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Deep learning of aftershock patterns following large 
earthquakes
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Aftershocks are a response to changes in stress generated by large 
earthquakes and represent the most common observations of the 
triggering of earthquakes. The maximum magnitude of aftershocks 
and their temporal decay are well described by empirical laws (such 
as Bath’s law1 and Omori’s law2), but explaining and forecasting the 
spatial distribution of aftershocks is more difficult. Coulomb failure 
stress change3 is perhaps the most widely used criterion to explain 
the spatial distributions of aftershocks4–8, but its applicability has 
been disputed9–11. Here we use a deep-learning approach to identify 
a static-stress-based criterion that forecasts aftershock locations 
without prior assumptions about fault orientation. We show that a 
neural network trained on more than 131,000 mainshock–aftershock 
pairs can predict the locations of aftershocks in an independent 
test dataset of more than 30,000 mainshock–aftershock pairs more 
accurately (area under curve of 0.849) than can classic Coulomb 
failure stress change (area under curve of 0.583). We find that the 
learned aftershock pattern is physically interpretable: the maximum 
change in shear stress, the von Mises yield criterion (a scaled version 
of the second invariant of the deviatoric stress-change tensor) and 
the sum of the absolute values of the independent components of 
the stress-change tensor each explain more than 98 per cent of the 
variance in the neural-network prediction. This machine-learning-
driven insight provides improved forecasts of aftershock locations 
and identifies physical quantities that may control earthquake 
triggering during the most active part of the seismic cycle.

The deep-learning aftershock location forecasts that we have devel-
oped are trained and tested using co-seismic slip distributions from 
the SRCMOD online database of finite-fault rupture models (http://
equake-rc.info/SRCMOD/). We calculated elastic stress-change tensors 
for 199 of the SRCMOD slip distributions (118 distinct mainshocks; 
Supplementary Table 1) at the centroids of 5 km × 5 km × 5 km cells 
in a volume extending 100 km horizontally from each mainshock 
rupture plane and 50 km vertically12. The aftershocks that occurred 
between one second and one year after the mainshocks in each grid 
cell (162,741 aftershocks in total) were compiled from the International 
Seismological Center (ISC) event catalogue. By discretizing the  
volume around each mainshock in this way, aftershock forecasting can 
be formulated as a large-scale binary classification problem, with the 
goal of accurately classifying each 5 km × 5 km × 5 km grid cell in the 
volume around each mainshock as either ‘containing aftershocks’ or 
‘not containing aftershocks’.

Neural networks are machine-learning algorithms that are well suited 
and widely used to classify data13. The neural networks used here are 
fully connected and have six hidden layers with 50 neurons each and 
hyperbolic tangent activation functions (13,451 weights and biases in 
total). The first layer corresponds to the inputs to the neural network; 
in this case, these inputs are the magnitudes of the six independent 
components of the co-seismically generated static elastic stress-change 
tensor calculated at the centroid of a grid cell and their negative values. 
In neural networks designed for binary classification problems, the 
final layer is often a single sigmoid. In our case, the output of this final 

neuron may be interpreted as the predicted probability that a grid cell 
generates one or more aftershocks.

The stress changes and aftershock locations associated with about 
75% of randomly selected distinct mainshocks were used as training 
data; the remaining 25% were reserved to test the trained neural net-
works. The training and testing datasets both consist of the elements 
of the stress-change tensor as features and the corresponding labels 
of either 0, for grid cells without aftershocks, or 1, for grid cells with 
aftershocks.

