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Simulation of the spontaneous growth of a dynamic crack without
constraints on the crack tip path
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SUMMARY
The spontaneous growth of a dynamic in-plane shear crack is simulated using a newly
developed method of analysis in which no a priori constraint is required for the crack
tip path, unlike in other classical studies. We formulate the problem in terms of
boundary integral equations; the hypersingularities of the integration kernels are
removed by taking the finite parts. Our analysis shows that dynamic crack growth is
spontaneously arrested soon after the bending of the crack tips, even in a uniformly
stressed medium with homogeneously distributed fracture strengths. This shows that
the dynamics of crack growth has a significant effect on forming the non-planar crack
shape, and consequently plays an essential role in the arrest of earthquake rupturing.
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INTRODUCTION

The analysis of the spontaneous growth of a shear crack is
one of the most important problems in seismology because it

helps us to predict the entire rupture process of a forthcoming
earthquake. Numerous studies, both theoretical and numerical,
have been made for spontaneous crack growth. For example,

the dynamics of a 2-D semi-infinite shear crack was first
analysed theoretically by Kostrov (1966), while numerical
analyses were required for 2-D or 3-D cracks with finite extent

(e.g. Das & Aki 1977a,b; Miyatake 1980a,b; Das 1981; Virieux
& Madariaga 1982). A planar crack shape was implicitly
assumed in these classical studies, mainly for mathematical

simplicity.
However, theoretical solutions for dynamic crack growth

imply crack bending at a high crack tip velocity. Yoffe (1951)

and Freund (1990) pointed out that the maximum hoop
traction axis shifts from the original crack plane if the crack
tip velocity exceeds a certain critical value; the hoop traction Figure 1. Hoop shear Tt (Q) and hoop normal Tn(Q) tractions: they act
is defined as the traction on an inclined plane around the on an inclined plane originating from a crack tip. The angle Q is
crack tip (see Fig. 1). This suggests the possibility of crack measured from the X1-axis. The open circle represents a traction

evaluation point in the numerical scheme. Ds is a unit length of thebending for a fast growing crack. Indeed, it is sometimes
discrete boundary element.observed that surface traces of actual faults are bent near their

ends (Matsuda 1967; Kanamori 1972). Hence the assumption

of a planar crack shape in the classical studies is dubious, and
its validity should be investigated. Our aim here is to investigate the dynamics of a spon-

taneously propagating crack and its effect on the formation of

crack trace geometry. It should be noted that previous studies*Now at: Department of Earth and Planetary Sciences, Faculty of
of 2-D non-planar crack growth had limitations because ofScience, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka

812-8581, Japan. E-mail: kame@geo.kyushu-u.ac.jp some of the underlying constraints in their numerical schemes.
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One example is the need to prescribe the rupture trace prior slip for time t≤0 and also that the traction is continuous

across the crack, we haveto the dynamic nucleation. Inoue & Miyatake (1995) dealt

with a curved fault (mode II) using the finite difference method

(FDM) by arranging curved grids along the prescribed fault.
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qTada & Yamashita (1997) calculated the dynamic rupture

propagation on a prescribed hackly-shaped crack using the
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boundary integral equation method (BIEM) for each mode of

2-D problem. Neither of these two schemes is suitable for our where u
k
(x, t) is the displacement in the kth direction at

purposes. Another constraint appears in the study of Xu position x and time t, C is the whole length of the crack trace,
& Needleman (1994), who calculated the spontaneous crack j is the arc length along C, Du

i
(j, t) is the slip on the crack in

bifurcations using the finite element method (FEM). They the ith direction at arc length j and time t, c
ijpq

are elastic
selected well arranged elements and node connections in constants, n(j) is the unit vector normal to the crack trace at
the finite element discretization. Their method can begin the arc length j that points to the left when seen along the
calculation without prescribed crack geometry, but with the direction of increasing j, y(j) is the location of the position
restriction that the crack tip growth is only in the directions on the crack at arc length j, G

kp
(x, t−t; y, 0) is the displace-

0° and ±45° in the Cartesian coordinate system. Their concern ment Green’s function denoting the displacement in the kth
is 2-D tensile (mode I) crack growth subject to sudden tensile direction observed at position x and time t−t due to a unit
loading. However, these restricted growth directions are too force in the pth direction applied at position y and time 0, and
coarse for the representation of the boundary condition in the summation over repeated indices is implied (Fig. 2). Here the
mode II case, as discussed in Appendix D. Thus their scheme kernel functions ∂G

kp
/∂x

q
contain hypersingularities and p.f.

