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S U M M A R Y
We simulate spontaneous mode II crack propagation for which the path is dynamically self-
chosen. Our main interests are in the formation of the branching path under the influence of
self-radiating wave stresses, and in the resultant seismic wave radiation. For these purposes, we
adopt the elastodynamic boundary integral equation method (BIEM), which does not impose
any constraints on the crack path. We consider a crack subjected to biaxial compression, on
which Coulomb friction acts and we determine the extension and the direction of crack growth
from a critical shear stress criterion. Our analysis shows that the crack tip bifurcates into two
branches at the high-speed propagation stage due to the stress wave localization near the crack
tip. Each of the two branches is generated in compressive and tensile stress regions around the
propagating tip. Under the same friction coefficient different normal stresses cause different
friction levels on them and that results in increasing their bending angles asymmetrically. If
the angle of bending exceeds a threshold under biaxial compression, the stress to be released
on the curved crack branch becomes negative. Therefore, the growth of such branch is arrested
after increasing the bending angle. We then synthesize its waveforms to find phases associated
with the dynamic branching. We compare them with those emitted by two planar crack models
for which the growths are arrested by inhomogeneities in the fracture strength or the pre-
stress state: little effect appeared from the branching characteristics in the waveforms. This is
because the curved branches themselves make little contribution to the wave radiation due to
the negligible slip velocity.
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1 I N T RO D U C T I O N

It is increasingly clear that surface traces of large earthquakes are not
simply planar but show some typical geometrical structures such as
bends, branches and steps (e.g. Sieh et al. 1993; Barka 1999). Under-
ground complexity is inferred geodetically by the newly developed
remote sensing techniques such as GPS and inSAR as well as clas-
sical triangular surveying (e.g. Kanamori 1972; Massonnet et al.
1993; Yoshida et al. 1996). Geometrical complexity is also inferred
seismologically by examining detailed recordings and precise after-
shock relocations (e.g. Felzer & Beroza 1999). The dynamic forma-
tion of such geometrical complexity has been assumed to be related
to strong ground motion or arresting of dynamic faulting (e.g. King
& Nabelek 1985; Umeda 1990).
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On the other hand, theoretical analyses have shown the branching in-
stabilities in 2-D crack propagation (e.g. Yoffe 1951; Freund 1989).
The solutions revealed that angular distribution of ‘hoop traction’
around a fast propagating crack tip is strongly distorted by wave
stresses to concentrate in the off-plane direction rather than on-
plane when the rupture speed exceeds the ‘critical speed’ ccrt (see
Figs 1 and 2). The critical speed is approximately 0.77cs for mode II
deformation, where cs is the shear wave speed (see the Appendix). It
has long been suggested that these high off-plane stresses could play
a central role in branching of fracture paths (e.g. Rice 1980). The
theoretical analyses are, however, limited to a rupture remaining on
a plane before branching mainly because of the necessity of math-
ematical simplicity. The whole dynamics including the branching
process still remains unclear and numerical methods are therefore
required for the analysis of crack paths with geometrical complexity.

Recent progress in the development of numerical methods en-
abled us to handle dynamic formation of non-planar crack paths.
Xu & Needleman (1994) calculated the spontaneous bifurcation for
a mode I crack under a sudden tensile load using the finite-element
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Figure 1. Incremental hoop shear and normal tractions (�T t(ϕ), �T n(ϕ))
due to the presence of a crack: they act on an inclined plane originating from
a crack tip. The angle ϕ is measured from the x1-axis. �s is a unit length of
the boundary element and the open circle represents an evaluation point for
�T t(ϕ) and �T n(ϕ) in computation.
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Figure 2. Dynamic crack tip singular stress fields, for right lateral mode
II rupture at two different rupture speeds, vr = 0.0cs, 0.8cs. F II

t (ϕ, vr)
represents the angular distribution of the singular component of �T t(ϕ)
(see the Appendix).

method (FEM). The method, however, has a restriction that the crack
tip can grow locally only in the directions 0◦ and ±45◦. Seelig
& Gross (1999) developed the boundary integral equation method
(BIEM) and studied branching of fast running tensile cracks. In
seismology, for which the main concern is shear rupture on a fault,
Kame & Yamashita (1999a,b) developed the BIEM for a mode II
crack based on a different formulation and investigated shear crack
bending and branching. An outstanding advantage of the BIEMs is
that there are no directional constraints on a crack tip path.

