)−1∂ϕ]Ylm√

l(l + 1)
(5)

C lm =
−r̂ ×∇1Ylm√

l(l + 1)
=

[θ̂(sin θ)−1∂ϕ − ϕ̂∂θ]Ylm√
l(l + 1)

, (6)

where Ylm are real spherical harmonics of angular order l and azimuthal order m (Dahlen & Tromp

1998), θ is the angle between x and the pole in spherical coordinates, and ϕ is the azimuth. The vectors

θ̂ and ϕ̂ are corresponding unit vectors in horizontal directions, as shown in Figure 2(a). In this study,

we used a spherical symmetric earth model, PREM (Dziewonski & Anderson 1981) to calculate the

eigenfrequencies and eigenfunctions.

With the above representations of random wavefields, we evaluated a cross-spectrum between a

pair of seismograms at x1 and x2. A cross-spectrum Φαβ between an α(= r, θ, or ϕ) component of

displacement at x1 and a β one at x2 is evaluated by

Φαβ(x1,x2;ω) =

∫ ∞

−∞
ϕαβ(x1,x2; t)e

−iωtdt, (7)

where ω is angular frequency, and the cross-correlation function ϕαβ between stations at x1 and x2 is

defined by

ϕαβ(x1,x2; t) = lim
T→∞

1

T

∫ T
2

−T
2

sα(x1, t
′)sβ(x2, t

′ + t)dt′. (8)
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Figure 2. (a) Spherical coordinates used in this study. (b) Definition of radial (R), transverse (T), and vertical (Z)
unit vectors at two stations (x1,x2). The radial direction is defined as that along the great circle path between
the station pair. The transverse direction is defined as that perpendicular to the path. The angle between two
stations is given by Θ.

Insertion of eq. (1) into the above equation yields

Φαβ(x1,x2;ω) =
∑
α′β′

∫∫
Σ
dΣ′dΣ′′Ψα′β′(x′,x′′;ω)G∗

αα′(x1,x
′;ω)Gββ′(x2,x

′′;ω), (9)

where Gαα′(x,x′;ω) is a Fourier component of the Green’s function, which represents an α compo-

nent of displacement at x for an impulsive force at x′ with an α′ component, and Ψαβ(x,x
′;ω) is a

cross-spectrum between an α component of surface traction at x and a β component at x′ given by

Ψαβ(x
′,x′′;ω) =

∫ ∞

−∞
ψαβ(x

′,x′′; t)e−iωtdt, (10)

where a cross-correlation function ψαβ of surface traction between x′ and x′′ is given by

ψαβ(x
′,x′′; t) = lim

T→∞

1

T

∫ T
2

−T
2

τα(x
′, t′)τβ(x

′′, t+ t′)dt′, (11)

where τα and τβ represent components of traction (τr, τθ, τϕ) on Earth’s surface. Assuming that the

surface traction is homogeneous and isotropic, we express the cross-spectral density of the surface

traction as a simplified form of variable separation,

Ψαβ(x
′,x′′;ω) =

Ψ0
αβ(ω)ρ(x

′,x′′;ω), α = β,

0, α ̸= β,
(12)

where ρ is a structure function, and Ψ0
αβ(ω) is the power spectral density (PSD) of surface traction of

an αβ component. The function ρ(x′,x′′;ω) is characterized by the frequency dependent correlation
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length L(ω) of the traction sources,

ρ(x′,x′′;ω) =

1, x < L(ω),

0, x >= L(ω).
(13)

Because L is estimated to be much smaller than the wavelengths of normal modes on the order of

1000 km (Fukao et al. 2002; Webb 2007), we can approximate the integral by Σ′′ in eq. (9) by L2 as

Φαβ(x1,x2;ω) ∼ L2
∑
α′β′

∫
Σ
dΣ′Ψe

α′β′(ω)G∗
αα′(x1,x

′;ω)Gββ′(x2,x
′;ω)

= 4π2R2
e

∑
α′β′

∫
Σ
dΣ′Ψe

α′β′(ω)G∗
αα′(x1,x

′;ω)Gββ′(x2,x
′;ω), (14)

where Re is Earth’s radius, and the effective surface traction Ψe
αβ(ω) (Nishida & Fukao 2007) is

defined as

Ψe
αβ(ω) ≡

L2(ω)

4πR2
e

Ψ0
αβ(ω). (15)

The effective traction can be written as

Ψe
αβ(x;ω) =


Ψ̄p(ω)Ψe

ref (ω) α = β = r

Ψ̄t(ω)Ψe
ref (ω) α = β = θ or α = β = ϕ

0 otherwise,

(16)

where Ψ̄p(ω) is the normalised effective pressure, and Ψ̄t(ω) is the normalised effective shear traction.