is not useful for our purpose either. To our knowledge, the stands for taking a finite part of the divergent integral; the
scheme of BIEM developed by Seelig & Gross (1997) can only details will be given in Appendix B.

Application of Hooke’s law leads to the followingdeal with arbitrarily curvilinear dynamic crack growth. Their

representation for stresses in the full space:main concern is, however, 2-D tensile cracking, and shear

crack growth has not been investigated well.

In this paper, we develop a new method to compute the s
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Bspontaneous shear crack propagation without any a priori

assumptions about its path. The time-domain BIEM is used

for the formulation of an in-plane shear (mode II) crack located =−p.f. P
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qin an infinite homogeneous isotropic elastic medium. The BIEM

is clearly flexible in formulating an arbitrary crack geometry. ×S
klp

(x, t−t; y(j), 0) , (2)
The boundary integral equation we used here, however, has

hypersingularities (Kostrov & Das 1988; Martin & Rizzo where

1989), which means that the BIEM is not immediately suited

to numerical implementation: the flexibility is limited because
S
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(x, t−t; y, 0)¬c
ijpq

∂
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q
G
pk

(x, t−t; y, 0) (3)
the hypersingular integrals have to be evaluated. It will be

shown that this difficulty can be overcome by taking finite parts
is the stress Green’s function denoting the ij-component of thein the hypersingular integrals. Our technique is independent
stress observed at position x and time t−t due to a unit forceof the crack geometry, so that spontaneous crack growth is
in the kth direction applied at position y and time 0. Theeasily studied without assuming the crack shape a priori. We
integrand in eq. (2) has stronger singularities than in eq. (1)simulate the spatiotemporal evolution of spontaneous crack
because of the spatial differentiation.growth using this technique. The crack tip is assumed to

extend in the direction where the hoop shear traction takes

the maximum value and exceeds the fracture threshold. When

cracks are planar, the criterion is reduced to the shear stress

fracture criterion commonly assumed in many classical studies

(e.g. Das & Aki 1977b). It will be shown in our simulation

that the dynamic growth of crack tip is arrested soon after its

bending even in a uniformly stressed medium with homo-

geneously distributed fracture strengths. This gives new insight

into the arresting mechanism of earthquake faulting.

HYPERSINGULAR BIEM FOR CRACK
ANALYSIS

We begin with the dynamic representation theorem which

expresses the elastic displacement field over the entire medium

in terms of the slip distibution along a crack in an infinite

homogeneous isotropic elastic 2-D medium (e.g. Aki &

Figure 2. Nomenclature used in the crack analysis.Richards 1980). Assuming that the medium is at rest with no
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Spontaneous growth of a dynamic crack 347

In the 2-D in-plane shear crack problem to be treated in Likewise, the stress field is expressed in terms of the slip

velocity:this paper, we assume that the crack surface is closed every-

where, or that the displacement discontinuity on the crack has

only a tangential (purely mode II) component. Denoting the
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was used. The rewriting of the stress in terms of the slip
where the displacement field is represented in terms of the velocity has an advantage in solving dynamic crack problems
slip velocity u̇t (j, t) by way of integration by parts in terms in that a change in the slip velocity is directly associated with
of t. The Green’s function G(t) is then integrated to give a traction change on a crack (Cochard & Madariaga 1994).
R(t)¬∆t

0
G (t)dt, where R(t) means the Heaviside step response. As noted in the preceding section, the integral representations

Hypersingularities disappear in eqs (5) and (6) as a result of (eqs 7, 8 and 9) contain hypersingularities that cannot be
discretized directly.the integration.
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With the limiting process x� y (s), we obtain, for the shear

traction Tt(s, t) on the crack at arc length s and time t,
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This is the hypersingular integral equation that express the
traction on the crack in terms of the slip velocity on it.