Kame & Yamashita (1999a,b) simulated the spontaneous growth
of a mode II crack in which the propagation path is dynamically
self-chosen. Their simulation showed exactly those high off-plane
stresses at the crack tip as predicted in the previous theoretical so-
lution. They base the choice of the orientation of each new incre-
ment of crack path on the maximum hoop shear stress very near the
crack tip, explicitly including the high-speed distortion of the stress
field. They consider growth of a frictionless crack in a medium with

uniform pre-stress and fracture strength. The results show that when
a high speed is attained, the crack tip bifurcates and each branch
bends symmetrically, so much so that the rupture ultimately arrests:
the bent paths encouraged by off-plane stressing very near the tip are
discouraged by the larger-scale pre-stress. They gave a new insight
into the arresting mechanism of earthquake faulting, in that rupture
growth could be arrested spontaneously due to self-radiating waves
by means of bending without recourse to any heterogeneities in the
pre-stress state and/or the fracture strength.

Following the previous work of Kame & Yamashita (1999a,b),
here we further investigate additional areas of mode II rupture prop-
agation in a self-chosen crack path model. We again simulate the
spontaneous growth of a crack without constraints on the path. In
this paper, we introduce Coulomb friction on the rupture surface
and first investigate how the friction affects the rupture path. It will
be shown that after bifurcation of the crack tip into two branches
each branch grows asymmetrically due to different friction levels.
The resulting rupture trace is seemingly paradoxical from the point
of view of the friction level: branching in the compressional side
finally dominates even though higher friction acts on it. We will
see how such a trace is dynamically formed under the action of
Coulomb friction and also see that it is consistent with the observed
active fault traces. Then we synthesize the waveforms to find dis-
tinctive phases associated with the dynamic branching. We compare
them with those emitted by two planar crack models for which the
growths are arrested by inhomogeneities in the fracture strength or
the pre-stress. We will see what part of the branching process will
and will not contribute to the waveforms significantly.

2 N U M E R I C A L M E T H O D A N D
M O D E L C O N F I G U R AT I O N

2.1 Boundary integral equation method

We use the elastodynamic boundary integral equation method pro-
posed by Kame & Yamashita (1999b) to allow simulations of rupture
in which the rupture path is dynamically self-chosen. In the BIEM,
the incremental tractions caused by a crack are represented in terms
of the slip-rate history. We can evaluate the tangential and normal
incremental tractions, �T t(ϕ) and �T n(ϕ), at a point on an arbi-
trarily inclined crack element at each time step, where the angle ϕ

represents an angle measured counter-clockwise from the x1-axis.
Applying a discretization where a constant slip velocity V t is as-
sumed within each spatial grid (�s) during each time step (�t), we
can briefly write the BIE in the following symbolic form:

�T ln
t = K 00:00

t V ln
t +

n−1∑
k=0

∑
i

K ln:ik
t V ik

t , (1)

where l and i represent the discretized position on the crack and n
and k represent the discretized time step. Here we assume that the
crack surfaces are closed everywhere, i.e. the displacement disconti-
nuity on the crack only has a tangential (purely mode II) component.
The first term K 00:00

t on the right-hand side is called the instanta-
neous stress term (Cochard & Madariaga 1994), which represents
the instantaneous contribution of the current slip velocity to the
traction at the same position. The second term contains the contri-
bution of the past slip-rate history; K ln:ik

t indicates the tangential
stress kernel at (l, n) due to unit slip velocity at (i, k). The normal
component �T ln

n has a similar symbolic form except that its instan-
taneous term equals zero as long as we consider no opening slip on
a crack. In order to determine the traction �T ln

t and the slip velocity
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Figure 3. Configuration of the biaxial compression and the seed crack. The
grey region indicates the angle range within which the applied stresses can
be released against Coulomb friction on a planar crack with right-lateral
slip.

V ln
t at a current time step, we solve eq. (1) under the imposed

boundary condition. Once the slip-rate history on the crack is ob-
tained through a simulation, the displacement velocity at an arbitrary
point can be calculated from similar discretized forms (e.g. Kame &
Yamashita 1997 for the mode III case; Tada & Madarigaga 2001 for
all modes).