We normalised them by a reference model of effective traction Ψe
ref (ω) based on the empirical model

by Fukao et al. (2002). The reference model is expressed as

Ψe
ref (ω) =

2× 109

4πR2
e

(
f

f0

)−2.3

[Pa2/Hz], (17)

where the reference frequency f0 is 1 mHz. The random surface-pressure source given by the refer-

ence model explains the observed Rayleigh wave amplitudes of seismic hum at frequencies below 6

mHz, which will be modified so that it can explain the higher frequency data including Love wave

amplitudes as well. We note that the normalised effective pressure Ψ̄p(ω) and the normalised effective

shear traction Ψ̄t(ω) are real functions because the definition of Ψe
αβ yields the Hermitian relation as

Ψe
αβ(ω) = Ψe∗

βα(ω).

Given the orthogonality relation of the vector spherical harmonics:∫
Σ
dΣP lm(r̂) · P l′m′(r̂) = R2

eδll′δmm′ ,

∫
Σ
dΣP lm(r̂) ·Bl′m′(r̂) = 0,∫

Σ
dΣBlm(r̂) ·Bl′m′(r̂) = R2

eδll′δmm′ ,

∫
Σ
dΣP lm(r̂) ·C l′m′(r̂) = 0,∫

Σ
dΣC lm(r̂) ·C l′m′(r̂) = R2

eδll′δmm′ ,

∫
Σ
dΣBlm(r̂) ·C l′m′(r̂) = 0. (18)
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We insert eqs. (2) and (16) into eq. (14) to obtain the representation of the synthetic cross-spectrum asΦZZ(Θ, ω) ΦRZ(Θ, ω) ΦTZ(Θ, ω)

ΦZR(Θ, ω) ΦRR(Θ, ω) ΦTR(Θ, ω)

ΦZT (Θ, ω) ΦRT (Θ, ω) ΦTT (Θ, ω)

 = tR1

Φrr(Θ, ω) Φθr(Θ, ω) Φϕr(Θ, ω)

Φrθ(Θ, ω) Φθθ(Θ, ω) Φϕθ(Θ, ω)

Φrϕ(Θ, ω) Φθϕ(Θ, ω) Φϕϕ(Θ, ω)

 tR2,

(19)

where Θ is the separation angular distance between the pair of stations, and we define radial (R),

transverse (T), and vertical (Z) components for the station pair as shown in Figure 2(b), R1 is the

rotation matrix at x1 from spherical coordinates to the station-station coordinates, and R2 is that at

x2, the superscript t represents the transpose (see appendix A for details). TheRR, TT , ZZ,RZ, and
ZR components of the synthetic cross spectra can be written as functions of only Θ and ω,

ΦZZ(Θ, ω) =
∑
l

Pl(cosΘ)[ζpl,ZZ(ω)Ψ̄
p(ω) + ζtl,ZZ(ω)Ψ̄

t(ω)],

ΦRR(Θ, ω) =
∑
l

P ′′
l (cosΘ)

k2
[ζpl,RR(ω)Ψ̄

p(ω) + ζtl,RR(ω)Ψ̄
t(ω)] +

∑
l

P ′
l (cosΘ)

k2 sin θ
ζtl,TT (ω)Ψ̄

t(ω),

ΦTT (Θ, ω) =
∑
l

P ′
l (cosΘ)

k2 sin θ
[ζpl,RR(ω)Ψ̄

p(ω) + ζtl,RR(ω)Ψ̄
t(ω)] +

∑
l

P ′′
l (cosΘ)

k2
ζtl,TT (ω)Ψ̄

t(ω),

ΦZR(Θ, ω) = Φ∗
RZ(Θ, ω) =

∑
l

P ′
l (cosΘ)

k
[ζpl,RZ(ω)Ψ̄

p(ω) + ζtl,RZ(ω)Ψ̄
t(ω)],

ΦTZ(Θ, ω) = ΦZT (Θ, ω) = ΦRT (Θ, ω) = ΦTR(Θ;ω) = 0, (20)

where the primes (′) as in P ′ or P ′′ indicate spatial derivatives with respect to Θ. Here, ζpl,αβ(ω) and

ζtl,αβ(ω) are the frequency wavenumber (FK) spectra of an αβ component (α, β = R, T, Z) defined

as

ζpl,ZZ(ω) = πR4
e(2l + 1)Ψe

ref (f)
∑
nn′

nΓ
S
l (ω)n′ΓS∗

l (ω)nU
2
l n′U2

l ,

ζtl,ZZ(ω) = πR4
e(2l + 1)Ψe

ref (f)
∑
nn′

nΓ
S
l (ω)n′ΓS∗

l (ω)nUln′UlnVln′Vl,

ζpl,RR(ω) = πR4
e(2l + 1)Ψe

ref (f)
∑
nn′

nΓ
S
l (ω)n′ΓS∗

l (ω)nUln′UlnVln′Vl,

ζtl,RR(ω) = πR4
e(2l + 1)Ψe

ref (f)
∑
nn′

nΓ
S
l (ω)n′ΓS∗

l (ω)nV
2
l n′V 2

l ,

ζtl,TT (ω) = πR4
e(2l + 1)Ψe

ref (f)
∑
nn′

nΓ
T
l (ω)n′ΓT∗

l (ω)nW
2
l n′W 2

l ,

ζpl,ZR(ω) = πR4
e(2l + 1)Ψe

ref (f)
∑
nn′

nΓ
S
l (ω)n′ΓS∗

l (ω)nU
2
l n′Uln′Vl,

ζtl,ZR(ω) = πR4
e(2l + 1)Ψe

ref (f)
∑
nn′

nΓ
S
l (ω)n′ΓS∗

l (ω)nUlnVln′V 2
l , (21)

