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Recent seismic observations1 and modelling2 indicate that aseis-
mic subduction interface slip during slow slip events3 (SSEs) 
may be controlled by the presence of, and possible fluctuations 

in, near-lithostatic fluid pressure, Pf, within weak interface shear 
zones and subducting oceanic crust4,5. High Pf is inferred from a 
high ratio of seismic compressional and shear-wave velocities 
(Vp/Vs) and high Poisson’s ratios on or near SSE-hosting subduc-
tion interfaces4,6,7, indicating that an overpressured fluid reservoir is 
capped by a low permeability barrier8. Occasional breaching of this 
barrier, and its link to megathrust slip is commonly described by the 
‘fault-valve’ model8–11. In this model, Pf varies temporally9, peaking 
before fault slip, before coseismic fracture activation opens perme-
able pathways for fluid migration10,11. A subsequent Pf drop occurs 
until the system becomes resealed (for example, by hydrothermal 
precipitation12–14) and overpressure reaccumulates.

While the priming conditions8 for subduction valving behav-
iour (for example, overpressure within conditionally permeable 
fault zones) have been observed globally4–6, and evidence for post-
megathrust rupture fluid drainage exists10,11, temporal observations 
of precursory elevated Pf and subsequent decreases, particularly 
within the subducting slab where hydrothermal fluids are sourced, 
remain elusive. In  situ effective stress measurements near the  
megathrust are restricted to shallow regions15. Hence, geophysi-
cal proxies are required to monitor temporal fluctuations in Pf at  
seismogenic depths. Here, we use relative principal stress magni-
tudes quantified by earthquake focal mechanism inversions as 
a proxy16 for fluctuating Pf in New Zealand’s northern Hikurangi 
subduction zone (Fig.  1) and identify changes in Pf within the 
downgoing slab correlated with SSE occurrence. This work expands 
previous temporally static, spatial snapshots of elevated Pf in  
SSE regions1,4 into the temporal dimension, and offers constraints 
on the physical driving forces behind SSE recurrence intervals in 
subduction zones.

Pore pressure changes and the stress tensor
Fluid saturation within subducting oceanic crust is formed by  
de-watering reactions17 and downwards fluid pumping into ten-
sional fractures18. Fluctuations in this Pf act to alter the effective 
normal stress, σn′, on fractures (where σn′ = σn – Pf). An increase 
in Pf reduces σn′ and broadens the orientation of faults that satisfy  
the reactivation criteria; a wider range of fault orientations become 
susceptible to slip (Fig. 2b). When σ1 is subvertical, high Pf promotes 
instability of subvertical dipping strike–slip faults in addition to 
normal faults dipping at ~60°16.

Fluctuating Pf can therefore be quantified by examining diver-
sity in active fault orientations and estimating the stress (or shape) 
ratio, R = (σ1 − σ2)/(σ1 − σ3) (or effective stress ratio, R′, in the pres-
ence of fluid pressure), through earthquake focal mechanism inver-
sion. The R value retrieved this way (hereafter, Rretr) has been shown 
to correlate negatively with varying Pf during geothermal injection 
in transtensional regions with low overall R (R < 0.6)16. This nega-
tive correlation exists because the broader fault plane distribution 
accompanying high Pf modifies how well sampled the fault ori-
entations are, which influences Rretr

16 but may not represent true  
variability in R′.

The negative correlation between Rretr and Pf may also have a 
physical origin. In an isotropic medium with round pores, Pf acts 
the same in all directions; changing Pf produces no change in the 
relative magnitudes of the three principal compressive effective 
stresses, σ1′, σ2′ and σ3′. However, the response to changing Pf in 
a medium with axial, planar cracks produces different poroelastic 
effects on the three principal effective stresses, depending on the 
fracture orientations19. Within subducting oceanic crust, bending-
related, fluid-filled fractures18,20 control the large-scale anisotropy21. 
These fractures strike margin-parallel with their poles in the σ1/σ3 
plane (Fig.  2a). In this instance, increasing Pf produces a larger 
poroelastic response in σ1′ and σ3′ than in σ2′ (Fig. 2b), reducing the 
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R′ value19. In this instance, Rretr may more closely mirror physical 
changes in R′. Fluctuations in Rretr within the crust in SSE regions 
may therefore provide a proxy for relative changes in Pf and a test 
for the fault-valve model.

