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SUMMARY 
Wave propagation problems with radiation boundaries cannot be solved by the 
ordinary eigenfunction expansion method because not all of the eigenfunctions are 
mutually orthogonal due to non-Hermitian boundary conditions. We present a method 
for solving such problems in terms of a superposition of eigenfunctions, using the 
biorthogonal eigenfunction expansion method outlined by Morse & Feshbach (1953). 
We develop their method, using a variational equation, so that the calculations other 
than those of eigenfunctions are unnecessary to construct the solution when there is an 
impedance contrast at the radiation boundary. We present numerical computations for 
a 1-D semi-infinite continuum that has an impedance contrast. This method may be 
applicable to such problems as the vibration of a magma chamber embedded in the 
crust, the acoustic coupling between the solid Earth and the atmosphere, and wave 
propagation in a layered half-space. 

Key words: elastic wave theory, layered media, normal modes, synthetic seismograms, 
wave propagation. 

1 INTRODUCTION 

The excitation problems with radiation boundary conditions 
that have an impedance contrast (for example, a magma 
chamber embedded in the crust, a vertically layered half-space, 
and the solid Earth in the atmosphere) have not usually been 
considered by the normal-mode approach. The reason may be 
that the normal modes are no longer 'normal', or orthogonal, 
due to non-Hermitian radiation boundary conditions and 
therefore the ordinary modal approach cannot be used. Fujita, 
Ida & Oikawa (1995) and Sakuraba, Imanishi & Oikawa (1995) 
studied the free oscillation of a fluid sphere embedded in an 
infinite elastic medium to understand the source mechanism of 
volcanic tremors. They investigated the response of the system 
to an applied force using a Green's function technique, but they 
treated only peculiar sources with spherical symmetry due to 
the intricacy of analytical calculation. The vertically layered 
half-space problem has been studied by various investigators 
(e.g. Ewing, Jardetzky & Press 1957). It has usually been 
treated by a Green's function technique such as the reflectivity 
method (e.g. Kennett 1983). The total wavefield, including 
body waves, cannot be represented by an orthogonal set 
of modes whose energy is trapped in the structure. To 
complement the part of the wavefield, whose energy leaks 
into the underlying half-space, Haddon (1987) considered 
the contribution of leaking modes. However, he did not use 
the ordinary eigenfunction expansion method. Maupin (1996) 
used the radiation modes, which are obtained by subjecting 
a weaker boundedness condition at depth than ordinary 
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radiation boundary conditions. In the study of the coupled 
oscillation of the atmosphere and the Earth excited by 
volcanic eruptions, the effect of the modes whose energy 
radiates outwards is not calculated because the treatment of 
non-Hermitian boundary conditions is difficult (Watada 1995). 

It is, however, possible to solve problems involving 
non-Hermitian differential operators entirely in terms of 
eigenfunctions by considering both the original non­
Hermitian system and its Hermitian adjoint (Morse & 
Feshbach 1953, henceforth M&F). The original eigenfunctions 
and their Hermitian adjoint eigenfunctions are orthogonal 
(biorthogonality), thus we can solve the excitation problem. 

In this paper, we outline the application of M&F's hi­
orthogonal eigenfunction expansion method to a problem that 
can also be solved in a straightforward manner by con­
ventional means: a 1-D string with a radiation boundary that 
has an impedance contrast. We choose this problem because it 
includes all of the essential features of the aforementioned 
problems. 

