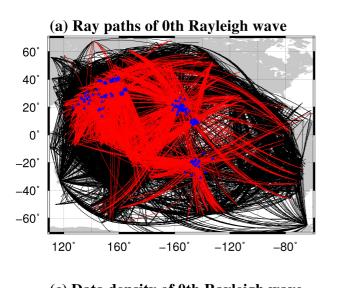
1	Supplementary Material:
2	Surface wave tomography for the Pacific Ocean incorporating seafloor seismic
3	observations and plate thermal evolution
4	T. Isse et al.
5	
6	S1. Effects of data weighting and results of the checkerboard resolution tests
7	This study used more seismic stations and events in the western Pacific than in
8	the eastern Pacific Ocean, and, therefore, the ray paths were denser in the former. To
9	rebalance the uneven ray distribution and to account for the relatively small number of
10	phase speed measurements per BBOBS station (as the observation period for BBOBS
11	data is typically \sim 1 year), we weighted the Rayleigh wave and Love wave data for events
12	with longitudes greater than 190°E, latitudes outside the range of 50°N-40°S, or data
13	recorded by a BBOBS. We changed the factor from 1.0 to 3.0 and performed the
14	checkerboard resolution tests (Figure S2). When we did not apply weight to the data, the
15	checkerboard patterns were well recovered only in the western Pacific Ocean (Figure S2a
16	and d). In the Rayleigh wave case, the well-recovered regions increased when factors of

17	2 and 3 were applied (Figure S2b and c). In the Love wave case, applying a factor of 3
18	was necessary (Figure S2e and f). In our inversion method, we performed ray tracing so
19	that a uniform recovered amplitude was preferable in the eastern and western parts of the
20	Pacific Ocean. Figure S2c (Rayleigh wave, factor of 3) shows that the recovered
21	amplitude was stronger in the eastern part than in the western part and that the regional
22	difference of the recovered amplitude was larger than in the case of a factor of 2. In this
23	study, we chose a factor of 2.0 in the Rayleigh wave data and 3.0 in the Love wave data.
24	We performed the checkerboard resolution tests to assess the horizontal
25	resolution and the effects of applying different weighting schemes to the data. We
26	calculated the synthetic path-averaged phase speed data from the input checkerboard
26 27	calculated the synthetic path-averaged phase speed data from the input checkerboard models incorporating the finite frequency effect, and we subsequently inverted them for
27	models incorporating the finite frequency effect, and we subsequently inverted them for
27 28	models incorporating the finite frequency effect, and we subsequently inverted them for the phase speed maps.
27 28 29	models incorporating the finite frequency effect, and we subsequently inverted them for the phase speed maps. Figure S2 shows an example of the results of 8° checkerboard resolution tests with

33	the main text, the recovered amplitudes of the checkerboard patterns in the eastern Pacific
34	Ocean were improved. The shapes of the checkerboard patterns were well recovered in
35	the western and southeastern parts of the Pacific Ocean. Figure S3 shows the results of
36	the checkerboard resolution tests for the fundamental-mode Love and Rayleigh waves at
37	a period of 83 s with cell sizes of 6° to 16°. Checkerboard patterns were recovered in the
38	entire Pacific Ocean when the cell sizes were larger than 14° and 18°, and in the western
39	Pacific Ocean at cell sizes of 6° and 10° for the Rayleigh waves and Love waves,
40	respectively. In the present study, the lateral resolution of the isotropic structure in the
41	entire Pacific Ocean was $\sim 15^{\circ}$ and that in the western Pacific Ocean was $\sim 8^{\circ}$. The lateral
42	resolution of the radially anisotropic structure was worse because of the worse recovery
43	of the checkerboard pattern in the Love wave test. The resolution was $\sim 18^{\circ}$ in the entire
44	Pacific Ocean and $\sim 10^{\circ}$ in the western Pacific Ocean. The different spatial resolution in
45	the Love and Rayleigh waves may affect the radially anisotropic structure. When we
46	simply made radial anisotropy maps, there were many small-scale anomalies below the
47	spatial resolution, which were randomly distributed in the entire Pacific Ocean. To
48	diminish these small-scale anomalies, we applied a spatial low-pass filter at 15° for the