We assess the accuracy of the neural-network aftershock location 
forecasts on the test dataset using receiver operating characteristic 
(ROC) analysis. ROC curves are widely used to assess the efficacy of 
diagnostic medical tests. To build these curves, the true positive rate of 
a binary classifier is plotted against the false positive rate for all possible 
thresholds of the classifier (see Methods for more details). The area 
under an ROC curve (AUC) then quantifies the overall performance 
of a test across all thresholds (Fig. 1). The ROC analysis reveals that the 
neural-network forecast can explain aftershock locations better than can 
widely used metrics: the merged AUC value across all slip distributions 
and grid cells in the test dataset for the neural-network forecast is 0.849, 
which is larger than that of the classic Coulomb failure stress criterion3 
(AUC = 0.583) resolved on receiver planes parallel to the average orien-
tation of the mainshock fault (ΔCFS(μ = 0.4), in which μ is the effective 
coefficient of friction). Neither classifier has particularly high precision, 
defined as the percentage of grid cells predicted to be positive that actu-
ally are positive: the overall precision associated with ΔCFS(μ = 0.4) 
at a cut-off threshold of 0.01 MPa (Methods) is 3% and that of the neu-
ral-network classifier at a threshold of 0.5 is 6% (Fig. 2a, d). Permutation 
tests (Methods) reveal that the neural-network forecast is significantly 
better than random assignment for most of the slip distributions in the 
test dataset: the mean empirical P value is 0.026 across all 57 distribu-
tions, and only four distributions are associated with empirical P values 
larger than 0.1. Additional tests, based on realizations of the training 
and test datasets that incorporate only one slip distribution per main-
shock and variable limits on grid-cell depth depending on the depth of 
each slip distribution are included in Methods.

The spatial pattern of the deep-learning location forecast can be vis-
ualized for the idealized synthetic reference case of an earthquake with 
a uniform 1 m of slip on a 60-km-long right-lateral strike-slip fault 
(moment magnitude Mw ≈ 7.0, Fig. 2; see Extended Data Fig. 1 for 
an idealized dip-slip case). A location forecast based on the Coulomb 
failure stress criterion3 for this idealized strike-slip fault would assign 
a low risk of aftershocks adjacent to the mainshock rupture plane and 
a heightened risk in lobes extending from the termini of the mainshock 
rupture plane (Fig. 2e). By contrast, the learned forecast developed here 
suggests that aftershock risk may be heightened within 10 km of the 
mainshock fault in all directions (Fig. 2h). This deep-learning forecast 
is therefore not consistent with the idea of well-defined stress shadows6 
immediately adjacent to the mainshock.

The learned forecast (Fig. 2h) has implications for the physics of 
aftershock triggering and earthquake generation. Qualitatively, the 
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Fig. 1 | Mainshock–aftershock examples. a–d, Spatial patterns of 
ΔCFS(μ = 0.4) for the 1999 Mw = 7.7 Chi-Chi earthquake17 at a depth of 
7.5 km (a), the 1995 Mw = 6.9 Kobe earthquake18 at a depth of 7.5 km (b) 
and the 2005 Mw = 7.6 Kashmir earthquake19 at a depth of 12.5 km (c), 
along with ROC curves for all three earthquakes across all depths (d). In 
a–c, n refers to the number of positive grid cells at the depth shown and 
ntot is the number of positive grid cells across all depths. A 1:1 grey dashed 
line is included in d for reference. Because of possible sign ambiguities, 
we calculate four versions of ΔCFS(μ = 0.4) and use the best-performing 

sign convention for each slip distribution. In a–c, ΔCFS(μ = 0.4) values 
(in megapascals) are fed through a sigmoid filter sig(x) = 1/(1 + e−x) 
(sig(aΔCFS(μ = 0.4) − b), with a = 10, b = 1; colour scale) to facilitate 
comparison to the neural network; faults are shown in yellow and grid cells 
that contain aftershocks are shown in black. e–h, Analogous to a–d but for 
the neural network. To facilitate easy comparison, the ROC curves in d are 
plotted as pale lines in h and the ROC curves in h are plotted as pale lines 
in d.
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Fig. 2 | Comparison of performance. a–d, ROC curves for every slip 
distribution in the test dataset (grey curves) for ΔCFS(μ = 0.4) (a), Δτmax 
(b), ΔJ3 2  (c) and the neural network (d). Merged ROC curves are shown 
in blue and the associated AUC values are listed. The red circles in a and d 
highlight the thresholds of 0.01 MPa and 0.5, respectively. e–h, For a 