2 BIORTHOGONAL EIGENFUNCTIONS 

We consider the solution of the inhomogeneous equation 

(L-vp)w=f (I) 

using eigenfunction expansion methods, where L and p 
represent the linear differential operators (including the 
boundary conditions), v is an arbitrary number and f is the 
inhomogeneous term. The inner product of the two functions 
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a and h ts defined as 

(u·h)= L a•(x)b(x)dx. (2) 

where • denotes the complex conjugate and dx may represent 
an mtegral over either one or several dimensions. If Land pare 
both Hermitian. the method of solution is well known. We 
solve the eigenvalue equation 

L v. = i .• p v • . (3) 

Since L and p are Hermttian, it can be proved that the 
eigenfunctions [ v.: are mutually orthogonal wtth respect top: 

if n#m. (4) 

We solve the system (I) by expanding 1r in terms of [ v.] and 
using the orthogonality (4). We obtain 

1\" = L: . ( v. ·n- v •. 
n· (l.n-1')(V.·pV0 ) 

(5) 

However. if L ts non-Hermitian and j1 is Hermitian, the 
eigenfunctiOns are not necessarily orthogonal and thus we 
cannot. in general. use the standard eigenfunction expansion 
techmques to find a solution. Using the biorthogonal eigen­
functiOn expansion method of M&F. we solve the eigenvalue 
equations for the original system and the adjoint system: 

L Vn = i.n p Vn , 

L • L'm = Jlm pUm, 

(6) 

(7) 

where · • denotes the Hermitian conjugate operator. These 
eigenfunctions and eigenvalues have the following properties: . . 
Jln = 1.0 , 

if n#m 

(8) 

(9) 

(e.g. M&F). When Lis Hermitian, i.e. Lis equal to L •, Vn = u. 
and i .• = Jln· Thus (8) indicates that the eigenvalues are real and 
(9) indicates the orthogonality of the eigenfunctions. Note that 
when L is not Hermitian the set of eigenfunctions [ v.] is not 
necessarily mutually orthogonal but the functions [ u.] have 
orthogonal relationships with [ v.]. This relationship is called 
hiorthogonality. 

We solve the system (I l by expanding win terms of ( V.) and 
using the biorthogonality (9). We obtain 

w= L _____ (U._-j} --- V 
n (i.0 -V)(U.·pV0 ) n· 

(10) 

When L is Hermitian this method reduces to the familiar 
eigenfunction expansion method. 

3 1-D EXAMPLE 

We consider a 1-D semi-infinite 'string', with variable stiffness 
A and density p. We set 

{At O::;x::;l 
A(x)= 

A2 .\'~I 

{ P1 
O::;xsl 

p(x)= 
P2 x~l 

(II) 

where Z, is the impedance, Z is the impedance contrast, 
c1=JA;7p~ and c2=JA2/c2. We assume Z-#1. We fix the 
string at x = 0. At x =I we require that waves radiate outwards 
and do not reflect from the end. Displacement and traction are 
continuous across x =I. We consider the problem of finding the 
displacement of the string w(x, t) when a unit impulse is given 
at the point x=e<Osest) at t=O (Fig. I). 

The Fourier transformed equation of motion is 

[:" ( A(x) :") +oip(x)]w(x, w)= -b(x-e). (12) 

with boundary conditions 

w(O, w)=O fixed at x=O, (13) 

continuity of displacement across x=l, (14) 

d I I d A2 -d w (, w)-AI -d w-(1, w)=O 
X X 

continuity of traction across x =I, (15) 

d (1) 

d
- w 1 

(/, w)-i- w+-(1, w)=O 
X C2 

radiation boundary, 

where w is the frequency. 
The eigenfunctions of this system are 

Osxsl 

x~l 

where w. is the nth root of the equation 

e""'fc, +e-"'''fc, 
w= z m e"'''l'' -e-""'1•·, , 

(16) 

(17) 

(18) 

chosen so that ;jj'~- w. ~ 0. We can solve (18) analytically to 
obtain 

{
T (mr-icoth- 1 Z) 

Wn= T ((n+ Dn-itanh- 1 z) 
for Z >I 

(n=0,1,2, ... ). 

for Z <I 

(19) 

Fig. 2 shows the eigenfunctions when Z ~ I. 
The goal of this paper is to set up the transient solution 