49	isotropic structure and 18° for the radially anisotropic structure to the results discussed in
50	the context of the entire Pacific region and at 8° and 10° for the western Pacific region.
51	S2 Jackknife error estimation
52	Understanding the trade-off between the model resolution and error is helpful
53	for interpreting inversion results. Panning and Romanowicz (2006) suggested that the
54	bootstrap or jackknife error estimation was useful for the purpose and that estimated
55	errors of both methods were virtually identical. Applying the bootstrap method to this
56	study is not practical due to heavy computation, and thus we apply the jackknife error
57	estimation.
58	We divide the original data into 10 subsets by random selection without
59	duplication and then construct 10 jackknife data samples by removing one of the subsets
60	from the original data. We calculate a phase-speed map for each of those jackknife
61	samples. The average and standard errors are estimated following Panning and
62	Romanowicz (2006) (Figure S12). The estimated errors are less than 0.02 km/s for the
63	fundamental mode surface wave, and 0.05 km/s for higher modes. Large errors can be
64	seen along the Pacific rim for higher modes, whereas errors are small in most of the

65	Pacific Ocean. The estimated errors of the phase speed maps are small enough to be used
66	to construct local shear wave speed models.
67	
68	Panning, M., Romanowicz, B., 2006. A three-dimensional radially anisotropic model of
69	shear velocity in the whole mantle. Geophys. J. Int. 167, 361–379. doi:10.1111/j.1365-
70	246X.2006.03100.x
71	
72	Supplemental Figure Captions
73	Figure S1
74	Plot of the ray distribution of fundamental-mode (a) Rayleigh and (b) Love waves at a
75	period of 83 s. Red lines indicate rays observed by BBOBSs. Blue triangles indicate
76	BBOBS locations. Finite-width ray densities of the (c) Rayleigh and (d) Love waves. We
77	counted the cells that were covered by the influence zone.
78	Figure S2
79	Result of the checkerboard resolution tests for fundamental-mode surface waves at a
80	


81	data. (a) Result of the checkerboard resolution test for Rayleigh waves with no weighting
82	scheme. (b) Result of the checkerboard resolution test for Rayleigh waves assigned a
83	weight of 2.0. (c) Result of the checkerboard resolution test for Rayleigh waves assigned
84	a weight of 3.0. (d-f) Same as for (a-c) but with Love waves. Recovered amplitudes in
85	the eastern half of the Pacific Ocean were improved relative to the no-weighting scheme.
86	
87	Figure S3
88	Results of the checkerboard resolution tests for fundamental-mode surface waves at a
89	period of 83 s with (a, e) 6°, (b, f) 8°, (c, g) 12°, and (d, h) 16° cells for (a–d) Love and
90	(e-h) Rayleigh waves.
91	
92	Figure S4
93	(a) Age-bin-averaged β_{iso} and (b) age-bin-averaged radial anisotropy profiles of the
94	Pacific Plate regions from the PAC-c model. In (a), the thin black contour lines show
95	shear-wave speeds at 0.05 km/s intervals, whereas the thick black line shows the 1100 $^{\circ}$ C
96	isotherms of the HSC model used in the modeling.

98	Figure S5
99	$\beta_{\rm iso}$ as a function of the geotherm based on the HSC model at 5-Myr intervals from the
100	PAC-c model. Solid circles show the data at ages between 35 and 80 Ma, from which we
101	estimated the thermal coefficient of β_{iso} . Solid lines show the predicted shear-wave speed
102	profiles calculated with the equations shown in the figure. Different colors correspond to
103	different depths.
104	Figure S6
105	Isotropic shear-wave speed maps of the PA-c model (a–c), PA-age model (d–f), and
106	their difference (g-i) at depths of 50, 75, and 100 km, respectively.
107	Figure S7
108	Comparison between the PAC-age model and the previous models of $\delta\beta_{iso}$ (%) at depths
109	of 50, 100, and 200 km.
110	Figure S8
111	Same as for Figure S7 but with radial anisotropy.