Stress tensor changes during SSEs
The northern Hikurangi subduction zone hosts large, shallow 
2–3-week-long SSEs every 1–2 years22. In addition, smaller transient 
events can occur up to several times a year (Fig. 1). In 2014–2015, 
an ocean-bottom seismic and geodetic network—the Hikurangi 
Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS)—
recorded four SSEs with a range of durations, magnitudes and spatial 

extents (Fig. 1 and Supplementary Table 1). In August 2014, a small, 
2.5-month-long SSE (SSE-1) was followed by a spatially distinct, but 
temporally overlapping Mw 6.8 SSE in September 2014 (SSE-2) near 
Gisborne that involved interface slip close to the trench23. A third 
(SSE-3) and fourth event (SSE-4) followed in December 2014 and 
February 2015, respectively (Fig. 1).

We calculated focal mechanisms for earthquakes (Mw > 1.8) in 
the national GeoNet seismicity catalogue (see Methods) over a time 
period covering all four SSEs, using HOBITSS and onshore GeoNet 
seismic stations (Fig. 1b). Few earthquakes occur on the subduction 
interface. Instead, we focused on 278 events that occurred within 
the subducting Pacific oceanic crust, which hosts the majority of 
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Fig. 1 | overview of northern Hikurangi, and the seismic and geodetic networks, SSEs and seismicity utilized in this study. a, Shaded contours (in mm) 
show geodetic slip models for two large SSEs. b, Lower-plate focal mechanisms used for stress analysis. Shaded contours (in mm) show geodetic slip 
models of two smaller transients. The thick red contour shows cumulative 50 mm SSE slip distribution between 2002 and 201222. Inset, triaxial stress 
field orientation (lower hemisphere) for the mechanisms shown in the main panel. Contours show 90% uncertainties. The black great circle shows 
the subduction zone orientation. c, Geodetic signals (green, blue and red lines) and timings of SSEs (shaded boxes, coloured are those analysed here). 
Additional GPS time series and SSE model fits are included in Supplementary Figs. 1 and 2.
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subduction zone seismicity in the region. These events define a 
13–15-km-thick zone of intraslab seismicity, consistent with the 
thickness of the incoming Hikurangi Plateau24.

Earthquakes in the northern Hikurangi slab exhibit both normal 
slip on margin-parallel-striking faults and strike–slip events orien-
tated with margin-parallel pressure axes (P axes; Fig. 1b). Inversion 
for the triaxial stress field (see Methods) reveals that σ1 is subvertical 
and σ3 is orientated margin-perpendicular, guided by tensional slab 
pull (Fig. 1b, inset). σ2 trends margin-parallel and corresponds to 
the maximum horizontal compressive stress direction (SHmax). The 
background value for Rretr calculated using all focal mechanisms  
is 0.42 ± 0.24.

To quantify temporal changes in the stress tensor, we grouped 
our focal mechanisms into moving windows of 20 events overlap-
ping by 15 events, chosen to minimize smoothing and retain tem-
poral resolution (Supplementary Fig.  5). We performed damped  
(to discriminate robust, temporal variations in stress that are strongly  
required by the model) and undamped stress inversions25,26 for each  
window. Because the accuracy of Rretr depends on ambiguity  
in the earthquake nodal plane, we implemented a fault instability 
algorithm27 to identify the nodal plane (see Methods) before each 
inversion16. We present the results assuming that the algorithm 
selects the correct plane both 100% (F = 1.0) and 50% (F = 0.5) of 
the time (Fig. 3).