synthetic case of a 60-km-long, right-lateral strike-slip fault (red lines) at a 
depth of 10 km, we show a comparison of the spatial patterns of 
ΔCFS(μ = 0.4) (e), Δτmax (f), ΔJ3 2  (g) and the neural network (h), 
averaged over the fault strike.
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strike-averaged neural-network forecast appears to closely resemble 
the spatial patterns of the maximum change in shear stress (Δτmax) and 
the von Mises yield criterion ( ΔJ3 2 , in which ΔJ2 is the second invar-
iant of the deviatoric stress-change tensor; Fig. 2). To examine these 
potential links to physical quantities quantitatively, we compare a suite 
of scalar static-stress metrics (including the invariants of the stress-
change tensor, Coulomb failure stress change and maximum shear 
stress change; see Methods)—after they are scaled, shifted and normal-
ized with a sigmoid filter—to the neural-network forecast (Fig. 2h). In 
addition to Coulomb failure stress change, several of the quantities, 
including shear stress changes and the invariants of the stress change 
tensor, have been proposed and used successfully in previous studies 
of aftershock patterns3,14–16. Of the metrics considered, the maximum 
change in shear stress, the von Mises yield criterion and the sum of the 
absolute values of the six independent components of the stress change 
tensor can explain the largest percentages (more than 98%, or R2 > 0.98 
for both the idealized strike-slip and dip-slip cases) of the variance in 
the strike-averaged learned forecast (see, for example, Fig. 2; Extended 
Data Fig. 1) within a 300 km × 300 km area centred on the fault. The 
last quantity is particularly interesting because it is not invariant under 
rotation and to our knowledge has not previously been proposed as a 
quantity that could explain aftershock location patterns. A few other 
quantities, such as the sum of the absolute values of the shear stress 
changes on fault-parallel receiver planes can also explain more than 
90% of the variance in the strike-slip neural-network forecast (Extended 
Data Table 1). In other words, without any assumptions about receiver 
plane orientation or geometry, the neural network identified an after-
shock location forecast that is strongly correlated with a small number 
of physical quantities, most notably the sum of the absolute values of 
the six independent components of the stress-change tensor, the 
von Mises yield criterion and the maximum change in shear stress. 
These results highlight how deep-learning approaches can lead to 
improved aftershock forecasts and provide physical insights into the 
mechanisms of earthquake triggering.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0438-y.
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MEthodS
Neural-network structure and development. To build and train the neural 
networks, we use the Python toolkit Keras (https://keras.io), which provides a 
high-level application programming interface to access the Theano20 (http://deep 
learning.net/software/theano) and TensorFlow21 (https://www.tensorflow.org) 
deep-learning libraries. We train the networks using Theano, an adaptive learning 
rate (Adadelta) optimization method22, and a binary cross-entropy cost function. 
Negative training data (grid cells without aftershocks) are downsampled during 
training. During training, 10% of the positive training data samples were used for 
validation, along with an equal number of randomly selected negative samples.
Aftershock catalogue. The aftershocks that occurred between one second and 
one year after the mainshocks in each grid cell were compiled from the reviewed 
ISC event catalogue. Note that for seven earthquakes in 2012, the time period 
included is shorter (as short as about one month for the Mw = 7.7 Masset, Canada, 
earthquake) because the catalogue ends on 30 November 2012.
ROC curve analysis. ROC curves are widely used to evaluate the efficacy of binary 
classifiers and diagnostic tests in medicine, machine learning and many other 
fields. To construct an ROC curve, the true positive rate (the ratio of the number 
of true positive classifications to the total number of positives, or in this case the 
ratio of the number of grid cells correctly identified as containing aftershocks to 
the total number of grid cells containing aftershocks) is plotted against the false 
positive rate (the ratio of the number of false positive classifications to the total 
number of negatives, or in this case the ratio of the number of grid cells incorrectly 
identified as containing aftershocks to the number of grid cells that do not contain 
aftershocks) for the range of possible test thresholds. In this way, an ROC curve 
represents the performance of a test across all possible thresholds. A binary classi-
fication method that is no better than random assignment would plot near the 1:1 
line, whereas a test that is more effective than random assignment would plot above 
the 1:1 line. The AUC quantifies the overall performance of a test; a test that is no 
better than random assignment would correspond to AUC = 0.5, whereas more 
accurate tests would have AUC values approaching 1. Note that the 2010 Darfield, 
New Zealand, slip distribution23 in the test dataset is excluded from the merged 
AUC value for Coulomb failure stress change (Fig. 2a); the geometric complexity 
of this rupture precludes meaningful definitions of average strike, rake and dip.
Permutation tests. We perform permutation tests to assess the statistical signif-
icance of the performance of the neural-network forecast on the test dataset. For 
each mainshock slip distribution in the test set, we generated 5,000 random real-
izations of the locations of positive grid cells.  Each of the resulting random ROC 
curve realizations yields an AUC value. The observed AUC value is compared 
with the empirical distribution of random AUC values from the permutation tests 
to obtain a one-sided empirical P value for every slip distribution in the test set.
Quantitative comparison to existing stress metrics for an idealized case. The 
40 stress metrics that we consider include the nearest distance to the mainshock 
rupture, the maximum change in shear stress, the three invariants of the stress-
change tensor, the Coulomb failure stress change on receiver planes parallel to the 
mainshock fault plane (with coefficient of friction μ = 0.0, 0.2, 0.4, 0.6 or 0.8), the 
total Coulomb failure stress change, the total shear stress change on fault-parallel 
receiver planes, and the normal-only component of Coulomb failure stress change 
(see Extended Data Table 1 for mathematical definitions of these quantities). 
Note that in Figs. 1 and 2a, owing to possible sign ambiguities, we calculate four  
versions of classic Coulomb failure stress change and use the best-performing sign 
convention for each slip distribution. In Extended Data Table 1, all of the metrics 
and their magnitudes are considered for both the deviatoric and full stress tensors 
in a 300 km × 300 km area centred on the idealized fault. To enable a quantitative 
and meaningful comparison of the spatial patterns of these stress metrics to the 
deep-learning forecast, we first scale and shift each stress metric, then feed these 
values through a sigmoid filter to normalize between 0 and 1.
Constraining grid-cell depths to 5 km beyond the maximum depth of each slip  
distribution. The results presented in the main text are based on training and test 
datasets (Supplementary Table 1; earthquake source data taken from refs 17–19,23–189) 
that incorporate grid cells down to 50 km for each slip distribution. We originally chose 
this fixed depth cut-off to keep the analysis as clean, clear and consistent as possible.