112 Figure S9

113	Results of the synthetic tests for estimating the depths of the negative peaks of the vertical
114	gradient of β_{iso} . Red, blue, and black lines show the speed profiles of the β_{SV} , β_{SH} , and
115	$eta_{ m iso}$, respectively. Broken lines show the input models, whereas solid lines show the
116	recovered models. The discontinuity depths of the input models are indicated by black
117	arrows at (a) 50, (b) 60, (c) 90, (d) 120, and (e) 140 km, respectively. (f) Comparisons
118	between the recovered negative peak depths and the input discontinuity depths for $\beta_{\rm SV}$,
119	$\beta_{\rm SH}$, and $\beta_{\rm iso}$.
120	Figure S10
121	Comparison between (a-c) PAC-age, (d-f) PAC-age-exOBS, and (g-i) their difference at
122	depths of 50, 100, and 200 km, respectively.
123	Figure S11
124	Same as for Figure 10 but using the plate model of Parsons and Sclater (1977) to
125	estimate the mantle temperature.
126	Figure S12
127	Standard errors of phase speeds calculated by using a jackknife approach for the
128	fundamental mode surface wave at periods of 50 and 100s (left and middle), and the first

- 129 higher mode at a period of 100 s (right). Upper panels show the results for Love wave
- 130 and lower panels for Rayleigh wave.

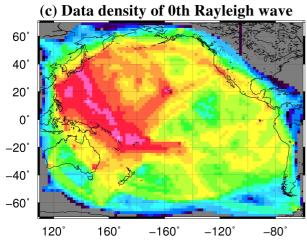
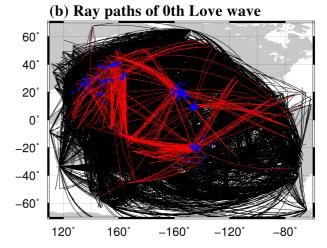
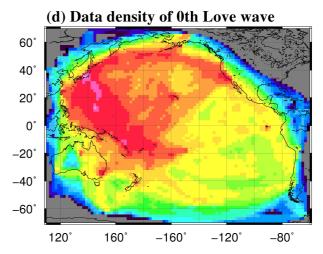
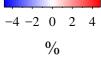





Figure S1

3 2 (N)bol 1 0

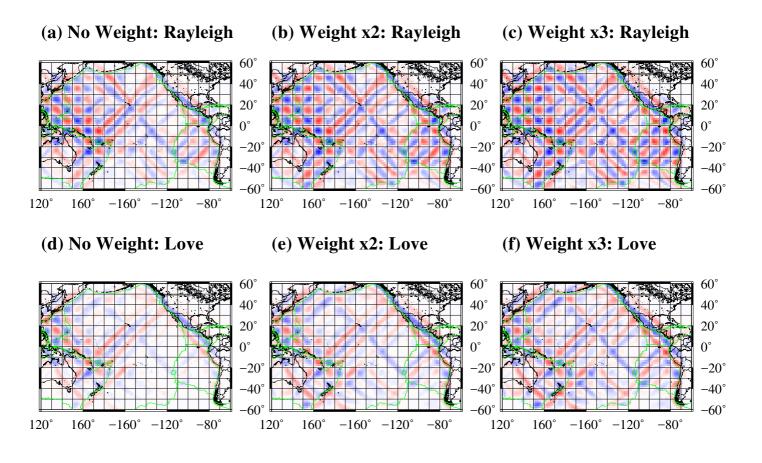
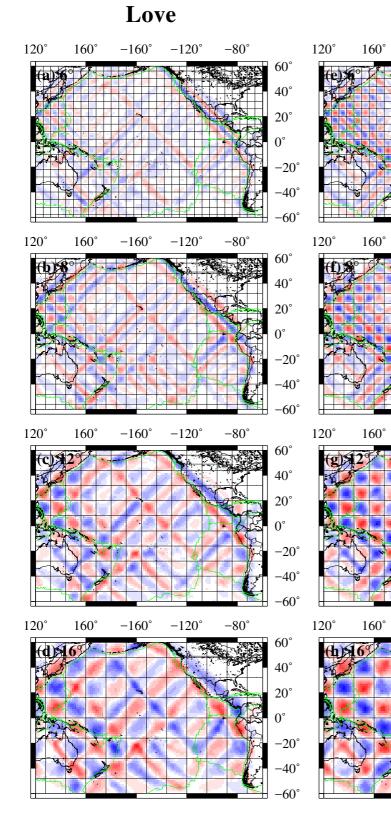