1\~x. t) in terms of the eigenfunctions { ''•}. However, it is 

0 f X 

~ 
radiation boundary fixed 

Figure I. The semi-infinite string model showing source and 
boundaries. 
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Figure 2. (a) The eigenfunctions for modes n=O to 2. Ct =I, Z=2. 
I= I. (b) The eigenfunctions for modes n =0 to 2. Ct =I. Z =0.5,/ =I. 
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inconvenient to use { Vn} as the basis to represent the inhomo­
geneous solution "~x. w) in the frequency domain. The reason 
is that Vn does not satisfy the boundary condition required for 
~x. w) at x=l: Vn satisfies 

d + (/) . Wn + (/) O -d vn -I - v. = ' 
X C2 

(20) 

while w(x, w) is subjected to (16). When we determined ron and 
vn, we solved the homogeneous equation (12) with (13)-(16), 
considering that the term w, which appears in (12) and (16), is 
common and corresponds to ron. As a result, the boundary 
condition for Vn at x =I depends on the eigenfrequency ron. 

Therefore, it is difficult to expand ~x, w) in terms of Vn, each 
of which satisfies its own boundary condition (20). In the 
following section, we use the basis that satisfies (16). 

We separate the problem into two parts: the inside (0 5,x5./) 
and the outside (x ~I) of the radiation boundary. First we 
consider the motion of the inner string, and then extend it to 
the outer region using (14) and (15) . 

3.1 The inner string 

The linear operators that appear on the left-hand side of 
(12) are formally Hermitian. We can define the boundary 
conditions of the inner string completely as 

V(O, w)=O, (21) 

A1 ! V(l, w)-iwZ2 V(l, w)=O radiation boundary, (22) 

where Vis the displacement of this system. (22) is obtained by 
inserting the continuity conditions (14) and (15) into (16). The 
Hermitian adjoint boundary conditions, which can be derived 
using Green's identity (e.g. M&F), are 

U(O, w)=O, 

A 1 .!!._ U(l, w)+ iw* Z2 U(l, w) = 0, 
dx 

(23) 

(24) 

where U is the displacement of the Hermitian adjoint system . 
The radiation boundary condition is non-Hermitian because 
(22) and (24) differ. (24) is equivalent to an incoming radiation 
boundary condition. 

3.1.1 Frequency-domain solution 

Here we shall follow M&F in deriving a complete repre­
sentation of the total wavefield as a sum of eigenfunctions. We 
introduce the basis { Vn.,} that satisfies 

( A1 ::2 +p10n}) Vn)X, w)=O (25) 

with boundary conditions (21) and (22). We obtain 

(26) 

where Cln...(w) is the nwth root of the transcendental equation 

I eiOifcl +e-iW/cl 
w = - n -=-:-:----:::-:-,.­z eiOI/cl -e-ICll/rl ' 

chosen so that ~nn .. , ~0. 

(27) 

Note the difference between Vn .. , and Vn. We determine Vn,. by 
considering w as a constant coefficient of iZ2 V(l, w) of the 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/134/3/849/582915 by U

niversity of Tokyo Library user on 10 April 2020



852 K. Yamamura and H. Kawakatsu 

radiation boundary cond1tion (22), wh1le we determine t'n by 
considering that oJ, which appears in the radiation boundary 
condition, is identical to the eigenfrequency. Vn, satisfies the 
boundary condition (22) required for the inhomogeneous 
solut1on (22 1s essentially the same as 16). Thus in contrast to 
: !'n}, { Vn.,} is a suitable basis to represent the inhomogeneous 
solution in the frequency domain. On," and Vn., are functions of 
oJ. When w= Wn. Vn, corresponds to Vn and On)w) corresponds 
to (JJn [set(!)= n in (27) and compare it to (18)]. 