Likewise, the normal traction Tn(s, t) across the crack at arc
length s and time t is given by
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The 2-D Green’s functions are given in Appendix A. Figure 3. Schematic diagram of the discretized BIEM. Grey elements

represent those that have non-zero slip velocity.

NUMERICAL IMPLEMENTATION

For the sake of the numerical implementation, the crack trace is
approximated by an open polygon consisting of m elements of where we abbreviate the elastic moduli and the normal vectors
constant length Ds and nodal points y(iDs)(i=1, 2, … , m+1). that are different among the components. While the obser-
The number of crack elements m increases with time since vation time tn is discontinuous in the above formulation, the
crack growth is modelled by adding new elements to the observation point x is still continuous. This property will be
moving crack tips. Time t is also discretized by a set of equally used in calculating the angular distribution of hoop traction
spaced time steps with an interval of Dt. around the crack tips. Ii,k−n (x) is the discretized stress operator,

The slip velocity is interpolated by a piecewise constant which represents the contribution of a unit slip velocity to the
function that is assumed to be constant over an element and stress at the observation position x and time tn :
discontinuous between elements (e.g. Cochard & Madariaga
1994; Fukuyama & Madariaga 1998):
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Spatiotemporal convolution in eq. (17) has to be calculatedwith
inside the wave cones that satisfy the causality functions

H(tn−t−r/a) or H(tn−t−r/b) of the Green’s functions, and
wi (s)¬G1 if si<s<si+1

0 otherwise
(14) the singularities appear at the wavefronts (tn−t)−r/a=0 and
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where wi (s) and hk(t) are the spatial and temporal interpolation is the distance between the observation point and the source
functions with si¬ iDs and tk¬kDt respectively, and V i,k is the point (see Fig. 2). a and b represent the P- and S-wave velocities
discretized slip velocity at the kth time step on the ith element of the medium, respectively.
(see Fig. 3). With the piecewise constant interpolation, each Our definition of the finite part enables us to evaluate the
element is an independent calculation unit and no special hypersingular integral Ii,k−n (x) analytically in terms of only
constraint need be imposed at a junction where two or more the primitive functions without any numerical integrations
crack elements meet. (see Appendix B). This is a major advantage of the finite part

Substituting the interpolated slip velocity distribution into method used in the paper.
the stress representations, we have the stress components By constructing the shear traction T l,nt from the stress
written in a discrete form: components sl,n

ij
=s
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( (sl)∞, tn ), the boundary integral eq. (11) is

reduced to a set of simultaneous linear algebraic equations:
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where K is the total sum of the discretized stress components
and the traction is evaluated at the mid-point of each crack

= ∑
n

k=1
∑
m

i
V i,kIi,k−n (x) , (16)

element, (sl )∞=sl+Ds/2.
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Eq. (18) gives the solution for the slip velocity in the time We assume a/b=√3, (l=m), a Poissonian solid. These non-

dimensional quantities are equivalent to assuming that m=1,stepping scheme:
a=1, b=1/√3, Ds=1. We choose the discretization intervals
so that aDt/Ds=0.5. The prime symbol is omitted in theV l,n=

T l,nt
K0,0

−
1

K0,0
∑
n−1
k

∑
m

i
V i,kKl−i,n−k . (19)

following for simplicity.