Figure S2

Rayleigh

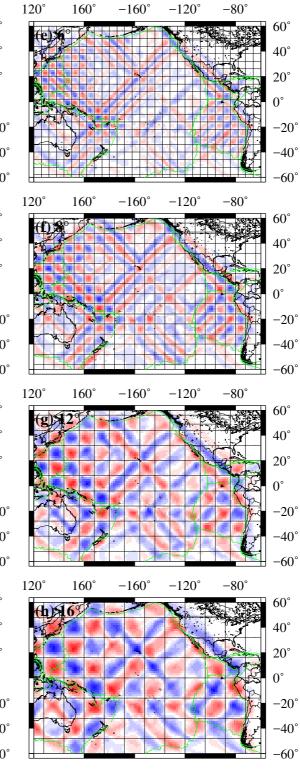


Figure S3

-4

2

4

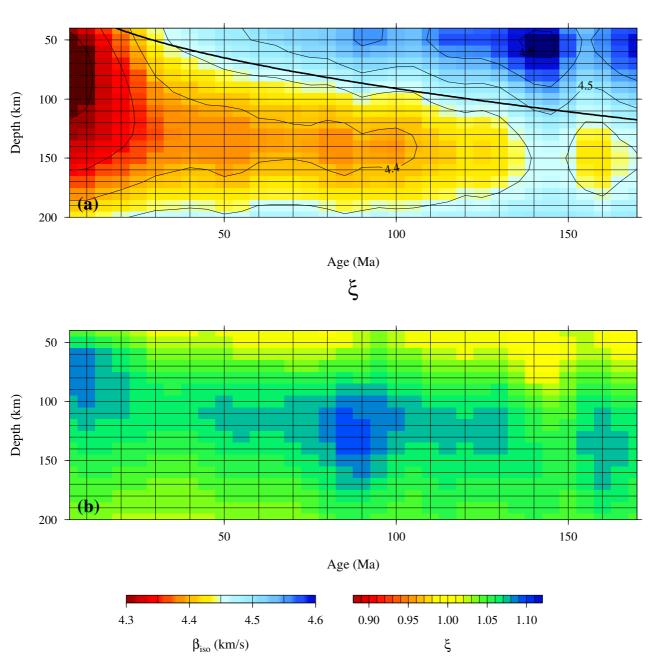