In addition, we consider an alternative approach, in which the maximum depth 
of grid cells considered varies with the maximum depth of each slip distribution. 
Here we present analogous results to those in the main text, but using training and 
test datasets that incorporate only grid cells shallower than 5 km below the deepest 
depth of the slip distribution, although no deeper than 50 km. As in the origi-
nal training and test datasets, we define these alternative datasets by the random 
assignments listed in Supplementary Table 1. In other words, for a slip distribution 
that extends to a depth of 17.5 km, we incorporate all grid cells with centroids 
at depths shallower than 22.5 km in the test and training datasets specified in 
Supplementary Table 1.

The size of the training and test datasets are greatly reduced when variable depth 
limits are incorporated: for the training dataset, the number of total grid cells is 

reduced by roughly 20% (from 4,743,090 to 3,779,070), while the total number 
of aftershocks is also reduced by around 3% (from 131,804 to 127,735). For some 
individual slip distributions, such as for the Landers earthquake, the number of 
grid cells is reduced by about 50%–60% because the slip distributions extend to 
depths of 15–18 km, whereas for others—such as for the Tohoku and 2004 Sumatra 
earthquakes—the number of grid cells incorporated changes by 10% or less because 
these slip distributions extend to depths of greater than 40 km. We exclude two slip 
distributions from the analysis when variable depth limits are incorporated: the 2 
December 1996 Mw = 6.7 Hyuga-nada earthquake (see Supplementary Table 1) in 
the test dataset and the 1968 Mw = 7.5 Hyuga-nada earthquake (see Supplementary 
Table 1) in the training dataset. When variable depth limits are incorporated for 
these events, the ISC catalogue does not contain any aftershocks in the volume 
surrounding the faults.