As we showed in an earlier section, this is a non-Hermitian 
problem. In order to obtain the expansion coefficient, we 
introduce the Hermitian adjoint basis { Un,,}, which satisfies 

(28) 

w1th boundary conditwns (23) and (24). We obtain 

(29) 

When w = Wn, Un, corresponds to Un. which is the eigen­
function of the Hermitian adjoint system. (We can obtain { Un} 

by followmg the same procedure as {rn}. but with an incoming 
radiation boundary condition. In this case Un becomes the 
complex conjugate of l'n.) We can now set v = - w2, i.n = - Q~ , 
jJ = p 1 and f = - 6(x- 0 in (10) and use the general result ~f 
the biorthogonal eigenfunction expanswn to obtain the motion 
of the string: 

(30) 

Although this result takes a similar form to the ordinary 
modal solution, it is laborious to obtain the transient solution 
in the frequency domain. There are infinite discrete eigenstates 
for each w. To calculate (30) we have to solve (27) and sum the 
eigenstates for each w. 

3.1.2 Time-domain solution 

The displacement as a function of time can be found by 
inverting the Fourier transform 

(31) 

or, interchanging integration and summation, 

This integrand has simple poles at the solutions of the 
equations 

w = ± On)w). (33) 

which reduce to the secular equation of the original system and 
its Hermitian adjoint system; for each value of n., in On, there 
is a pair of roots, uJ = wn. - w: [we defined the index nw so that 
the roots of (33) correspond to oJ~ and -w:). These poles 
always lie in the lower half-plane. 

For 1 < 0 we use the w-axis upper-semi-circle contour, and 
there are no poles inside. Thus the integral is zero. Fort > 0 we 
use the w-axis lower-semi-circle contour (e.g. Aki & Richards 
1980). We have 

J~ -u: (e, w)V. (x, w) _'"''d 
m fl) e (JJ 

( (1)2 - g2 )( u •p v ) 
- 'XJ nw nw I n.,1 

=2ni[Resw=w, +Resw=-w;]. (34) 

where Res denotes the residue of the integrand at its poles, 
and 

Resw=to, 

xe-lw,t 

_ -u:<e>v.(x) -lw,t 

-( iJQ ) e ' 
I - ~I 2wn(Un'Pl Vn) 

vW ttJ=w, 

(35) 

where n • ..,<wn)=w., V • ...(x, w.)=v.(x) and u ... (x, Wn)=u.(x) 
were used. 

Calculation of iJQ""' I owlw=w, is performed with the aid of 
the variational equation (e.g. Aki & Richards 1980). The 
variational equation for this string is 

(36) 

where 

~.=~LA. (~~rdx, (37) 

h = ~ L p1 V
2
(x)dx, (38) 

j 2 
B= z wZ2 V (/), (39) 

"'2= /1-B 
l.r h . (40) 

Differentiating (40) with respect to w at the stationary 
point and using (36), we finally obtain the derivative of the 
eigenfrequency 

iZ2 v;,. (1, w) 

40n.J2 

Thus at w = Wn we have 

(41) 

(42) 

[Of course, in this simple example we can obtain (42) directly 
by differentiating (27).] We can obtain the residues at w = - w: 
by following the same procedure. 

Computing the residues about each pole, we see that 

{

0 fort<O, 

w(x, I)= [ Vn(~)vn(X) e -iw.t ] (43) L lm for t > 0, 
n • Wn(v: 'Pl Vn)+ iZ2vW)!2 
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where u!=vn was used. (43) can be written explicitly as 

w(x, t) 

isin(waelcl)sin(waxlct) e-'"'•' 

P1lwa 

t .hn [2 sin (wne I c1) sin (wnxl c1) e-iw,.t] 

n=O P!lwn 

for Z >I, 

for Z <I. 

(44) 

The final solution is expressed in terms of the true eigen­
functions {vn}. which are not mutually orthogonal. We started 
with the biorthogonal set of eigenfunctions, { VnJ and { UnJ. 
which are functions of w. However, in fact we do not have to 
calculate them explicitly because the inverse Fourier trans­
formed solution is given by the residue contributions from the 
poles, which correspond to the eigenfrequency of the original 
and Hermitian adjoint systems. Usually, the time-domain 
solution can be expressed in terms of the eigenfunctions of 
the original and Hermitian adjoint systems. In this example 
the Hermitian adjoint eigenfunction is the complex conjugate 
of the original one and therefore we can represent w(x, t) as a 
sum of {vn}· Thus the response of the system to an arbitrary 
source can be obtained once the true eigenfunctions have been 
calculated. 