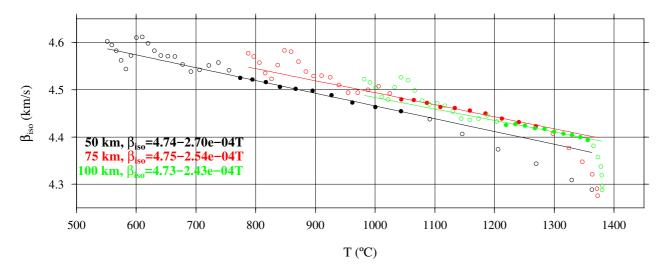
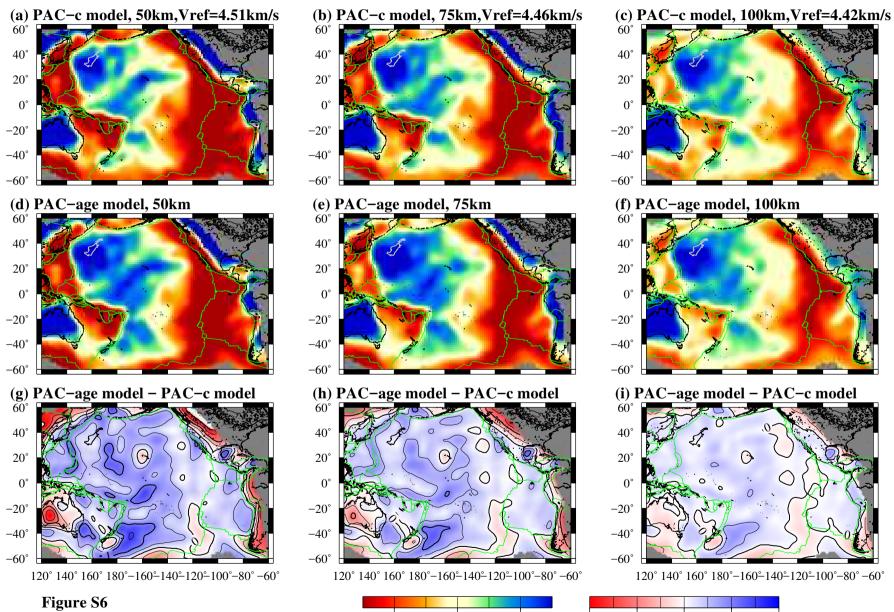
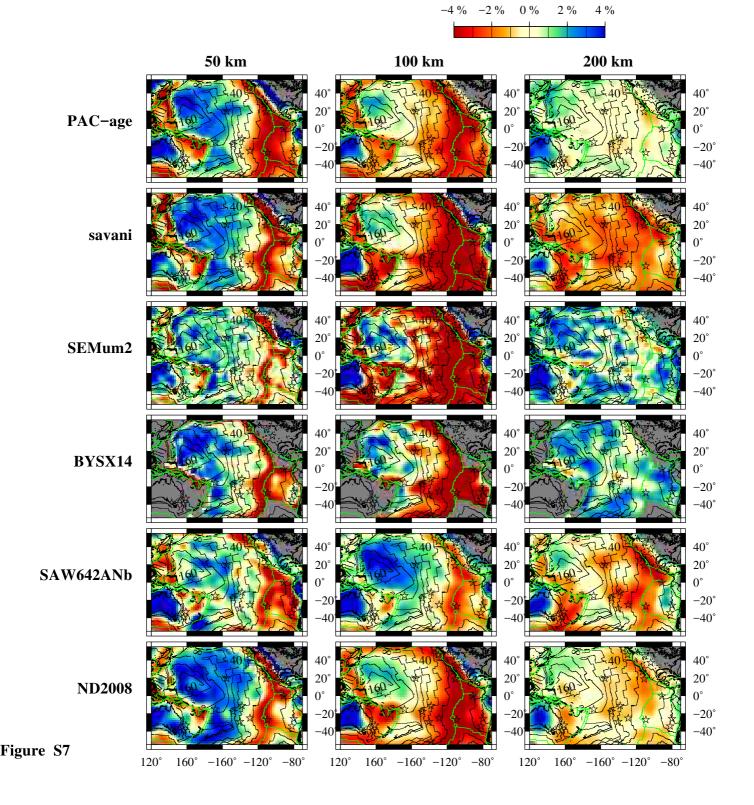