where the ζ superscripts p and t represent pressure and shear traction sources, respectively, and ΓM
l (ω)
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is the Fourier component of γMl (ω):

nΓ
M
l (ω) =

1[
− nωM

l

2nQM
l

− i(nωM
l − ω)

] [
− nωM

l

2nQM
l

+ i(nωM
l + ω)

] . (22)

The cross-spectra ΦZZ and ΦZR are directly related to the corresponding FK spectra, whereas
ΦRR and ΦTT have cross-talk terms with each other. For example, ΦRR contains 3 terms of ζpRR,

ζtRR, and ζtTT as shown in eq. (20). The Rayleigh wave (the first two terms) decay with separation

distance Θ as P ′′
l (cosΘ) ∼ [sinΘ]−1/2 in the regime 0 ≪ Θ ≪ π, whereas the Love wave (the third

term) decays as P ′
l (cosΘ)/ sinΘ ∼ [sinΘ]−3/2. This means that the contribution of the Love wave

(the cross-talk term) decays with separation distance more rapidly than that of the Rayleigh wave.

This cross-talk term becomes comparable to the Rayleigh wave term when the separation distance is
shorter than the wavelength of the surface waves.

Figure 3 (b) and (c) show the synthetic FK spectra (ζpl,αβ and ζtl,αβ) against angular orders and

frequencies. For comparison with observed FK spectra, we take into account the effect of data tapering.

This effect is given by convolution with the PSD of the taper function (the Welch window function

in this study). The spectra of the ZZ, RR, and the real part (ℜ) of ZR show a clear Rayleigh wave

branch (the fundamental spheroidal mode), whereas the TT spectrum shows a Love wave branch
(fundamental toroidal mode). Lack of the TT component for a pressure source means that the pressure

source cannot, in principle, excite toroidal modes.

The FK spectrum of the RR component for the pressure source lacks overtones, whereas that for

the shear traction source shows a clear overtone branch corresponding to the shear-coupled PL wave in

the temporal-spatial domain (Nishida 2013b). The FK spectrum of the ZZ component of the pressure

source shows many different overtones associated with teleseismic body waves corresponding to direct
P , PP , PPP , PcP waves, etc.

We note that the synthetic FK spectra of the ZZ, RR, and TT components have only real com-

ponents. On the other hand, that of the ZR component has both real and imaginary components. This

difference comes from coupling between modes with the same angular orders l but different radial

orders n. The imaginary parts of the ZZ, RR, and TT components are cancelled out because of the

symmetry between n and n′. However, the imaginary part of the ZR component remains, although the
amplitude is smaller than that of the real part. The coupling becomes important when we discuss de-

tails of body wave propagation at a higher frequency (Takagi et al. 2014) because their mode spacings

become dense.

3 OBSERVATION

We analysed continuous sampling records from 2004 to 2011 at 618 stations (Figure 4(a)) with three

components of broadband seismometers (STS-1, STS2, and STS2.5) at the lowest ground noise levels
(Peterson 1993; Berger et al. 2004; Nishida 2013b). We used data obtained from the International

Federation of Digital Seismographic Networks (FSDN), Observatories and Research Facilities for Eu-

ropean Seismology (ORFEUS), and F-net stations of the National Research Institute for Earth Science
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Figure 3. (a) Observed FK spectrum of ZZ (ζobsl,ZZ), RR (ζobsl,RR), TT (ζobsl,TT ) components, and the real and
imaginary part of the ZR (ζobsl,RZ) component against angular order l and frequency. (b) Synthetic FK spectra
for pressure sources (ζpl,ZZ , ζpl,RR, and ζpl,RZ). The pressure source cannot explain the observed Love wave
excitations or the observed overtones of spheroidal modes. The model also cannot explain the imaginary part
ℑ[ZR]. (c) Synthetic FK spectra for shear traction sources (ζtl,ZZ , ζtl,RR, ζtl,TT , ζtl,RZ). Those for shear traction
sources can explain even the observed overtones and imaginary parts of observed ℑ[ZR].

and Disaster Prevention (NIED). For each station, the complete record was segmented into about 2.8-h

data with an overlap of 1.4 h. In order to avoid the effects of large earthquakes, we discarded all the

seismically disturbed segments (Nishida & Kobayashi 1999) using the global CMT catalog (Ekström
et al. 2012). The records were tapered with the Welch window function. The fast Fourier transform

of each segment was computed with corrections for the instrument response. We calculated the cross-

spectra Φobs
αβ,ij(ω) between every pair of different stations (ith and jth stations) for the common record

segments from 3 to 20 mHz, where α and β represent a radial (R), transverse (T), or vertical (Z)

component.