3.2 The outer string 

Next we consider x ~I. We extend the solution of the inner 
string using the continuity of displacement and traction. We 
find that the solution of the outer string can also be expressed 
in terms of the true eigenfunction { v"} as ( 43). It can be written 
explicitly as 

"~x. t) 

i sin <wae I c1) sin (w0 / I c1) e•wo{<x-1)/..,- •l 

P1lwa 

for Z >I, 

t Jm [2 sin (wne I c1) sin (wnll cJ) e'w.{(x-l}lfl-l}] 

n~O P11Wn 

for Z < 1. 

(45) 

3.3 Green's function 

The Green's function for this system can be found straight­
forwardly by finding the response of the system to an impulse 
at x = e and t = 0. We break the Green's function into two parts, 
for x < e and x > e. and use the continuity of wand the jump 
discontinuity of dw I dx at the point of the impulse. We apply the 
boundary condition by requiring the waves to travel only to the 
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right for x > I. The Green's function is 

w(x, w) 

1 (Z-l)elk1(1-x>>-(Z+I)e-lk1(/-x>) . 
wZI (Z-I)elkii-(Z+l)e-ikl/ sm(kixd 

O~x~l. 

2 sin (kl e) ik2(x-l) 
--- kl lkl e x?::.l, 

wZ1 (Z-I)e' 1 -(Z+I)e- 1 

(46) 

where k; = wl c;. x< and x> denote the smaller and larger of the 
two variables X and e. 

Eqs (30) and (46) provide two very different representations 
for w(x, w); however, we can reconcile them easily in the time 
domain using the fact that (46) has simple poles at w= ±wn. 
Thus the two representations are wholly equivalent. 

4 NUMERICAL EXAMPLE 

We present a numerical example of the biorthogonal expansion 
method. We set AJ=I, A2=2, p 1=l, p2=1 and /=1. Thus 
Cj = I and C2 = /2. Instead of a(t) time dependence, the time 
dependence of (44) and (45) is (d/dt)(a(t))•exp(-t21r5) 
(where to is the constant 'rise time'), and we get basically 
Gaussian pulses travelling along the string. We calculated the 
excitation for the solution by the biorthogonal eigenfunction 
expansion method for the case of e = 0.5 and to= 0.001. Fig. 3 
shows snapshots of the displacement along the string for times 

t=O 

t=0.5 

t=l.O 

1=1.5 

0 I 
X 

Figure 3. 'Snapshots' of the string at time intervals of M=0.05. 60 
modes are summed. 
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from t = 0 to t = 1.55. In each calculation, 60 modes are used. 
From t = 0 to t = 0.5 the pulses propagate in both directions 
away from the source. The effect of the boundary occurs at 
t = 0.55. The pulse travelling on the left has been reflected by 
the rigid boundary and now travels to the right (away from 
the boundary) with the negative of its previous amplitude. 
Meanwhile, the rightmost pulse has passed through the dis­
continuity at x =I. The reflection and transmission coefficients 
for the wave travelling to the right are 

1-Z 
R=I+Z' 

2 
T=--. 

I+Z 

(47) 

(48) 

For our problem, R= -113, T = 2/3. These coefficients for the 
biorthogonal eigenfunction expansion solution agree with the 
theoretical values. 