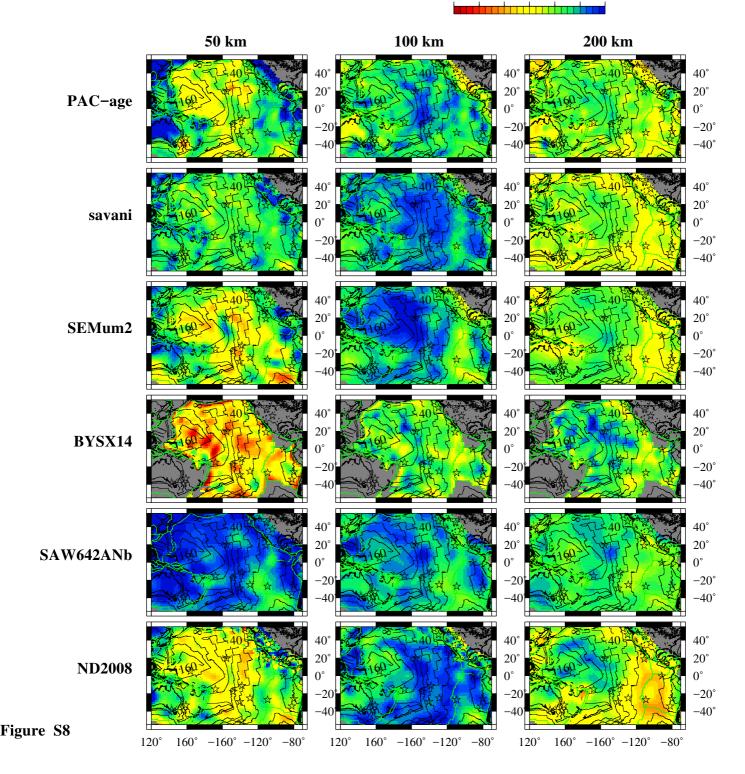
Figure S4

 $\Delta \beta_{iso}$

0%


2 %

-2 %


-2 %

2 %

 $\Delta\beta_{iso}$

ξ 0.88 0.92 0.96 1.00 1.04 1.08 1.12

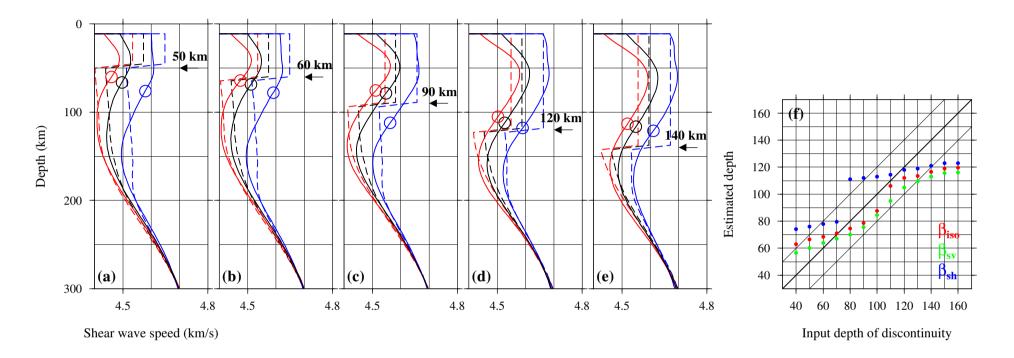
