MURAVES muography project

Giovanni Macedonio
(on behalf of the MURAVES Collaboration)

Istituto Nazionale di Geofisica e Vulcanologia
Osservatorio Vesuviano, Naples, Italy

Tokyo, 7 November 2016
Summary

1. Motivations

2. The MURAVES Project

3. Conclusion
Active volcanoes in Italy (10)

Vesuvius has the highest risk

- Last eruption occurred in 1944
- Now the conduit is closed
- Monitored 24/24
Vesuvius has the highest risk

About 600,000 people live in the “Red Zone” of Vesuvius

Vesuvius today
The eruption dynamics depends on:

- Gas content
- Chemical composition and temperature of magma (viscosity)
- Dimension and shape of the conduit

(from Martí et al., 2000)
The vent is circular
The interior of volcanic conduits (dykes)

Emerged dyke at Crater Lake

Emerged dyke at Etna
Need: reveal the internal structure of Vesuvius
Past knowledge from direct observations

The Vesuvius crater between 1906 and 1944

(from Imbò, 1949)
Need: reveal the internal structure of Vesuvius
Past knowledge from direct observations

The Vesuvius crater between 1906 and 1944

(Vesuvius crater in 1944)

Vesuvius crater today

(from Imbò, 1949)
First experiments of muon radiography at Vesuvius
The MU-RAY project (2009)

Detector location (MU-RAY)

Map of the thickness

(from Macedonio and Martini, 2010)
The MU-RAY project

- Japanese detector (from H. Tanaka) tested at Vesuvius
- Two parallel planes (distance 1.2m)
- Each plane has 12 plastic scintillators (100x7x3cm), coupled with photomultipliers (52mm diameter)
The MU-RAY experiment at Vesuvius
Mounting the Japanese detector, 2009-2010
MU-RAY First results

PRELIMINARY

Vesuvius seen from the installation point
Comparison with Monte Carlo simulations

Monte Carlo Transmission rate

Comparison of Monte Carlo and data
The MURAVES Project
Muon radiography of Vesuvius

Objectives

- Build a **new telescope** for volcano radiography using cosmic muons with better resolution and background suppression than previous experiments
- Achieve an **integrated model of the Vesuvius’ structure** based on muon radiography and geophysical investigations
- Develop a **model** for the integration of data from muon radiography, gravimetry, seismology and (possibly) geoelectrics
Muon radiography of Vesuvius

The MURAVES Project

Experience from previous projects

- MU-RAY Project (INFN, INGV, UNINA)
- MURAY2 Project (INFN, in collaboration with INGV)

MURAVES Project

- Funded by MIUR (Project “Premiale 2012”)
- INGV (host institution) + INFN (main partner)
- Budget 860 kEuro

Project duration: **3 years**

- First year: Laboratory setup on Vesuvius, beginning of data acquisition
- Following years: Data acquisition and analysis
The MURAVES telescope
INFN, INGV, Universities of Napoli and Florence

The detector is based on plastic scintillators
Investigated sites
Monte Carlo simulations and logistics
Rock thickness
Optimize: logistics, investigated depth, acquisition time
Rock thickness
Optimize: logistics, investigated depth, acquisition time

Best compromise
Selected site for the MURAVES detector

Position: E 14° 26’ 02.35”; N 40° 49’ 35.48” (962 m a.s.l.)
The container

Characteristics

- Three aligned containers LC 15’
- Total internal: L=13.5 m, W=2.1 m, H=2.05 m
- Three doors on the long side
- Concrete basement (pre-built)
Lead from the OPERA experiment
Re-melt in bricks
Geoelectric profiles
March 2015 (yellow line) + gravimetry (yellow dots)

Survey coordinated by Tullio Ricci and Anthony Finizola (2015)
Preliminary results from geoelectric inversion

Survey coordinated by Tullio Ricci and Anthony Finizola (2015)
Conclusion

MURAVES Project

- MURAVES has started in 2015 (INGV + INFN)
- Born from the MU-RAY/MURAY2 Projects, in cooperation with ERI (Japan)
- Cooperation with UC-Louvain (Belgium) in progress
- Cooperation with IN2P3 (France) in progress
- Expected start of data acquisition at Vesuvius: March 2017