5 DISCUSSION AND CONCLUSIONS 

We have solved a simple problem with non-Hermitian, 
radiating boundary conditions with an impedance contrast 
using the biorthogonal eigenfunction expansion method of 
M&F. Our 1-D example is essentially the same as the example 
that M&F presented: a string of length I fixed at x=O and 
supported non-rigidly at x = /, where the non-rigid support 
applies the resistive force on the string and the force is pro­
portional to the velocity. However, they overlooked the fact 
that On is a function of w in the calculation of the residues. 
Thus their result is incorrect (M&F eq. 11.1.29, p. 1347), 
although their formulation is correct. We have presented here 
the correct calculation of the residues using the variational 
principle. 

Our time-domain method cannot be used when there is no 
impedance contrast at the radiation boundary (i.e. Z = 1), 
since there is no non-trivial eigensolution of the free oscil­
lation. It is extremely laborious to obtain the solution by the 
eigenfunction expansion method in that case: we have to 
solve the secular equation (27), sum the eigenstates for each 
w, and then inverse Fourier transform back to the time 
domain. Geller, Noack & Fetter (1985) solved the excitation 
problem of a 1-D string with a radiation boundary that has 
no impedance contrast using the shifted eigenvalue method 
of Lanczos ( 1961 ). Their method is very computationally 
intensive and is thus of practically no use. 

We determined the solution inside the radiation boundary 
first, and then extended it to the outer region. Our procedure 
may seem artificial because the usual limit in the integral in 
mode methods of a vertically layered half-space is rx-, 
although the radiation boundary is set at a finite depth. The 
boundary condition at infinite depth for surface waves is no 
displacement, since the energy is trapped in the structure. In 
our problem the energy leaks into the half-space and therefore 
the displacement of modes diverges as x--o x,. We cannot 
properly define the boundary condition at x= x,, but we can 
fully express the effect of the outer string by the boundary 
condition for the inner string at x =I (22). Using the conti­
nuity of displacement and traction, the solution of the outer 
string is determined uniquely once the solution of the inner 
string has been determined. Thus we separate the problem 
into two parts, and do not extend the limits in the integral of 

the inner product and the energy integrals (37) and (38) to 
infinity. 

Although we have presented this method for a 1-D case, it 
can easily be extended to 2- or 3-D problems of laterally 
homogeneous media with cylindrical, Cartesian or spherical 
coordinates, because after some integral transformation, these 
problems reduce to the same form as (12). This method may 
make useful contributions to such problems as the vibration of 
a magma chamber embedded in the crust, wave propagation 
in a layered half-space, and the acoustic coupling between the 
solid Earth and the atmosphere. 

For example, in previous studies of volcanic tremors, the 
vibration of a magma chamber excited inside the chamber 
was calculated for spherically symmetric sources using the 
Green's function technique (Fujita et a/. 1995; Sakuraba 
eta/. 1995). Using the method presented in this paper, we 
can calculate the response of the system for any arbitrary 
source. For well-documented volcanic tremors such as those 
observed for the Aso volcano (Kaneshima et a/. 1996), it 
may even be possible to perform a centroid moment tensor 
inversion to determine the location and mechanism of tremor 
sources, as is commonly done for earthquake source mech­
anism determinations in global seismology using normal 
modes of the Earth. 

The application of the present method to the wave 
propagation problem in a layered half-space also seems 
straightforward and promising. This method requires com­
putational effort to calculate the eigenfunctions. However, 
once we obtain and store them, it is straightforward to 
calculate the complete waveform (including body waves 
and surface waves) by summation of the eigenfunctions. This 
method may be more efficient than previously available 
methods, such as the reflectivity method, when we calculate the 
response of a stack of homogeneous layers, whose structure is 
well-determined, for various seismic sources. 

The present method should be also useful when we consider 
the acoustic coupling between the atmosphere and the solid 
Earth, properly treating the outward radiating boundary in the 
modal approach. Such an approach has recently been taken by 
Lognonne, Clevede & Kanamori (1998) based on the theory 
developed by Lognonne ( 1991 ), in which the biorthogona1ity 
relation is used to compute seismograms of a rotating and 
anelastic earth in terms of normal modes. 
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