The slip velocity V l,n, unknown at the current time tn, can be
computed by eq. (19), which includes a contribution from the past

COMPARISON WITH THE ANALYTICAL
velocity (k=1, 2, … , n−1) and the current shear traction T l,nt :

SOLUTION
T l,nt =−Dsl,n , (20)

Our method of analysis is corroborated by comparing the
where Dsl,n is the shear stress drop on the element that is numerical solution for the self-similar crack growth problem
given as the boundary condition. with the analytical one. An exact analytical solution for

Our numerical computations are made using the following dynamically propagating cracks with finite extent is available
non-dimensional quantities: only for the self-similar crack problem, where a straight crack

begins to form at the instant t=0 and then propagates alongT ∞t=Tt/m , V ∞=V/a , x∞=x/Ds , t∞=ta/Dx . (21)
the X1-axis on the X1X2-plane bilaterally from the origin with
a fixed rupture velocity. The stress drop is assumed to be

constant (Ds=1) everywhere on the crack plane. The method
of solution for this class of self-similar problem has been
discussed in numerous references including Kostrov (1964)

and Freund (1990).
In the time-marching numerical modelling of propagating

cracks, short-wavelength oscillations in slip velocity become

evident due to the discrete progresses of the fracture front
along the discretized surface, and this leads to numerical
instabilities. In order to suppress such numerical instabilities

that evolve with time, artificial damping is introduced, as in
previous studies (Yamashita & Fukuyama 1996; Kame &
Yamashita 1997; Tada & Yamashita 1997).

Fig. 4 shows the numerical and analytical solutions. The slip
Du1 and the stress s12 are shown at several positions along the
X1-axis as a function of time. The continuous lines show

the exact analytical solutions, while the dots represent the

(a)

(b)

Figure 4. Comparison of the numerical and analytical solutions for

the self-similar dynamic crack growth problem (e.g. Kostrov 1964;

Freund 1990) for (a) time evolution of the slip Du1 and (b) time

Figure 5. The configuration of the model. We assume a seed crackevolution of the stress s12 . The dots denote the numerical results

with an adequate damping coefficient. The solid lines represent the with right-lateral slip along the X1-axis where the maximum stress

drop occurs.analytical solutions.
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numerical ones. The numerical solution for the slip follows the
THE EFFECT OF REMOTELY APPLIED

analytical solution very closely: it is zero before the arrival of
STRESS AND THE PROCEDURE FOR

the rupture front and then increases hyperbolically as predicted
SPONTANEOUS CRACK GROWTH

by the theoretical result (Fig. 4a). The stress is also modelled

very well by the numerical solution (Fig. 4b). In particular, A uniform stress state caused by the remotely applied com-
pressive stresses s

XX
and s

YY
is assumed to be a referencethe peak associated with the S wave is well represented in the

numerical result. It should be noted that the peak does not state, and the relative change from this state is analysed below.

Shear traction is assumed to be completely released on theappear in the classical FDM treatment (Virieux & Madariaga
1982) because such a FDM inevitably includes numerical crack surface. No process zone is considered, and the stress

suddenly drops behind the crack tips. The stress drop on thedispersion and is therefore inadequate for representing an

impulsive waveform: recent work on a fourth-order staggered crack with right-lateral slip inclined at angle Q is given by
Ds(Q)=t0 cos 2Q, where t0= (s

XX
−s

YY
)/2; the angle Q isgrid FDM, however, improved the numerical implementation

and calculated the peak (Madariaga et al. 1998). It is now measured from the X1-axis (see Fig. 5).

Note that the stress drop becomes negative for cracks whoseconfirmed that the numerical results are in good quantitative
agreement with the analytical solutions, provided that the inclination angle Q is in the range 45°<|Q|<135° because

left-lateral slip is expected to release the shear traction there.artificial damping coefficient C (following the notation of Tada

& Yamashita 1997) takes an adequate value, which is assumed We employ a hoop shear maximization criterion similar to
that in Koller et al. (1992) as a criterion for crack tip extension.to be 0.5 throughout our calculations. The stress just behind the

crack tip is, however, slightly disturbed by the damping, although At the nth time step, the angular distribution of hoop shear
traction Tt (Qn ) is calculated ahead of the crack tip in the rangeit should satisfy Tt=−1 as given by the boundary condition.

Figure 6. Snapshots of model A. The right column represents the angular distribution of the hoop shear traction corresponding to the left column.