Then, we stacked the real parts of the cross-spectra of ZZ, TT , and RR components for the nine
years. We also calculated real and imaginary parts of the cross-spectra of the ZR component. For a

better estimation of the cross-spectra, the data weighting is crucial. The data weighting depends on the

noise levels of the seismogram caused by the sensors and the local site conditions. Because horizontal
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components are more sensitive to local site conditions, noise levels of horizontal components are or-

ders of magnitude higher than those of vertical components at most stations. In such a case, weighting
depending on data quality is important during the stacking procedure (Takeo et al. 2013). Details of

the data weighting are shown in appendix B.

FK spectra calculated from the observed cross-spectra (e.g. Nishida et al. 2002; Nishida 2013b)

are useful for comparison with the synthetic ones (ζpl,ZZ , ζtl,ZZ , etc.). We calculated the observed FK

spectra as follows. By assuming homogeneous and isotropic excitation of Earth’s normal modes, the

TT , RR, ZZ, and ZR components of the cross-spectra (Φkω
ZZ ,Φ

kω
RR,Φ

kω
TT ,Φ

kω
ZR) can be represented

by a superposition of associated Legendre functions Plm(cosΘ) as a function of separation distance

Θ (Nishida 2013b) as

Φkω
ZZ(Θ) =

∑
l

ζobsl,ZZ(ω)Pl(cosΘ), (23)

Φkω
RR(Θ) =

∑
l

{
ζobsl,RR(ω)

P ′′
l (cosΘ)

k2
+ ζobsl,TT (ω)

P ′
l

k2 sinΘ

}
, (24)

Φkω
TT (Θ) =

∑
l

{
ζobsl,TT (ω)

P ′′
l (cosΘ)

k2
+ ζobsl,RR(ω)

P ′
l

k2 sinΘ

}
, (25)

Φkω
ZR(Θ) =

∑
l

ζobsl,ZR(ω)
P ′
l

k
, (26)

where l is the angular order, k is the wavenumber
√
l(l + 1), and the coefficients ζobsl,αβ represent the

FK spectrum of the αβ component at angular frequency ω and angular order l. This method is a

natural extension of Aki’s spatial autocorrelation method (Aki 1957; Haney et al. 2012) from a flat

earth to spherical one (see appendix A for details). We estimated the coefficients ζobsl,αβ by minimizing

the square differences between the synthetic cross-spectra Φkω
αβ and the observed ones Φobs

αβ,ij .

The coefficients ζobsl,ZZ , ζobsl,RR, ζobsl,TT , and ζobsl,ZR give the FK spectra of the ZZ, RR, TT , and ZR

components, respectively, as shown in Figure 3 (a). The plots of the RR, ZZ, and RZ components show
a clear Rayleigh wave branch (fundamental spheroidal modes), whereas that of the TT component

shows a Love wave branch (fundamental toroidal modes).

The figure shows that the reference model of a random shear traction source can explain the

observed amplitudes of the fundamental modes, although the model over-predicted the spectral am-

plitudes above 10 mHz. The synthetic spectra of RR and ZZ components from the shear traction

sources predict amplitudes of overtones corresponding to the shear-coupled PL waves well. The imag-

inary part (ℑ) of the observed RZ component is also consistent with that for the shear traction source.

These results suggest that random shear traction sources are dominant. However, the synthetic spec-

trum of the TT component over-predicts the observed amplitudes below 5 mHz (Fukao et al. 2009;
Nishida 2013b). This overestimation suggests that pressure sources also contribute their excitations

below 5 mHz. In order to quantify the pressure-source amplitudes, we will conduct an inversion of

source spectra in the next section.
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Figure 4. (a) Station distribution used in this study. We analysed seismograms from 2004 to 2011 at 618 stations
with three components of broadband seismometers (STS-1, STS2, and STS2.5) at the lowest ground noise levels.
The data were retrieved from IRIS, F-net, and ORFEUS data centres. (b) A histogram showing the distribution
of receiver-receiver ranges for the cross-spectra. The numbers in 1◦ range bins are plotted as a function of range.

4 SOURCE INVERSION OF SEISMIC HUM

To infer the normalised source spectra of the pressure source Ψ̄p and that of the shear traction source

Ψ̄t, we fit the synthetic cross-spectra Φs to the observed cross-spectra Φobs of RR, TT , and ZZ
components as

Φs(Θ, ω) = [K(Θ, ω) ∗ Ξ(ω)] Ψ̄(ω) (27)
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where

ΦS(Θ, ω) ≡

ΦZZ(Θ, ω)

ΦRR(Θ, ω)

ΦTT (Θ, ω)

 , Ψ̄(ω) ≡

(
Ψ̄p(ω)

Ψ̄t(ω)

)
,

K(Θ, ω) ≡



∑
l

Plζ
p
l,ZZ

∑
l

Plζ
t
l,ZZ

∑
l

P ′′
l

k2
ζpl,RR

∑
l

[
P ′′
l

k2
ζtl,RR +

P ′
l ζ

t
l,TT

k2 sin θ

]
∑
l

P ′
l ζ

p
l,RR

k2 sin θ

∑
l

[
P ′
l ζ

t
l,RR

k2 sin θ
+
P ′′
l

k2
ζtl,TT

]


,

where K represents the corresponding components of eqs. (20), and Θij is the angle between xi and

xj .

