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UK Legacy Nuclear Waste

• Currently, there are 8 nuclear power plant facilities operational in the UK
- 1 Magnox reactor, 6 advanced gas-cooled reactor sites and 1 

pressurised-water reactor
- Government policy is to undertake reactor new-build at several sites 

within the UK
• A consequence nuclear power is the generation of low-, intermediate- 

and high-level waste products
- Legacy silos and waste ponds
- ILW waste containers (see below)

• The UKʼs nuclear waste reprocessing is currently performed 
at Sellafield, Cumbria in the north-west of England

• On Sellafieldʼs site significant volumes of ILW and HLW are 
stored in highly-engineered structures

• In order to characterise this current (and legacy) waste, 
techniques to clearly understand waste performance and 
storage parameters are essential

• Development of characterisation techniques (such as MT) 
assist in mitigating the risks inherent with long-term storage of 
these materials
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• Industrial collaboration with UK National Nuclear 
Laboratory (NNL) undertaken on behalf of Sellafield 
Ltd. (and the UK Nuclear Decommissioning 
Authority)

• Began as a feasibility study:

Could a scintillating-fibre MT system be used in the 
non-destructive assay of legacy nuclear waste 
containers at Sellafield?

• Small-scale prototype designed and constructed in 
Glasgow after initial simulation studies confirmed the 
potential of the technology

• First imaging results on a test setup of objects are 
presented here  

4

The Glasgow Muon Tomography Project

Friday, 26 July 2013



• Industrial collaboration with UK National Nuclear 
Laboratory (NNL) undertaken on behalf of Sellafield 
Ltd. (and the UK Nuclear Decommissioning 
Authority)

• Began as a feasibility study:

Could a scintillating-fibre MT system be used in the 
non-destructive assay of legacy nuclear waste 
containers at Sellafield?

• Small-scale prototype designed and constructed in 
Glasgow after initial simulation studies confirmed the 
potential of the technology

• First imaging results on a test setup of objects are 
presented here  

4

The Glasgow Muon Tomography Project

Friday, 26 July 2013



5

The Glasgow MT Detector:
Muon Event Generator and GEANT4 Simulation Studies

• Cosmic-ray muons are generated by a standalone code based 
on well established and accurately measured properties: 
- Mean momentum, pmean of 3.35 GeV/c with p-2.7 slope at high 

momenta
- The angular distribution has a characteristic cos2 θ 

dependence
- Muon flux of approximately 1cm-2 min-1 

with ‘V’-shaped grooves in X-plane (top-side) and Y-plane (under-side)

• GEANT4, developed at CERN, is the ʻindustry standardʼ detector 
simulation framework in particle and nuclear physics

• ʻActiveʼ components of the module ʻsandwichʼ structure and 
materials accurately modelled in GEANT4 

top-down view of the module shows the 
active area cut out 
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The Glasgow Detector:
More GEANT4 Simulation Studies

Test case for prototype MT system
in Glasgow

Stainless steel 
cylindrical bar

Pb block

U cylinder • Experimental test setup in Glasgow simulated 
(shown opposite without top module)

• Data taking commenced 2012 to verify the initial, 
promising simulation results 

• Expected material discrimination obtained from 
GEANT4 simulations studies performed in an air 
matrix:
- 10x10x10cm3 blocks of material with 1 day 

muon exposure
- Clear separation of low-, medium- and high-Z 

materials using scattering parameters
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• Prototype detector setup consists of four tracking modules
- 2 orthogonal layers of 128 scintillating fibres 
- ʻSandwichʼ structure with flat and machine-grooved 

Rohacell® (polymethyacrylimide) support sheets and 
Aluminium baseplate

- Layers bonded with optical glue
- Tedlar® and nylon tubing ensure light-tightness

7

The Glasgow Detector:
Module Construction

• Fibres held in place by custom-made distribution blocks 
at edges of Aluminium baseplate and PMT

• All four modules held in place in an Aluminium-profile 
stand with alignment pins in each module
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Detector Components:
Scintillating Fibres and Hamamatsu H8500 MAPMTs

•                                    H8500 MAPMT (8x8 array segmented anode)
• 2 fibres multiplexed to one pixel via a dedicated coupling scheme to 

ensure successful fibre identification
• PMTs gain-tested at operational voltages
• Custom-built PCB boards used to read-out to 32-channel                 QDC 

units

core

PMMA optical cladding

Aluminium collar

Hamamatsu
H8500 MAPMT (front view)

PMT relative-gain maps

•                           scintillating fibres used
• 2mm pitch with active core of 97% width 
• Polystyrene-based core with PMMA (polymethylmethacrylate) 

optical cladding (3% width)
• Polished fibre (shown opposite)
• Aluminium collars glued on to ensure uniform contact with PMT  
• Chosen for their robustness and scaleability
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The Glasgow Detector:
Data-taking and Performance Studies

• Multi-fold trigger on Dynode-12 signals from the detector PMTs

• Highest gain-corrected QDC signal above pedestal chosen as ʻhitʼ

• Only events with a hit in each layer are analysed

• Narrow pedestals across the 512 QDC channels

• PMT characterisation and cross-talk investigations completed.

• Relative gain-maps obtained via laser scan

• Multiplicities (~1.5 clusters per 18 event across all PMTs)

• Detector performance stable over long time periods

• Alignment optimisation undertaken to compensate for minor 
structural misalignments (less than 5mm)
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• Imaging volume is split into small volume elements called 
voxels

• Prior knowledge of the Point of Closest Approach (PoCA) is 
needed

• This method provides information on every voxel the muon is 
assumed to have passed through.

• The scattering likelihood of the ith muon in the jth voxel is 
expressed as:

• where Δx and Δθx are the spatial and angular deviations of the 
track (in the x direction) due to scattering, Lij is the pathlength in 
the voxel, Tij is the 3-D pathlength from the voxel exit point to 
the exit point from the imaging volume (shown opposite) and λj
(n) is the λ value of the current iteration.

• The λ value of the next iteration is determined as:

• Iteration continues until convergence, i.e. the most likely value 
has been found.

10

Image Reconstruction:
Maximum Likelihood Expectation Maximisation (ML-EM)

L. Schultz et al., “Statistical Reconstruction for Cosmic Ray Muon Tomography” - IEEE Transactions on Image Processing 16 (2007)
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Simulation

Pb U

Data Simulation

PRELIM
IN

ARY

PRELIM
IN

ARY

Friday, 26 July 2013



11

Preliminary Results

Simulation

Data Simulation

PRELIM
IN
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• Excellent agreement between the experimental data taken on the prototype detector 
and the simulated data

• Clear separation observed between the air, steel bar and the two high-Z materials
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Summary 

• Muon tomography is increasingly being used in the non-
destructive assay of large and/or shielded objects with 
applications in fields ranging from archaeology to national 
security  

• In collaboration with the UK National Nuclear Laboratory, the 
Nuclear Physics group at the University of Glasgow has 
developed and constructed a prototype MT system using 
scintillating fibres

• First results from this small-scale prototype in Glasgow verify 
initial simulation and feasibility studies by discriminating 
between low-, medium- and high-Z materials

• Work underway on the development of a full-scale detector 
system with a view to imaging legacy waste containers

PRELIM
IN

ARY
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