

Muography for Future Mars Mission

<u>Peng Hong</u>¹*, Yukito Koike¹, Hiroyuki Tanaka¹, Hideaki Miyamoto^{1,2}, Masanobu Ozaki²

> ¹The University of Tokyo ²Japan Aerospace Exploration Agency

MUOGRAPHERS 2017 General Assembly at the Embassy of France, Tokyo (October 2nd, 2017)

Interesting Martian Geological Features

Previous Observations of Martian Subsurface Structures

- Seismic tomography
 - Few seismic events on Mars
 - Low spatial resolution
- Ground penetrating radar
 - Requiring a large antenna and power source for observation of rocks
- Microgravimetry surveying and Magnetic surveying
 - Requiring detector being physically near the target

South polar layered deposits on Mars explored by two different ground penetrating radar sounders Image credit: NASA/ESA/JPL-Caltech/University of Rome/Washington University in St. Louis

Advantages of Muography on Mars (Kedar et al., 2013)

- Low power consumption (e.g., Tanaka, 2012)
 - muography: 2-3 W
 - Mars Science Laboratory Radioisotope Thermoelectric Generator power production: 110 W
- Extremely low data rate for transmission
 - A density profile: a few kilobytes
- Flexible implementation
 - Passive detector with no moving parts
 - Weak pointing requirements
 - Relatively low computational and processing requirements

Concept of Muography for Future Mars Mission

Black rectangles show geological regions of interest for future Mars muography mission (Kedar et al., 2013)

(Kedar et al., 2013)

Obstacles for Muography on Mars

- Less production rate of muon due to the thin atmosphere
 - Mars: ~ 7.6 hPa, Earth: ~ 1000 hPa
- Significant noises due to protons and other cosmic rays on martian surface
- Small sensitive area of detection system resulting in low count rate

Feasibility assessment is required

Depth (hPa)	7	100	200
Proton $(m^{-2}s^{-1}sr^{-1})$	9000	5000	2000
$\pi^{+/-}$ (m ⁻² s ⁻¹ sr ⁻¹)	2	10	8
$\mu^{+/-}$ (m ⁻² s ⁻¹ sr ⁻¹)	40	200	300

Vertical flux of particles on the surface of Mars (Keder et al., 2013)

Objectives of Our Study

- Testing the feasibility of ultra-small muography system for future Mars mission
 - Building laboratory system to test the feasibility
 - Simulating operation on Martian surface using the developed ultra-small muography system
- Application of such ultra-small muography system would not be limited only for Mars
 - Can be used for other planetary missions (e.g., asteroids (Prettyman et al., 2013), Phobos (Miyamoto et al., 2016)) and terrestrial subsurface exploration

Building Small Muography System

Plastic scintillator (ELJEN EJ-200)

- Each scintillator is coated with Titanium reflector
- Top space is filled with black silicone rubber

Photomultiplier (Hamamatsu H12700)

- 52 mm square
- Bialkali photocathode
- 10-state 8 × 8 multianode

Building Small Muography System

Plastic scintillator (ELJEN EJ-200)

- Each scintillator is coated with Titanium reflector
- Top space is filled with black silicone rubber

Photomultiplier (Hamamatsu H12700)

- 52 mm square
- Bialkali photocathode
- 10-state 8 × 8 multianode

Current Status of Experimental System

- The detector is very sensitive to surrounding magnetic field such as from HV power and human
 - We are planning to reduce the influence of surround magnetic field
- We have not detected muons yet, partially because oscilloscopes are too old
 - Frequency may not be sufficient to detect muon event
 - A new oscilloscope will be arrived tomorrow

Theoretical Calculation using Geant 4 Simulating Operation on Martian Surface

Theoretical Calculation using Geant 4 Simulating Operation on Martian Surface

Preliminary calculations show that muography may be able to detect density distribution within two weeks of observation time for a 100 m size rock

*Assumptions

- No noise due to other cosmic rays
- Proton flux on Mars is similar to the Moon
- Dependency of muon production rate on incident proton energy is ignored

Detection time observing a 100 m size rock from a distance of about 60 m (solid angle 0.84 sr)

- Muography for future Mars missions have been proposed
- We are testing the feasibility of ultra-small muography system for future Mars mission
 - Building laboratory system
 - Simulating operation on Martian surface using the developed ultra-small muography system
- Preliminary calculations show that we may be able to detect density distribution within a realistic observation time using the ultra-small muography system

MUOGRAPHERS 2017 General Assembly at the Embassy of France, Tokyo (October 2nd, 2017)