With these variable-depth-limit training and test datasets, and using a neural 
network with the same structure as before, we obtain markedly similar results 
(Extended Data Figs. 2, 3) to those obtained using the original versions of the data-
sets (Figs. 1, 2). A neural network trained on the variable-depth-limit version of the 
training dataset yields a merged AUC value across all slip distributions and grid 
cells in the variable-depth-limit version of the test dataset of 0.8333, which is larger 
than the classic Coulomb failure stress-change criterion (AUC = 0.5804). For this 
variable-depth-limit case, the neural-network classifier performs similarly well as, 
although not better than, the maximum change in shear stress (AUC = 0.8383) and 
the von Mises yield criterion (AUC = 0.8378). As in the fixed-depth-limit example, 
more than 98% of the trained-neural-network forward prediction for an idealized 
strike-slip fault (Extended Data Fig. 3h) can be explained by the maximum change 
in shear stress, the von Mises yield criterion and the sum of the absolute values of 
the independent components of the stress-change tensor.
Realizations of the test and training datasets with one slip distribution per 
mainshock. In the main text, we present results using training and test datasets 
that are defined by distinct mainshocks, rather than distinct slip distributions. In 
other words, in each dataset, there may be multiple slip distributions from the 
same event (see Supplementary Table 1). We took this approach to include as 
much data as possible; however, certain effects—and perhaps biases—could have 
been introduced as a result.

To address this concern, here we include results from an ensemble approach to 
training and testing. In this approach, we generate ten realizations of pairs of train-
ing and test datasets. Each realization of the training and test datasets includes only 
one randomly selected slip distribution per mainshock (Supplementary Table 2). 
For each of the ten realizations, we used this ensemble approach for both an anal-
ysis that incorporated grid cells down to 50 km for each slip distribution and an 
analysis that incorporated grid cells down to only 5 km beyond the maximum 
depth of each slip distribution. Thus, a total of 20 networks were trained and tested 
using the ensemble approach (Supplementary Table 2), with the structure of each 
the same as that of the original neural network.

Taking this approach substantially reduces the size of the training and test data-
sets. With grid cells down to 50 km incorporated, the mean number of positive 
grid cells included in each realization of the training dataset is 33,895.7 (with a 
minimum number of positive grid cells of 33,670 in realization 7 and a maximum 
of 34,197 in realization 1). With only grid cells down to 5 km beyond the deepest 
depth of the slip distributions incorporated, the mean number of positive grid cells 
included in each realization of the training dataset is further reduced to 31,894.9 
(with a minimum number of positive grid cells of 31,162 in realization 5 and a 
maximum of 32,318 in realization 3). By comparison, in the original training data-
set (which incorporates grid cells down to 50 km uniformly), the total number of 
positive grid cells is 85,850.

Rather than including the ROC curves from all of the realizations of training 
and test dataset pairs, we instead summarize the relative performances of 
ΔCFS(μ = 0.4), Δτmax, ΔJ3 2 and the associated trained neural networks for each 
realization (Extended Data Table 2). ROC curves for realization 6—for which the 
trained neural network performs the worst in terms of the AUC—are shown in 
Extended Data Fig. 4.