The arrows indicate the angles of the maximum hoop shear tractions.
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Q
n−1−90°<Q

n
<Q

n−1+90° every 1°, where Q
n−1 is the crack column of Fig. 6 shows snapshots of the hoop shear traction

at times corresponding to those in the left column. The resulttip angle at the preceding time step. The crack tip angle is now
defined as the inclination of the crack tip element measured indicates that the axis of the maximum hoop shear traction

tends to shift from the original plane as the crack tip velocityfrom the X1-axis. The traction evaluation point is Ds/2 ahead

of the tip; that is, at the mid-point of the forthcoming crack increases. This property of rapidly growing crack was first
pointed out by Yoffe (1951), who obtained the analyticalelement (see Fig. 1). Then we search for the maximum value

Tt(Q∞n ) and its direction Q∞
n
. If Tt(Q∞n ) exceeds the critical fracture expression for the singular stress field around a mode I crack

tip. Freund (1990) derived the singular terms at the growingstrength of the medium Tc , the tip is assumed to extend by 1
element in the direction Q∞

n
. crack tip for all fracture modes that have the same property

as mode I. Our result has the same tendency as Freund’sA static seed crack with right-lateral slip is assumed on the

plane Q=0°, where the maximum shear stress drop occurs. solution. Strictly speaking, we cannot exactly compare the
computed hoop traction with the analytical singular termUsing elastostatic BIEM, we first determine the static slip

distribution on the seed crack that is in a state of equilibrium because the hoop traction we calculated includes not only the

singular term but also the higher-degree terms. Koller et al.(see Appendix C) and then calculate the stress concentration
at the tip. We assume a fracture strength Tc that is slightly (1992) obtained a similar numerical result for the case of

anti-plane (mode III) cracking.smaller than the shear traction at the tip of the seed crack to

nucleate the dynamic growth. The nucleation is assumed to It has been numerically verified above that the axis of
maximum hoop shear traction shifts from the original plane.occur at t=0. When a seed crack is introduced, we change

eq. (19) slightly to take the static slip Di into account: We now calculate the response of the hoop shear traction to
a unit slip velocity in order to interpret the shift of the axis of
maximum hoop shear traction (see Fig. 7). A unit slip velocity

V l,n=−
Dsl,n

K0,0
−

1

K0,0 A ∑
n−1
k=1

∑
m

i
V i,kKl−i,n−k+∑

m
0

i
DiKl−1staticB ,

is given on an isolated crack elemental at time t=0.0, and the
hoop shear traction around the element tip is calculated for

(22) the subsequent time steps. A response first appears at t=0.5,

with the arrival of the stress waves emitted from the element.where m0 represents the number of elements making up the
The maximum response at this time is in the directions ±95°,seed crack. Note that unless the crack tip propagates for t≥0,
behind the tip of the element, and then moves to ±46°, to

eq. (22) gives zero slip velocity over the seed crack.

SIMULATION OF SPONTANEOUS CRACK
GROWTH

We now investigate the trace of a spontaneously growing shear

crack using our newly developed method of analysis. We
assume the ideal conditions that the fracture parameters, t0
and Tc , are homogeneously distributed over the medium. Due

to the conditions without any inhomogeneities, we can elicit
the effect of dynamics on the spatiotemporal evolution of the
crack trace. The initial length of the seed crack is assumed to

be l0=5 and the critical fracture strength is correspondingly
determined to be Tc=1.21. We also assume t0=1 for the stress
drop function Ds(Q).

As a reference, we first investigate spontaneous crack growth
in a classical way, where a planar crack shape had been

assumed implicitly; this is termed model A. In this model, the
crack tip angle is fixed at Q=0° during the growth, and the
stress drop is therefore constant over the planar crack surface.