Rretr varies by ~0.6 over the time period, with consistent minima 
in Rretr of ~0.25 occurring before, or overlapping with, the onset  
of all four documented SSEs (Fig.  3b and Supplementary Fig.  6), 
independent of fault plane ambiguity. The minimum at the start  
of SSE-1 is only visible in the undamped inversion result, as it was 
brief and was lost as noise during damping. During each SSE, a  
3–4-week increase to Rretr > 0.5 is observed, before a subsequent 
decrease in Rretr begins at the end of each SSE, reaching a minimum 
Rretr value of ~0.25 at the start of the next SSE.

To test whether Rretr changes are spatially linked to a particu-
lar SSE, we analysed the focal mechanisms occurring beneath and 
immediately (within 10 km) down-dip from SSE-2 (Fig.  3c) and 

SSE-3 (Fig. 3d). Both subsets show longer-duration decreases (over 
a few months) in Rretr than in Fig. 3b, suggesting that the margin-
wide analysis is influenced by diachronous changes in Rretr across 
multiple interacting slow slip cycles. Both subsets still show a mini-
mum Rretr of ~0.25 before SSE initiation, importantly suggesting  
that a threshold is reached within the footprint of the subsequent 
SSE. Additionally, the increase in Rretr during and following each 
event is smaller than in Fig.  3b, suggesting that the SSE-induced 
changes in Rretr do not exclusively occur within the SSE footprint.

Furthermore, during low Rretr periods before SSEs, P axes plunge 
both steeply and shallowly (trending margin-parallel), while  
tension axes (T axes) trend margin-perpendicular only, indicat-
ing a mix of both normal and strike–slip faulting (Fig. 2c). During  
high Rretr periods following SSEs, P axes only plunge steeply,  
indicating purely normal faulting (Fig. 2d). This change is appar-
ent in the triaxial stress field inversions as well. During low Rretr 
periods, overlap between the σ1 and σ2 axes (Fig. 2e) indicates that 
they are close in magnitude (Supplementary Fig. 7). Following SSEs, 
the principal axes are distinct and well defined as a normal faulting 
regime (Fig. 2f).

Physical mechanism for the stress tensor changes
Stress tensor changes have previously been seismologically 
observed following subduction zone earthquakes28. One way that 
these changes occur is through displacement of shear stress acting 
on the subduction interface by coseismic and postseismic slip. If the 
change in shear stress, or stress drop, Δτ, is large compared with  
the effective differential stress (σ1′ − σ3′), a rotation in the stress  
field following rupture is anticipated, succeeded by a return to  
prerupture orientations as τ is reaccumulated, typically over months 
to years28. This process is illustrated by the 2011 Mw 9.0 Tohoku-Oki 
(Japan) subduction earthquake, where a 20° rotation in the σ1 plunge 
was observed29, reflecting the high stress drop (Δτ = ~20 MPa) of 
the mainshock30.

An additional process that may change the retrieved stress tensor 
is a static change in imposed stress on receiver faults, quantified by 
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the Coulomb failure stress (CFS), where CFS = τ – μσn′, and μ is the 
friction coefficient31. The dependence of CFS changes on receiver 
fault orientation means that some faults will be brought closer  
to failure, while others may be brought further away, thus chang-
ing the active faulting distribution and the retrieved stress tensor.  
For example, fewer intra-SSE strike–slip earthquakes could be 
explained by decreasing CFS on these extensional faults by down-
dip oriented compression within the slab from interface slip 
(Supplementary Fig. 8).

However, these processes cannot fully explain our observa-
tions. First, SSE stress drops are typically orders of magnitude  
lower (Δτ = ~10–300 kPa)32 than for fast subduction earthquakes. 
Any observable stress tensor changes are therefore unlikely to be  
produced by interface shear stress displacements, even if the  

interface is assumed to be ‘weak’ (σ1′ − σ3′ ≤ 20 MPa), as required 
to explain stress orientations33 and gravitational force balances34. 
Second, CFS models for SSE-2 indicate that both strike–slip and  
normal fault activity become unfavourable within the slab during 
and following interface slip (Supplementary Fig.  8), yet normal 
faults remain active throughout each SSE. Furthermore, neither  
process can explain the rapid return to increasing focal mechanism 
orientation diversity (Supplementary Fig.  7b) following interface 
slip shutdown.