Overall, we obtain similar results to those presented in the main text when using 
realizations of training and test datasets with one randomly selected slip distribution 
per event. The AUC values listed in Extended Data Table 2 are comparable to, and 
in 18 of 20 cases larger than, the AUC values associated with Δτmax and ΔJ3 2  
evaluated on the same test dataset realizations. The smallest AUC value associated 
with the trained neural networks is 0.78 (realization 6, incorporating only grid cells 
down to 5 km beyond the deepest depth of each slip distribution; Extended Data 
Fig. 4) and the largest AUC value associated with ΔCFS(μ = 0.4) is 0.626 (realization 
6, but incorporating grid cells down to 50 km; Extended Data Fig. 4). Furthermore, 
the forward predictions of all trained neural networks (Extended Data Figs. 5, 6) 
are qualitatively similar to those displayed in Fig. 2h and Extended Data Fig. 3h.
Data and code availability. This project is based on the freely available Keras 
(https://keras.io) and Theano21 (http://deeplearning.net/software/theano) libraries 
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Extended Data Fig. 1 | Comparisons of spatial patterns of stress metrics. a–d, Analogous to Fig. 2e–h, but for an idealized thrust earthquake. The fault 
plane dips 45° to the north and the red line is the trace of the fault at the surface. Depth shown is 10 km.
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Extended Data Fig. 2 | Mainshock–aftershock examples. a–h, Analogous 
to Fig. 1a–h, using the same sign conventions for Coulomb failure stress 
change, but with results based on a training dataset (Supplementary 

Table 1) that excludes grid cells more than 5 km below the maximum 
depth of each slip distribution.
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Extended Data Fig. 3 | Comparisons of performance. a–h, Analogous to Fig. 2a–h, using training and test datasets (Supplementary Table 1) that 
exclude grid cells more than 5 km below the maximum depth of each slip distribution.
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Extended Data Fig. 4 | ROC curves associated with realization 6 of the 
datasets. a–d, Curves incorporate grid cells down to a depth of 50 km. 
e–h, Curves including grid cells down to 5 km beyond the maximum 
depth of each slip distribution. Thus, the neural network in d is trained 

and evaluated on a version of dataset realization 6 (Supplementary Table 2) 
that incorporates grid cells down to a depth of 50 km, whereas that in h 
is trained and evaluated on the same realizations of slip distributions, but 
incorporating only grid cells down to 5 km below each slip distribution.
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Extended Data Fig. 5 | Forward predictions of the neural networks 
from each realization of the training dataset, incorporating all grid 
cells down to 50 km. Each panel is analogous to Fig. 2h, but uses one of 

ten distinct neural networks trained on one of ten different realizations 
of the training dataset (Supplementary Table 2). See Methods for further 
discussion.
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Extended Data Fig. 6 | Forward predictions of the neural networks 
from each realization of the training dataset, incorporating grid cells 
down to 5 km beyond the depth of each slip distribution. Each panel is 

analogous to Fig. 2h, but uses one of ten distinct neural networks trained 
on one of ten different realizations of the training dataset (Supplementary 
Table 2). See Methods for further discussion.

© 2018 Springer Nature Limited. All rights reserved.



LetterreSeArCH

Extended data table 1 | Comparison of physical metrics to the neural network for an idealized case

χ represents either the full (σ) or deviatoric (σ′) stress-change tensor, χi are the corresponding eigenvalues, xf and yf are the x and y locations of the fault plane, respectively, and n⊥ and n‖ are the unit 
vectors perpendicular to the average orientation of the mainshock fault plane and parallel to the mean mainshock slip direction, respectively. %VE is the proportion of the variance in the strike-averaged  
neural-network forecast for the idealized strike-slip case (Fig. 2) that is explained by each strike-averaged physical metric. We include the largest %VE for each metric. For Coulomb failure stress 
change, the largest %VE corresponds to the magnitude of the Coulomb failure stress change associated with the full stress-change tensor |ΔCFS(σ, μ = 0.0)|. See Methods for details.

© 2018 Springer Nature Limited. All rights reserved.



Letter reSeArCH

Extended data table 2 | Summary of results for ten realizations of the training and test datasets

The top half of the table displays results based on realizations that incorporate grid cells down to 50 km and the bottom half displays results based on realizations that incorporate grid cells down to 5 
km below the maximum depth of each slip distribution (see Supplementary Table 2).
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