In this classical model, the time evolution of the crack tip
velocity and that of the hoop shear distribution are calculated.
The left column of Fig. 6 shows snapshots of the spontaneous

crack growth. After dynamic nucleation at t=0.0, the crack
tip velocity v rapidly increases (t=8.0, t=16.0) and after a
while reaches an upper limit of v=0.90b (t=24.0, t=31.5,

t=39.0). As the crack tip extensions occur in a discrete way,
we arbitrarily define the numerical crack tip velocity as a
spatiotemporally averaged value: we take seven neighbouring

crack elements and count the time steps during which the
rupture front passes through them. The crack growth continues
and never stops for a homogeneous distribution of Tc and t0 ,
as we have seen in the classical analyses (e.g. Das & Aki
1977b). We also calculate the angular distribution of hoop Figure 7. Snapshots of the response of the hoop shear traction to a

unit slip velocity.shear traction at the tip of the growing planar crack. The right
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the front of the tip, at t=1.0. After some transition period tip soon propagate away from the tip. Accordingly, the static

effect dominates and the axis of the maximum hoop traction(t=1.5, 2.0, 2.5), the angular distribution of the hoop shear
traction becomes stable (t=3.0, 3.5) and will converge to the remains in the planar direction Q=0°. The crack is expected

to extend in a planar way at this slow propagation state. Asstatic response, which has the maximum traction axis at Q=0°.
As shown in Fig. 7, the response is characterized by two the crack tip velocity increases, the dynamic effect begins to

dominate over a certain critical velocity; the higher the crackdistinct stages. The first is ‘the dynamic stage’ (t=0.5, 1.00
during which the hoop traction is greatly affected by the stress tip velocity is, the longer the emitted stress waves stay around

the tip (see Appendix D for details about the critical velocity).waves, which are directly related to the slip velocity on the
element. It is characterized by a short duration and non-planar That is why the direction of the maximum hoop traction

begins to shift from the original plane at the high-speed(Q≠0°) maximum directions. After the stress waves propagate

away from the tip, there is ‘the static state’, the behaviour of propagation stage and the crack tip is expected to bend.
We now carry out a simulation of spontaneous crack growthwhich is familiar: the hoop traction in this state is mainly

formed by the static slip, not by the slip velocity, on the with no constraints on the crack tip path. Two models, model B

and model C, are assumed in the calculations: the difference iselement, and its maximum direction is Q=0°.
The above calculation leads us to the following conclusion: that the crack tip bufurcation is allowed only in model B. The

initial settings of model B and model C are the same as inwhen the crack tip velocity is fairly low compared with that

of the elastic waves, the stress waves emitted from the crack model A.

Figure 8. Snapshots of model B.
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Fig. 8 shows the snapshots of the rupture growth and the to occur in that case because the locking of the slip occurs

only after the arrest of crack tip growth.corresponding hoop shear traction for model B. The shear
traction is maximum in the direction of the original crack In model C, crack bifurcation is assumed to be prohibited,

but the crack is allowed to grow in any direction. The snapshotsplane at t=0.0; that is, the crack begins its growth along the

original crack plane. The crack growth accelerates soon after are shown in Fig. 9. The crack tip accelerates monotonically
as observed in model B. At t=15.5, the velocity attains athe nucleation, and the crack velocity attains a value of 0.76b

at t=8.0. The maximum shear traction axis remains on the value of 0.87b and the maximum shear traction again exceeds

the fracture strength not on the original crack plane but onoriginal crack plane, so that the crack growth continues to be
straight. At t=15.5, the velocity attains a value of 0.87b and the plane ±42°. Here the crack is assumed to bend in the

direction of −42°, taking account of the effect of virtualthe maximum shear traction exceeds the fracture strength on

a plane other than the original crack plane for the first time. friction. The crack generates compressive and tensile tractions
in the regions marked with plus and minus symbols, respectivelyThe directions deviate from the original crack plane by ±42°.

At this time step, the crack tip bifurcates into two branches (see Fig. 9). It is expected that slip occurs more easily in the

tensile stress regime than in the compressive one. It is thereforespontaneously. After the bifurcation, we continue to calculate
the hoop shear traction for each branch. At t=16.0, the maxi- reasonable to assume crack growth in the direction of −42°.