Instead, we propose that our observations represent transient 
fluctuations in Pf within fault zones in the subducting oceanic  
crust (Fig.  4), which migrate (down a pressure gradient) into the 
overlying interface, creating an increase in Pf sufficient to trigger 
slow slip2.
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Pf decreases within individual intraslab faults are anticipated 
to occur relatively quickly. During interface slip in SSEs, strain-
induced fracture opening35 produces a concomitant drop in Pf as 
fast crack propagation exceeds the fluid advection rate into the new 
volume from the groundmass12. Pf may also decrease as enhanced 
permeability allows drainage from intraslab faults into the sub-
duction plate boundary and overriding plate9–11,36. This Pf drop is 
observed seismologically as decreasing strike–slip activity and an 
increase in Rretr

16.
Subsequent, slower increases in Pf are then anticipated as slab 

fractures and the subduction interface become resealed by precip-
itate-hosting fluid advection and diffusion12–14,37, and permeability 
is reduced. This sealing is geologically inferred to occur over a few 
weeks12 to several months37 and is therefore compatible with the 
episodicity we observe seismologically in Rretr and inferred Pf. As Pf 
increases to near-lithostatic values, reduced σn′ means subvertical 
faults become favourably orientated and seismically active, which is 
observed as a decrease in Rretr.

The consistent minima in Rretr ~0.25 (Fig.  3b) implies that a 
maximum Pf threshold may be reached, which triggers SSE initia-
tion. First, Pf changes within the lower fluid reservoir may locally 
increase Pf within the subduction plate boundary through hydro-
fracturing-enhanced vertical permeability. Assuming fluid pres-
sure is lost during upwards migration along the negative pressure 
gradient, any Pf increase within the subduction plate boundary  
will be smaller than that experienced within the slab, yet remains  

sufficient to lower effective normal stress, triggering slip2. Alter-
natively, increasing Pf in the interface-bounding slab may reduce 
the system’s elastic loading stiffness, K, below the critical stiffness Kc 
required for slip38 according to:

σ< = − − ∕′K K a b D( )c n c

where Dc is a critical slip distance over which fault strength evolves 
and (a − b) is the friction rate parameter, which is required to be 
negative for slip instability nucleation.

This model is supported by our analysed earthquakes’ loca-
tions within a region of elevated Vp/Vs > 1.8 (ref. 39), indicating that 
they occur within relatively fluid-rich rocks beneath the down-dip 
extent of repeated SSEs (Supplementary Fig.  9). Mantle-derived 
helium isotope signatures at hot springs along the east coast also 
suggest a deep, oceanic crust-derived flux of fluid surfacing near 
Mahia Peninsula, above a section of the interface that slipped in all 
four SSEs40. Furthermore, tremor activity41,42 is highest during Rretr 
increases (Fig. 3a), suggesting that fluid redistribution occurs near 
the interface at these times.

Assuming the slab is in down-dip tension and experiencing both 
extensional and shear failure, 4T < (σ1′ − σ3′) < 5.66T, where T is  
the tensional strength for intact basalt (T = ~14 MPa43). Hence, 
differential stress cannot be higher than 55–80 MPa. An observed 
change in R′ of 0.5 (half of σ1′ − σ3′) could therefore represent 
roughly a 40 MPa change in Pf. Importantly, Rretr is affected by 
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noise in mechanism orientations and background R; regions with 
lower overall R and higher data noise exhibit larger variability in 
Rretr given the same change in Pf as for a region with low data noise  
and high background R16. This effect precludes quantification of 
absolute changes in Pf represented by our observed Rretr fluctua-
tions. Synthetic testing16 indicates that it is still likely to be several 
MPa given a background R value of ~0.4. While rapid Pf changes  
of this magnitude are unlikely to reflect changes in de-watering 
reaction rates, localized opening (to near-hydrostatic gradients)  
and sealing (to near-lithostatic gradients) of fluid compart-
ments within slab fracture networks may produce several MPa 
changes in pore pressure44,45, and can be sufficient to explain the  
magnitude of our observed changes. This way, the time scales for 
repeated Pf accumulation may be controlled by feedback between 
hydrothermal mineral precipitation in the interface shear zone  
and tensional slab fault zones13,14, and fracture opening related  
to SSE-induced crustal strain35.