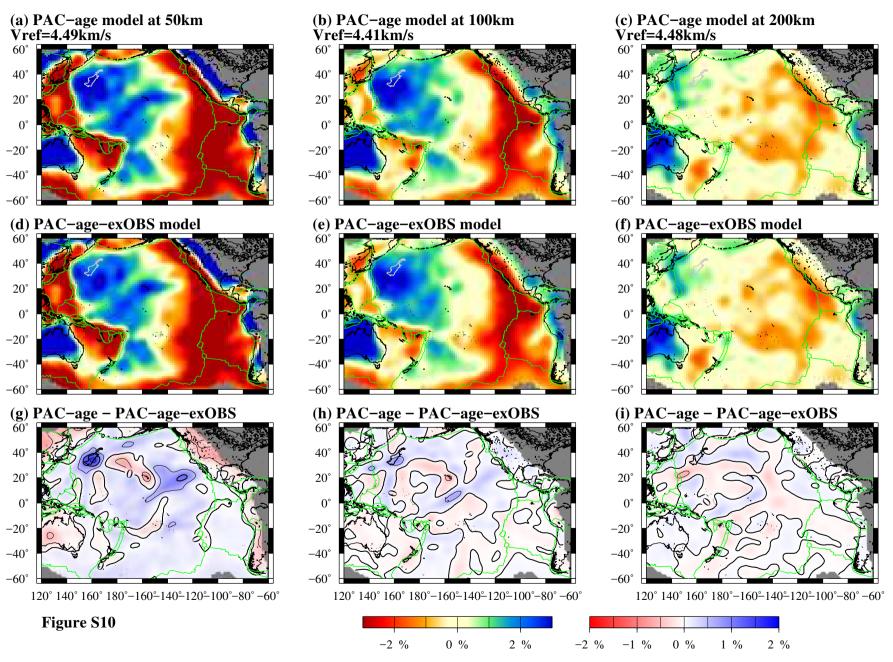
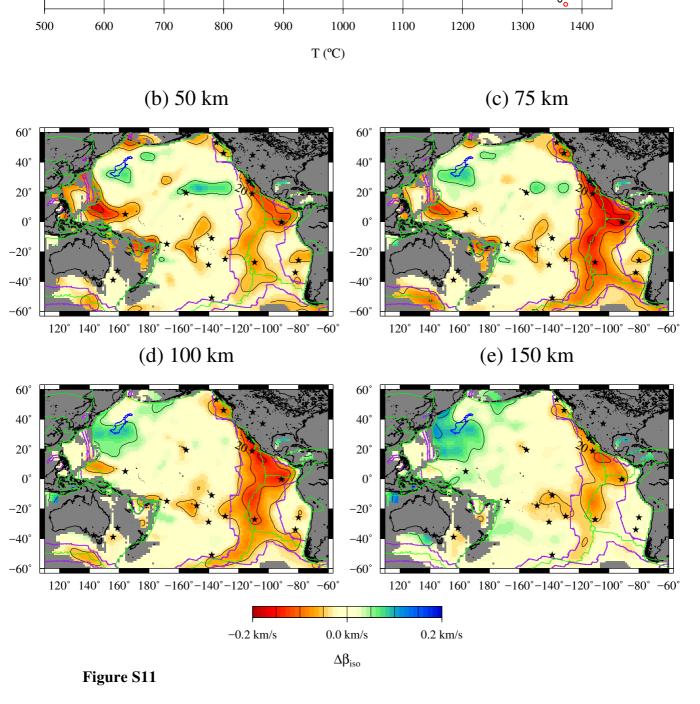
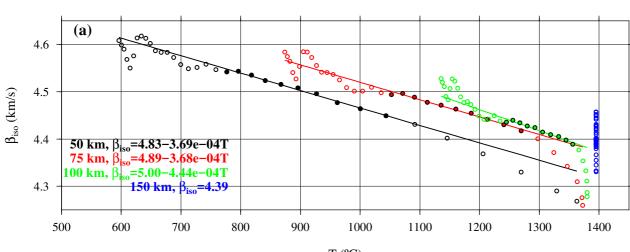
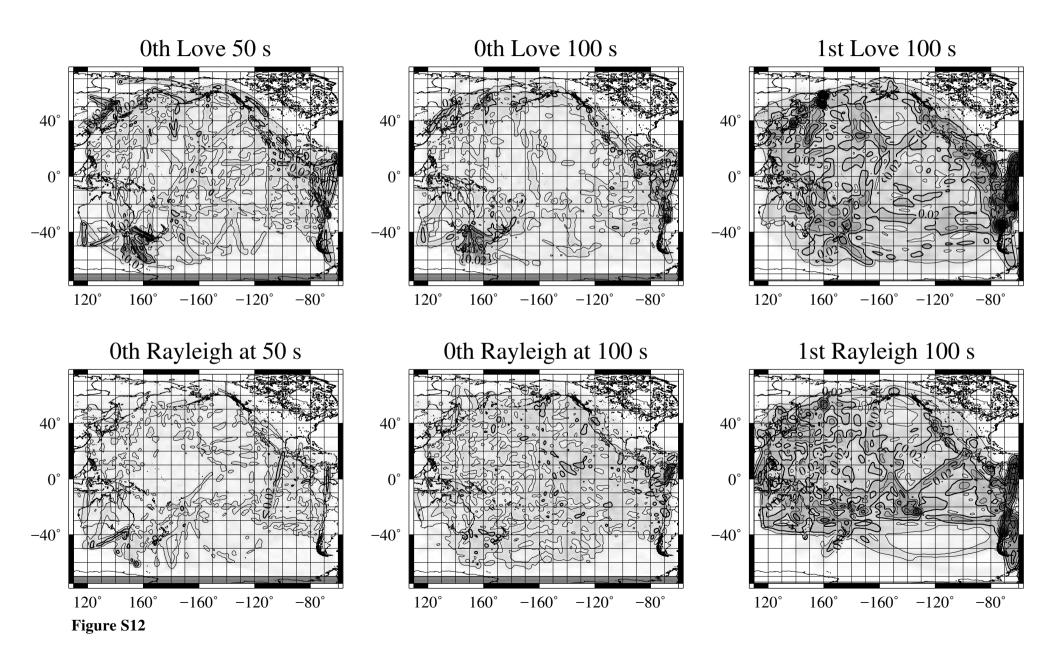





Figure S9


 $\Delta \beta_{iso}$

0.00 0.04 0.08

Error (km/s)