The crack bending increases with the growth, as seen in themum tractions exceed the fracture strength in the directions

+84° and −84° for the upper and lower branches, and the snapshots at t=16.5 and 18.0. After t=18.0, the maximum
shear traction never exceeds the fracture strength, so thecrack bending angle increases. After t=16.0, the maximum shear

traction never exceeds the fracture strength (t=18.0, 20.0, 48.0); dynamic crack growth is arrested at this instant. The final
crack length is lstop=21.2, which is slightly larger than that inthat is, the crack tip extension is arrested at t=16.0. The final

crack length is lstop=20.7, which is about four times as large model B: the stress concentration level at the tip decreases

with the bifurcation, so dynamic growth is arrested sooner inas the initial length; lstop denotes the length of the arrested
crack projected onto the X1-axis. The slip on the crack is model B than in model C. The difference between the two

models, however, seems to be slight.assumed to be unlocked throughout our analyses. If the

swinging back of the slip is prohibited on the crack, the final Contrary to the classical model A, the crack growth is
spontaneously arrested even under homogeneous conditionsslip distribution will certainly differ from that of model B. Self-

arresting of the crack tip extension is, however, still expected in models B and C. The spontaneous crack arresting can be

Figure 9. Snapshots of model C.
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interpreted as follows: once the crack begins bending, the crack Q=0° to Q=42° due to the coarser discretization. The finer

model makes an improvement at this point. The first deviationtips’ angles increase with growth and the tips finally enter
regions where the shear traction to be released on the crack is of the axis of the maximum hoop traction emerges in the

direction 8°. The bent branch is finally composed of elementsnegative (see Fig. 5). This causes a significant reduction of

stress concentration at the tips, and the stress concentration inclined by 8°, 28°, 57° and 77°. The final crack shapes are,
however, almost independent of the discretization (see Fig. 10),level falls short of the fracture strength. As shown above, the

bending of the crack tip plays a crucial role in the arresting of so that we can conclude that the calculated result of spon-

taneous bending and arresting is reliable. However, we alsoearthquake rupturing. This is peculiar to shear cracking; as
shown in Appendix D, the negative stress drop does not occur observe that the length of the bent branch is smaller in the

finely discretized model. This suggests that the crack growthin tensile cracking even for steep bending.

When we make the discretization finer, crack bending will be arrested immediately after the onset of bending in the
continuum limit.becomes smoother (Fig. 10). In the finely discretized model,

the initial seed crack is represented by 11 elements, which is

about twice the number of elements assumed in model C. The
CONCLUSIONS

direction of the maximum hoop shear traction is expected
to change continuously, with a smooth increase of the crack We have successfully simulated the spontaneous growth of an

in-plane shear crack with no a priori constraints on the cracktip velocity in the continuum limit. In model C, the axis of
the maximum hoop traction suddenly changes direction from tip path. A new efficient method of analysis has been developed

Figure 10. A comparison of two calculations with different resolutions. In the reference model of the left column, the length of a crack element

and the increment of a time step are assumed to be Ds=1 and Dt=0.5. In the finely discretized model of the right column, Ds∞= (5/11)Ds and

Dt∞= (5/11)Dt are assumed. The same initial crack lengths l0= l∞
0
=5 are assumed and they are discretized by 5 and 11 elements, respectively. The

remotely applied stresses are also the same in the two models and their coefficients are set to be t0=t∞
0
=1. Note that a stress evaluation point

ahead of a crack tip varies with an element length (see Fig. 1). Different values for the critical fracture strengths, Tc=1.21 and T ∞c=2.10, are

therefore determined even for the cracks with the same initial lengths and stress drops. The final crack lengths are lstop=21.2 and l∞stop=21.9,

which consist of 26 and 51 elements, respectively.
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APPENDIX B: FINITE PART OF THE
DIVERGENT INTEGRAL

APPENDIX A: 2-D GREEN’S FUNCTIONS
The divergent integrals appearing in the BIEM have the form