Concluding implications for slow slip
The recent discovery of aseismic displacements on subduction 
megathrusts during SSEs has complicated the simple model of stress 
loading and release during the earthquake cycle. Quantifying how 
stress on and around the megathrust is accumulated and released 
during SSE cycles is crucial for understanding basic subduction 
system physics and accurately forecasting earthquake and tsunami 
hazards in areas where SSEs occur46. To date, research has focused 
on stress changes following SSEs, and their causal effect on subse-
quent major earthquakes46–49. However, we present evidence that 
the distribution and timing of SSEs may be in response to external, 
episodically imposed stress changes that can vary both spatially and 
temporally, and hence explain the wide variety in SSE occurrence 
rates observed globally. Furthermore, our observations highlight 
the need for an improved understanding of frictional variabil-
ity in terms of Pf redistribution in order to fully physically model  
SSE behaviour50. Finally, we postulate that increased monitoring 
of stress ratio changes in subduction zones may offer a means of 
improving forecasts of slow and possibly even fast subduction slip.
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Methods
Geodetic SSE slip distribution inversion. SSE slip inversions were undertaken 
with TDEFNODE (http://www.web.pdx.edu/~mccaf/defnode/manual/tdefnode.
html), which is a nonlinear, time-dependent inversion code that applies simulated 
annealing to downhill simplex minimization. Our approach to the TDEFNODE 
inversions in this study was identical to that used in previous north Hikurangi SSE 
studies51. All continuous Global Positioning System (GPS) data time series used in 
this study are available from www.geonet.org.nz. We inverted the continuous GPS 
time series of GeoNet sites at the northern and central Hikurangi margin for: (1) an 
initiation time and time constants describing the temporal evolution of four transient 
events at the northern and central Hikurangi margin during the study period; and 
(2) the maximum amplitude of slip at 40 nodes on the plate interface offshore from 
the central and northern Hikurangi margin for each transient. Slip on fault patches 
between the nodes was determined by bi-linear interpolation. TDEFNODE uses basis 
functions to describe the temporal evolution of slip at the nodes, thus reducing the 
number of free parameters required to replicate the temporal evolution of the SSE. 
We assumed a Gaussian function to approximate the time history of the SSEs. We 
also assumed that slip on the plate interface occurs in the direction of plate motion 
slip determined by previous elastic block modelling results52; for the east coast, slip 
is almost completely in the down-dip direction. Fits to many of the time series are 
shown in Supplementary Fig. 1, and slip models are shown in Supplementary Fig. 2.

Focal mechanism calculation. Earthquakes that occurred within the study  
region and time period were selected from the national GeoNet catalogue  
(www.geonet.org.nz), and phase (direct Pg and Sg) arrivals and Pg-wave polarities 
were manually picked on up to 46 land (GeoNet; broadband and short period) 
and HOBITSS Ocean Bottom Seismometer (OBS) stations53. Earthquakes were 
initially located in a one-dimensional velocity model54 for the northern Hikurangi 
region using a linearized inversion algorithm (HYPOCENTER55). Distributions 
of polarities across the focal sphere were visually examined using FOCMEC56 to 
identify which events held sufficient coverage for further analysis. Events with 
M < 1.9 were too small to allow for accurate analysis. Following this quality-control 
phase, earthquakes were relocated using NonLinLoc57 within a three-dimensional 
velocity model39, incorporating average velocity model uncertainties in travel 
times, and phase-pick timing errors. A Bayesian focal mechanism calculation 
method58 was used to calculate the final fault plane solutions for events. This 
method incorporates velocity model and location uncertainties to calculate the 
probability density function for each take-off angle on the focal sphere. Larger 
uncertainty in location therefore leads to a larger scatter for each polarity point 
on the sphere, which is included in the mechanism calculation. Examples of 
mechanisms calculated this way are shown in Supplementary Fig. 3.