Because the observed cross-spectrum is for the tapered records, we must take into account the
effect of tapering in the synthetic cross-spectrum Φs(xi,xj ;ω). We assume that the phases of different

spectral components of seismograms are uncorrelated, because the process is random. The effect of

the tapering is given by convolution with the PSD of the taper function Ξ(ω) (Welch taper used in this

data analysis).

Horizontal components of broadband seismometers record not only translational ground motions
but also tilt motions in the mHz band. We also corrected the effect by a correction term δnVl (Dahlen

& Tromp 1998), δnVl = −kg/(ω2Re)nUl.

We determined the source spectrum Ψ̄ by minimizing the squared difference S between the ob-

served and synthetic cross-spectra as ∂S(ω)/∂Ψ̄p(ω) = 0, and ∂S(ω)/∂Ψ̄t(ω) = 0 . Here S is

defined as

S(ω) =

i<j∑
αβ,ij

sinΘijw̄αβ,ij

(
Φobs

αβ,ij(ω)−Φs(Θij , ω)
)2

(28)

where w̄αβ,ij is the weighting of a cross-spectrum, and Φobs
ij is the vector of the observed cross-spectra,

Φobs
ij (ω) ≡

Φobs
ZZ,ij(ω)

Φobs
RR,ij(ω)

Φobs
TT,ij(ω)

 . (29)

The weighting factor w̄αβ,ij is estimated by the standard deviation of the observed spectra divided

by the square root of the stacked number (see appendix B for details). In the summation of S, we

use only the cross-spectral terms (i ̸= j) and exclude the power-spectral terms (i = j) to avoid

the effects of self and local seismometer noise. We also use an empirical data weighting by sinΘ to
homogenize the station distribution. This is because dense arrays such as F-net and USArray yield

station pairs with separation distances shorter than 30◦ (Figure 4(b)), and their signal levels are higher

than those of distant pairs. Without the empirical weighting, the squared difference S over-emphasizes
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Figure 5. Power spectra of the random pressure (blue line) and shear traction (red line) sources normalised by
the reference model with bootstrap errors. The pressure source spectrum shows two local maxima at 3.7 and
4.4 mHz, which correspond to acoustic coupling modes (0S29, 0S37, respectively) between the fundamental
spheroidal and atmospheric acoustic modes.

the contribution of the dense arrays. Above 20 mHz, the effects of Earth’s lateral heterogeneities are

too strong to model the observed cross-spectra using a 1-D structure.

Figure 5 shows the resultant source spectra of a random pressure and shear traction source. The

spectrum for the shear traction source has a peak at 7 mHz, and the shear traction is dominant above 5

mHz. Above 10 mHz, no pressure source is needed to explain the observed cross-spectra. The spectra

of the pressure source below 4 mHz are comparable to that of the shear traction. The spectrum of the

pressure source has two local maxima, at 3.7 and 4.4 mHz, corresponding to the acoustic coupling
modes (0S29, 0S37, respectively) between the solid earth and the atmosphere, although the errors

become larger at low frequencies. The peak amplitudes are consistent with past studies (Nishida et al.

2000; Nishida et al. 2002; Kobayashi et al. 2008).

We estimated errors of the source spectra by a bootstrap method (Efron & Tibshirani 1994). We

re-sampled the observed cross-spectra, allowing duplication. Figure 5 shows standard deviations of

the estimated source spectra for 100 samples. Below 4 mHz, the errors become larger because of

the high noise levels of the horizontal components. Figure 6 shows the source spectra against the

spectral amplitudes of the shear traction and pressure sources at frequencies within the error ellipses.
At frequencies below 4 mHz, the error ellipses are elongated along a line because of the trade-off

between the shear traction and pressure sources, owing to the higher noise levels of the horizontal

components.
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Figure 6. Plot of random pressure and shear traction against power spectral densities, with error ellipses. At
frequencies below 4 mHz, the error ellipses are elongated along a line because of the trade-off between the
shear traction and pressure sources, owing to the higher noise levels of the horizontal components.

5 POSSIBLE EXCITATION MECHANISMS

The observed dominance of shear traction sources above 5 mHz can be explained by topographic cou-

pling between ocean infragravity waves and seismic surface waves (Nishida et al. 2008; Fukao et al.

2009; Nishida 2013a). This mechanism could be responsible for shear traction sources above 5 mHz.