2.2 Biaxial compression as an externally applied load

Earthquake faulting is modelled as dynamic growth of a mode II
crack in an infinite homogeneous isotropic elastic medium. The
medium is subjected to biaxial compression (Smax < Smin < 0, we
take tension as positive) as illustrated in Fig. 3. We take a Cartesian
coordinate (x1, x2) and the direction of compression is set at an angle
45◦ from the axis. We take this biaxially compressed state without
cracks as a pre-stress state. Shear and normal tractions acting on a ϕ

inclined plane under the pre-stress state are represented as T 0
t (ϕ) =

τ 0cos 2ϕ and T 0
n (ϕ) = σ 0 − τ 0sin 2ϕ, where τ 0 = (Smin − Smax)/2

> 0, σ 0 = (Smax + Smin)/2 < 0.

2.3 Coulomb’s law of friction

We introduce Coulomb’s law of friction to describe frictional force
on a crack surface. The friction level T f is given by a dynamic
frictional coefficient f multiplied by the total normal traction,

T f = f × (−Tn), (2)

where the total traction is a sum of the pre-stress traction and the
incremental traction (T n = T 0

n + �T n). In this paper, this friction
coefficient is the same all over the crack branches and the total
normal traction is the only factor that alters the friction level. If a
planar crack is considered, it never alters the total normal traction
on itself. Otherwise the total normal traction does change and we
have to note that this analysis is such a non-planar crack case.

This study is an extension of a number of earlier analyses of
bend/branch instabilities in in-plane cracks at the high-speed propa-
gation stage (Yoffe 1951; Freund 1989; Koller et al. 1992). Accord-
ingly we base our simulations on a crack model with no strength-
weakening zone behind the tip. When we consider no process zone,
the shear traction suddenly drops to the dynamic friction level be-
hind the crack tip.

We introduce a static planar seed crack with right-lateral slip prior
to dynamic nucleation at the crack tips and take a local coordinate
(ξ 1, ξ 2) along it (Fig. 3). Assuming that the plane of the seed crack
coincides with the most likely direction expected from the Mohr
circle for the pre-stress level, we obtain the angle ϕ0 (e.g. Mogi
1974) as

ϕ0 = −1

2
tan−1 f. (3)

In the following simulation, the friction coefficient is presumed to
be f = 0.488 and the angle is ϕ0 = −13◦. Note that ϕ0 is the most
favourable angle for the right-lateral slip against the friction at which
the stress drop function

�σ (ϕ) ≡ T 0
t (ϕ) − T f (ϕ) (4)

takes the maximum. Spontaneous rupture will be encouraged only
within a range where the stress drop function is positive. The range
depends both on the differential stress |Smax − Smin| and the frictional
coefficient f . The narrower range is expected for the larger f and/or
the smaller differential stress. If we consider a simple case of a planar
crack where the total normal coincides with the pre-stress normal,
the range is approximately −41◦ < ϕ < +15◦ for the pre-stress state
used in the following simulation. This corresponds to ±28◦ and is
symmetric with respect to the optimum angle ϕ0 = −13◦ (Fig. 3).

2.4 Procedure for spontaneous crack growth

As we assume a crack model with no strength-weakening zone be-
hind the tip, the crack inevitably has a square-root stress singularity
at the tip. In a framework of linear fracture mechanics, a stress inten-
sity factor is introduced to handle this singularity and is used for the
determination of crack tip extension (Irwin 1958). The critical stress
fracture criterion we employed here is a numerical implementation
of a critical stress intensity factor criterion (e.g. Das & Aki 1977;
Virieux & Madariaga 1982). It is often a problem that stress evalu-
ated numerically at the tip is dependent on the grid spacing because
of the singularity. When the grid size is fixed, however, the critical
stress criterion is approximately equivalent to the stress intensity
factor-based criterion (Das & Aki 1977).

Using the elastostatic BIEM (Kame & Yamashita 1999b), we
first determine the static slip distribution on the seed crack in a
state of equilibrium and then calculate the hoop shear concentration
�T t(ϕ = ϕ0) at the tip. We assume that the critical fracture strength
T c of the medium is slightly smaller than �T t(ϕ = ϕ0) in order to
nucleate the dynamic growth.