We extracted lower-plate events by examining their locations relative to the 
interface model of ref. 59 derived from earthquake relocations, and active source 
studies where available60. Depth uncertainties for focal mechanisms were small 
(<2 km) owing to good offshore and onshore station azimuthal coverage, allowing 
accurate identification of Pacific crust earthquakes versus interface or upper-plate 
events based on their location and mechanisms combined. Examples of the effect 
of changing hypocentral depth on focal mechanisms for select events are shown  
in Supplementary Fig. 4.

Stress ratio calculation. For our spatial stress inversion in the inset of Fig. 1b, 
we adopted the method from ref. 61, which calculates the triaxial stress field 
using focal mechanisms through a Bayesian approach and allows for inclusion of 
mechanism rotation errors arising from velocity model and polarity uncertainties. 
For our temporal stress inversions, we adopted the methods of refs. 25,62 within the 
MSATSI MATLAB package26. This method uses a damped inversion to remove 
stress rotation artefacts in noisy data, which may be present in an undamped 
moving-window series of inversions, and includes a bootstrap resampling approach 
to quantify confidence intervals of the stress parameters. This damped inversion 
approach uses a damping parameter (the relative weighting between the data misfit 
and model length in the minimization), which is chosen from a trade‐off curve 
to produce a balance between excessive misfit and unnecessary model length. We 
performed a one-dimensional time-varying stress inversion on time windows of  
20 events, overlapping by 15 events, within a single spatially constrained region.

We additionally implemented a fault instability algorithm27 to identify the 
nodal plane before each inversion though a joint inversion for both stress and fault 
orientation. This approach does not influence the orientations of the principal axes 
derived from the stress inversion, but is required to accurately retrieve the stress, 
or shape ratio, Rretr, which is sensitive to the correct choice of nodal versus auxiliary 
planes. The algorithm calculates the instability constraint, I:

τ μ σ μ μ= + + ∕ + √ +I ( ( 1)) ( (1 ))n
2

where μ is the coefficient of friction, and τ and σn are the normalized shear and 
normal tractions. I is calculated for both possible faults of the focal mechanism, 
and the nodal plane is chosen as the one that has the highest value of I (that is,  
is the most unstable in the acting stress field). μ is estimated by running the inversion  
with several values for friction, and adopting the value that produces the highest 
overall instability of faults.

Coulomb stress modelling. We calculated changes in CFS, σf = τ – μσn′, where 
μ is the coefficient of friction, on receiver faults to examine the role of static 
interface offsets on changing the distribution of earthquake faulting styles 
during and following slow slip. We used the interface slip model for SSE-2 from 
ref. 23 within Coulomb software version 3.3 (ref. 63) to calculate Δσf on both 
potential fault planes of mechanisms consistent with the shallowest and steepest 
P axes orientations shown in Fig. 2c. These orientations included normal faults 
orientated with strike/dip/rake = 050/60/−90 and 230/60/−90, and strike–slip 
faults orientated with strike/dip/rake = 090/90/0 and 270/90/180. We observed a 
similar distribution of decreases and increases in Δσf regardless of the coefficient 
of friction (0.1–1.0) used. We display our results in Supplementary Fig. 8 using a 
coefficient of friction of 0.4.

Data availability
Onshore GeoNet seismic waveforms were obtained from https://www.geonet.org.
nz/data/types/seismic_waveforms. Offshore HOBITSS raw seismic and geodetic 
data are archived at the Incorporated Research Institutions for Seismology Data 
Management Center (https://doi.org/10.7914/SN/YH_2014).

Code availability
Code used for the geodetic slip inversions (TDEFNODE) is available from  
http://www.web.pdx.edu/~mccaf/defnode/manual/tdefnode.html. MATLAB  
code (MSATSI) used for temporal stress inversions is available from  
https://www.induced.pl/software/msatsi.
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