In this section, we focus on pressure sources below 5 mHz, and discuss their two possible excitation

mechanisms: (1) nonlinear processes of ocean waves (Webb 2007, 2008; Bromirski & Gerstoft 2009;

Traer & Gerstoft 2014) and (2) atmospheric disturbances (Kobayashi & Nishida 1998; Kobayashi et

al. 2008).

First, let us consider the excitation by ocean waves. In the frequency range 2 to 20 mHz, pres-

sure changes due to the ocean gravity wave reach the ocean bottom because the wavelength becomes

comparable to the ocean depth. This wave is called an ocean infragravity wave. Ocean infragravity

waves propagate in the horizontal direction with a phase velocity approximately given by
√
gh, where

g is gravitational acceleration, and h is water depth. There are two types of ocean infragravity waves:

edge waves (or trapped waves) and leaky waves (or freely propagating waves), as shown in Figure 1.

Slower phase velocities at shallow depths tend to trap most of the ocean infragravity waves in coastal

areas (e.g. Herbers et al. 1995; Sheremet et al. 2002, 2014; Dolenc et al. 2005, 2008). Edge waves

are repeatedly refracted and become trapped close to the shore. On the other hand, leaky waves can

propagate to and from the deep ocean.

An observation at shallow depths (<100 m) showed a spectral peak for the edge waves with a

nominal frequency of 4 to 40 mHz (Herbers et al. 1995). The frequency is characterized as
√
gh over
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a typical surf zone width of L. The edge waves are generated in coastal areas, primarily by nonlinear

interactions of higher-frequency surface gravity waves (wind waves) with dominant periods around 10
s excited by winds just above the ocean surface. Radiation stress (Longuet–Higgins & Stewart 1962)

due to the wind waves with two nearly equal frequencies forces the ocean infragravity waves at the

difference frequency. The radiation stress could also force the solid earth on the ocean bottom (Traer

& Gerstoft 2014). The forcing can be represented as random pressure on the ocean bottom. Nonlinear

mesoscale forcing by primary wind waves in the deep ocean also generates leaky waves (Uchiyama

& McWilliams 2008). Peak frequencies of the leaky waves in the deep ocean range from 8 to 20
mHz (e.g. Webb 1998; Sugioka et al. 2010; Godin et al. 2013). The forcing distributed in the deep

ocean may also contribute to the excitation of seismic hum as pressure sources. The radiation stress by

the wind waves has higher typical frequencies, from 4 to 40 mHz, than that of the estimated random

pressure source from 3 to 8 mHz. Excitation by ocean infragravity waves alone cannot explain the

observed peak frequency of the pressure sources, although observations of ocean infragravity waves

have been improved.

The next possible mechanism is excitation by atmospheric disturbances as shown in Figure 1.
The excitation sources can be characterized by stochastic parameters of atmospheric disturbances,

the power spectra of the pressure disturbances p(f), and their correlation length L(f). The reference

model of effective pressure given by eq. (17) is based on an ad-hoc model of atmospheric disturbances

(Fukao et al. 2002; Nishida 2013a):

p(f) = 4× 103 ×
(
f

f0

)−2

[Pa2Hz−1], (30)

L(f) = 600×
(
f

f0

)−0.12

[m].

The model of atmospheric disturbances can explain the observed amplitudes of Rayleigh waves below

7 mHz (Fukao et al. 2002; Nishida et al. 2000; Kobayashi et al. 2008; Nishida 2013a), although the

assumed stochastic parameters of atmospheric disturbances have large uncertainties. The uncertainty

comes from the lack of global observation of atmospheric disturbances at mesoscales from 1 to 10

mHz.

The estimated pressure-source spectrum also has two local peaks, at 3.7 and 4.4 mHz, correspond-
ing to resonant peaks of acoustic coupling between the solid earth and the atmosphere (Watada 1995;

Watada & Kanamori 2010; Lognonné et al. 1998; Kobayashi 2007 ). The two spectral peaks at acous-

tic coupling frequencies (0S29, 0S37) suggest that the excitation sources originate from atmospheric

phenomena (Nishida et al. 2000; Kobayashi et al. 2008). The atmospheric disturbances should also

excite background atmospheric acoustic waves in the mHz band. There are observations of such back-

ground acoustic waves excited by cumulonimbus clouds (Jones & Georges 1975) and the atmospheric

turbulence in mountain regions (Bedard 1978; Nishida et al. 2005), although there is still no direct
observation of the acoustic modes coupled with the solid earth. On the other hand, there is no observa-

tion of the background atmospheric acoustic wave in the mHz band excited by oceanic disturbances.

These facts suggest that ocean disturbances do not excite the background acoustic waves in the mHz
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band as in the case of microbaroms with a typical frequency of about 0.2 Hz (Donn & Naini 1973;

Arendt & Fritts 2000).