The elastodynamic 2-D Green’s functions are given by
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(e.g. Tada & Yamashita 1997), where r¬dx−yd, They developed some effective computation methods for the
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)/r, and H (Ω) is the Heaviside step function. a and numerical evaluation of the finite part of a typical hypersingular

b denote the P- and S-wave velocities, respectively. integral appearing in the field of geodesy.
Note that the expression In this paper, we introduce a more useful and direct

definition for the finite part with the aid of hyperfunction
theory (e.g. Imai 1981):b2
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converges to a finite limit value as r� 0, so that the elasto-

dynamic Green’s functions that contain this expression are not The integral ∆a
0

on the left-hand side generally contains a
hypersingularity at x=0 for a<−1, so that it is divergent inhypersingular at r=0.
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the classical sense. The divergent part is, however, removed by With the limiting process x� y (s), we have the tractions,

Tt(s) and Tn(s), on the crack at arc length s:this definition automatically because the hypersingularity at
x=0 is eliminated by H(x) at x=−e [because H(−e)=0].
It can be easily proved that the application of the definition Tt(s)=2n
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strated that the definition (B4) is equivalent to Hadamard’s

one for any degree of hypersingularity (Imai 1981). Although Tn(s)=
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problem, such both-side integrals appear at r=0 in the static
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(y(s) ) . (C5)problem, where r is the distance between the observation point

and the source point (Appendix C). the stress operators As in the dynamic case, the crack is represented by discrete
(eq. 17 and eq. C7) can be directly evaluated by eq. (B4) boundary elements with equal length Ds, and a piecewise con-
without numerical integration. stant interpolation function is used. Then the stress components

are represented in a discrete form:
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at the centre of each discretized element and we obtain a set
of simultaneous equations on C:
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is a traction operator composed of the stress components and

the normal vector.
×A ∂2

∂x2
1
G
11
−

∂2
∂x2

2
G
22B+[n2

2
(j)−n2

1
(j)] We use eq. (C8) for the determination of the static slips Di

on the seed crack that are in an equilibrium state with stress
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12DH , the other fracture modes, an in-plane tensile crack (mode I)

and anti-plane crack (mode III), in terms of a remotely
(C3) applied load.

For each mode, Freund (1990) derived analytical solutions
of the singular terms of stresses at the crack tip growing withwhere the static stress components are related to the static

right-lateral slip in the crack using the notation of eq. (4). velocity v. The hoop tractions associated with each fracture
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Figure D1. Three types of fracture modes, hoop traction distributions and their remotely applied loads. (a) in-plane shear (mode II), (b) in-plane

tension (mode I), and (c) anti-plane shear (mode III).

mode can be constructed from them. The tractions that we applied load that leads each fracture mode is also shown in
Fig. D1. The seed cracks are located along the X1-axis, whereconsider here are tensile for mode I and shear for mode III.

The angular distributions of the hoop tractions are shown in the maximum stress drop occurs. The angular pattern of stress
drop for the forthcoming curved crack surface is shown. TheFig. D1. That of mode II is also plotted as a reference. The

maximum hoop tractions are all in the direction Q=0° in the white and grey ranges represent the positive and negative

stress drop, respectively. As stated in this paper, the mode IIstatic state v=0, the original crack plane. The maximum
directions, however, shift from the original plane with v=0.8b crack tip enters the region where the negative stress drop

occurs, which bring about a significant decrease of the stressin all modes. The critical velocity across which the maximum

axis begins to shift from the original plane is also found by concentration at the crack tip. For mode I cracking, the
possibility of negative stress drop does not exist. Thus theuse of the analytical solutions. The critical velocities vc are

vcI=0.62b, vcII=0.77b and vcIII=80.44b for modes I, II and III, dynamic crack growth cannot be spontaneously arrested for a

homogeneous distribution of fracture strength and uniformlyrespectively. The difference among modes is inferred from the
different radiation patterns of stress waves. It can be concluded applied load. In the mode III case, the negative stress drop can

occur on the curved crack surface if the bending angle exceedsfrom Freund’s solutions that a fast-growing crack is expected

to bend spontaneously in all modes. a critical angle Q=90°. Further simulations are necessary to
verify the possibility of the self-arresting of spontaneous crackThe possibility of spontaneous arresting is governed by the

boundary condition on the curved crack surface. The remotely growth for mode III.
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