In relation to background low-frequency infrasounds, background Lamb waves of Earth’s atmo-

sphere from 1 to 10 mHz were detected by array analysis of microbarometer data from the USArray

in 2012 (Nishida et al. 2014). Lamb waves propagate non-dispersively in the horizontal direction as
atmospheric acoustic waves, and are hydrostatically balanced in the vertical direction (e.g. Bretherton

1969). Because the wave energy densities decay exponentially with altitude, they are concentrated in

the troposphere. The observations suggest that the most probable excitation sources are tropospheric

disturbances. The tropospheric disturbances may also be responsible for excitations of background

low-frequency infrasounds and seismic hum below 5 mHz as pressure sources.

Thus, the pieces of these observations suggest that the excitation mechanisms of seismic hum

should be considered as a superposition of the processes of the solid earth, atmosphere, and ocean as

a coupled system. To date, however, there is no unified theoretical framework that includes the excita-

tion of Lamb waves, atmospheric acoustic waves, and seismic surface waves. For further discussions,
a new theory, including coupling between acoustic and Rayleigh waves, needs to be developed. Locat-

ing the pressure and shear traction sources independently is also crucial for determining the physical

mechanism of the excitation sources. This is because strong pressure sources could be expected in

equatorial regions with high activities of cloud convection (Shimazaki & Nakajima 2009) if the at-

mospheric excitation mechanism is involved. On the other hand, strong excitation could be expected

in coastal regions for oceanic sources. Low signal-to-noise ratios of the horizontal components are
problematic when attempting to separate the contributions of the pressure and shear traction sources.

For the estimation, both data analysis and modelling methods should be developed. For the source

location, the effects of Earth’s lateral heterogeneities are also important, in particular above 10 mHz.

Numerical methods could be effective for this application.

6 CONCLUSIONS

We developed an inversion method for estimating the source spectra of seismic hum by minimizing
the squared difference between observed and synthetic cross-spectra between pairs of stations. The

synthetic cross-spectra were calculated with the assumption of a spatially isotropic and homogeneous

distribution of random traction sources on Earth’s surface. We applied this method to the IRIS, OR-

FEUS, and F-net records at 618 stations with three components of broadband seismometers during

the period 2004–2011. The source spectra show the dominance of shear tractions above 5 mHz, which

is consistent with past studies. Below 5 mHz, however, the spectral amplitudes of pressure sources

are comparable to those of shear traction. This observation suggests that atmospheric disturbances are
also probable excitation sources below 5 mHz, although ocean waves are also candidates. Thus, the

excitation mechanisms of seismic hum should be considered as a superposition of the processes of the

solid earth, atmosphere, and ocean as a coupled system.
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APPENDIX A: ADDITIONAL THEOREM OF VECTOR SPHERICAL HARMONICS

For the additional theorem of vector spherical harmonics, we consider the spherical triangle as shown

in Fig. A1. The triangle is defined by three points (the pole, r̂1, and r̂2) on the sphere. We also define

angles θ1, θ2, ϕ1, ϕ2, χ1, and χ2 as shown in Figure A1. We note that cosΘ = cos θ1 cos θ2 +

sin θ1 sin θ2 cos(ϕ1 − ϕ2).

We start the additional theorem of spherical harmonics (Dahlen & Tromp 1998) as

l∑
m=−l

Ylm(θ1, ϕ1)Ylm(θ2, ϕ2) =

(
2l + 1

4π

)
Pl(cosΘ). (A.1)

Differentiation of the additional theorem with respect to the parameters θ1 and θ2 and use of the

expressions for the derivatives of Θ, χ1, and χ2 gives the following additional theorem directly (Winch
& Roberts 1995) as

l∑
m=−l

∂Ylm(θ1, ϕ1)

∂θ1
Ylm(θ2, ϕ2) =

(
2l + 1

4π

)
dPl(cosΘ)

dΘ
cosχ1, (A.2)

l∑
m=−l

1

sin θ1

∂Ylm(θ1, ϕ1)

∂ϕ1
Ylm(θ2, ϕ2) =

(
2l + 1

4π

)
dPl(cosΘ)

dΘ
sinχ1, (A.3)

l∑
m=−l

∂Ylm(θ1, ϕ1)

∂θ1

∂Ylm(θ2, ϕ2)

∂θ2

=

(
2l + 1

4π

)[
d2Pl(cosΘ)

dΘ2
cosχ1 cosχ2 −

dPl(cosΘ)

dΘ

sinχ1 sinχ2

sinΘ

]
, (A.4)

l∑
m=−l

∂Ylm(θ1, ϕ1)

∂θ1

1

sin θ2

∂Ylm(θ2, ϕ2)

∂ϕ2
=

−
(
2l + 1

4π

)[
d2Pl(cosΘ)

dΘ2
cosχ1 sinχ2 +

dPl(cosΘ)

dΘ

sinχ1 cosχ2

sinΘ

]
, (A.5)

l∑
m=−l

1

sin θ1

∂Ylm(ϕ1, ϕ1)

∂ϕ1

1

sin θ2

∂Ylm(θ2, ϕ2)

∂ϕ2
=(

2l + 1

4π

)[
−d

2Pl(cosΘ)

dΘ2
sinχ1 sinχ2 +

dPl(cosΘ)

dΘ

cosχ1 cosχ2

sinΘ

]
.(A.6)

For the calculation, we use the following results of partial derivatives:

∂Θ

∂θ1
= cosχ1,

∂Θ

∂θ2
= cosχ2,

∂Θ

∂ϕ1
= sin θ1 sinχ1,

∂Θ

∂ϕ2
= − sin θ2 sinχ2, (A.7)

∂χ1

∂θ1
= − sinχ1 cotΘ,

∂χ1

∂θ2
=

sinχ2

sinΘ
,

∂χ2

∂θ1
=

sinχ1

sinΘ
,

∂χ2

∂θ2
= − sinχ2 cotΘ. (A.8)
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Figure A1. Spherical triangle showing nomenclature used.

The additional theorem of spheroidal modes can be written as

l∑
m=−l

(P lm(r̂1) +Blm(r̂1))
t(P lm(r̂2) +Blm(r̂2)) =

2l + 1

4π
R1

Pl(cosΘ) dPl(cosΘ)
kdΘ 0

dPl(cosΘ)
kdΘ

d2Pl(cosΘ)
k2dΘ2 0

0 0 dPl(cosΘ)
k2dΘ

1
sinΘ

R2. (A.9)

The additional theorem of toroidal modes can be written as

l∑
m=−l

C lm
tC lm =

2l + 1

4π
R1

0 0 0

0 dPl(cosΘ)
k2dΘ

1
sinΘ 0

0 0 d2Pl(cosΘ)
k2dΘ2

R2. (A.10)

The rotation matrices (R1, R2) are defined as

R1 =

1 0 0

0 cosχ1 sinχ1

0 − sinχ1 cosχ1

 (A.11)

R2 =

1 0 0

0 cosχ2 sinχ2

0 − sinχ2 cosχ2

 . (A.12)

Here we consider a cross-spectrum between a pair of stations at r̂1 and r̂2, assuming that the

random elastic wavefield can be represented by superposition of spheroidal modes (e.g. Lobkis &

Weaver 2001) as

s(r̂) =
∑
l

alm(ω)(P lm(r̂) +Blm(r̂)). (A.13)
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The cross-spectrum between two stations can be written as ⟨s∗(r̂1)s(r̂2)⟩, where ⟨⟩ represents

the ensemble average. We assumed equipartition states of modes with respect to azimuthal orders and
the anular order as ⟨a∗lm(ω)al′m′(ω)⟩ = δll′δmm′ . The cross-spectra can be written as superposition

of eq. (A.9). A similar discussion can be applied for toroidal modes. The formulations of eqs. (A.9)

and (A.10) are natural extensions of the spatial autocorrelation method (Aki 1957; Haney et al. 2012)

from a flat earth to a spherical one.

APPENDIX B: WEIGHTING OF CROSS-SPECTRA

When we calculate a cross-spectrum between a pair of stations, weighting the data becomes impor-

tant. In the case of microseisms at frequencies around 0.1 Hz, signal levels of the elastic wavefield

change with time. Typically, the signal levels vary on a time scale of one day, and the amplitude of

the variations reaches more than one order of magnitude. In this case, spectral whitening is efficient

(e.g. Bensen et al. 2007). In the case of seismic hum in the mHz band, the signal levels are stationary,

although the local noise level is greater than the signal levels. In this case, data weighting depending
on the local noise level is effective (Takeo et al. 2013). In particular, the noise levels of the horizontal

components are orders of magnitude greater than those of the vertical components. For the calculation

of the cross-spectrum, we suppressed noisy Fourier components using data weighting as follows.

We calculated a weighted cross-spectrum Φij(f) between the ith and jth stations at a frequency

f as

Φij(f) =
1∑

k w
k
ij(f)

∑
k

wk
ij(f)ũ

k∗
i (f)ũkj (f), (B.1)

where ũki (f) is a Fourier spectrum of ground acceleration of the kth segment at the ith station. Here,

we dropped the subscript of the αβ component for simplicity. The weighting factor wk
ij(f) is defined

as

wk
ij(f) =

1

|ũki (f)|+ wt(f)

1

|ũkj (f)|+ wt(f)
. (B.2)

We determined the water level wt(f) =
√

50× nl(f), where nl is the New Low Noise Model (Pe-

terson 1993) of ground acceleration. When 50 × nl(f) is smaller than the power spectra (e.g. the

horizontal components), the weight simply suppresses noisy data. When the power spectral densities

are comparable to nl(f) (e.g. the vertical components at the quietest sites), the weighting wk
ij becomes

constant.

We also evaluated the quality of the resultant Φij(f) of the inversion by data weighting w̄ij(f) as

w̄ij(f) =

(√
Nij(f)

Nij(f)∑
k w

k
ij(f)

)2

, (B.3)

whereNij(f) is number of stacked traces. The weighting factor w̄ij(f) can be interpreted as the square

of the reciprocal of the standard error of Φij(f).