We employ a hoop shear maximization criterion as a criterion
for the crack tip extension direction (Koller et al. 1992; Kame &
Yamashita 1999a,b). At the nth time step, the angular distribution of
incremental hoop shear traction �T t(ϕ) is calculated ahead of the
crack tip in a range ϕn−1 − 90◦ < ϕ < ϕn−1 + 90◦ every 1◦, where
ϕn−1 is the tip angle at the preceding time step measured counter-
clockwise from the x1-axis. The evaluation point for tractions is
�s/2 ahead of the tip (Fig. 1). Then we search for the maximum
value �T t(ϕ) and its direction ϕn. If �T t(ϕn) exceeds the critical
fracture strength of the medium T c, the tip is assumed to extend by
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one element in the direction ϕn. We then determine the slip velocity
on the crack by using eqs (1), (2) and (4). In order to suppress short-
wavelength oscillation in the slip velocity we introduce an artificial
damping term in the same way as in Yamashita & Fukuyama (1996)
and Kame & Yamashita (1999b).

2.5 Numerical unit

Our computations are made using the following non-dimensional
quantities:

�T ′ = �T/�σ (ϕ0), V ′
t = Vt/cd, x ′ = x/�s, t ′ = tcd/�s.

(5)

We assume cd/cs = √
3, a Poisson solid, where cd and cs are the

dilatational and shear wave speeds. We choose the discretization
intervals so that cd�t/�s = 1

2 . We base the normalization on the
stress drop on the seed crack, the grid size and double the time step.
The prime symbol is omitted in the following for simplicity.

3 S I M U L AT I O N O F S P O N TA N E O U S
C R A C K G RO W T H U N D E R T H E E F F E C T
O F C O U L O M B F R I C T I O N

We now investigate the spatio-temporal evolution of a spontaneously
growing crack on which Coulomb friction acts. We assume an ideal
condition that the pre-stress state and the fracture strength T c is
homogeneous over the medium in order to elicit the effects of wave
stresses and Coulomb friction on the path. The initial length of a
seed crack is assumed to be l0 = 5 and the critical fracture strength is
correspondingly determined as T c = 1.21. These parameters are the
same as assumed in Kame & Yamashita (1999b), in which friction-
less cases were investigated. The friction coefficient is f = 0.488
and the optimum angle for the seed crack is ϕ0 = −13◦. To take the
stress drop on it as unity, the biaxial compression is set to Smax =
−4.30 and Smin = −0.430. On the seed crack, the externally applied
stress is not released totally due to friction. The residual level T f is
approximately 43 per cent of the applied shear traction T 0

t (ϕ0). The
nucleation is assumed to occur at t = 0.0.

Fig. 4 shows the snapshots of rupture growth and the correspond-
ing incremental hoop shear distribution. The hoop shear traction
takes its maximum in the direction of the original crack plane at
t = 0.0, i.e. the crack begins its growth along the original plane. The
crack growth accelerates soon after the nucleation, and the crack
velocity attains a value of 0.76cs at t = 8.0. The maximum shear
axis still remains on the original crack plane, the crack accordingly
grows further straight on. At t = 15.5, the velocity attains 0.87cs and
the maximum shear exceeds the fracture strength off the plane for
the first time. This velocity is measured to be slightly larger than the
theoretically predicted one ccrt = 0.77cs because of insufficient res-
olution of rupture velocity against spatio-temporally discrete crack
propagation. The directions deviate from the original plane by ±42◦,
i.e. +29◦ and −55◦ with respect to the x1-axis, respectively. At
this high-speed propagation stage, the crack tip is bifurcated sym-
metrically with respect to the initial crack plane into two branches
due to stress waves localized around the crack tip. Each of the two
branches is generated in compressional and tensile stress regions
around the propagating tip as marked by + and −, respectively, in
Fig. 4. The bending increases with a larger rate for the branch in the
tensile stress region (turning to the directions −55◦, −87◦ at t =
15.5, 16.5, respectively). On the other hand, the increasing rate of
bending is smaller in the compressional stress region (+29◦, + 13◦,
+ 16◦, + 21◦ at t = 15.5, 21.5, 23.5, 29.5). The difference of bending

rates can be attributed to the different friction levels on them. The re-
sistance to the slip is lower in the tensile stress region because lower
friction is acting there, so that a stress wave favourable for bending
is radiated more from the branch in the tensile side and vice versa.
We think this is why the bending rate is higher for the tensile side
branch. In contrast to the frictionless model (model B in Kame &
Yamashita 1999b), an asymmetrical branching path is formed un-
der the effect of Coulomb friction. It is in principle allowed by our
method that a branch further branches. However, this does not occur
in the model because once branching occurs the rupture velocity of
each branch tip begins to decelerate and never becomes high enough
to emit sufficient wave stress to make bifurcation begin again.

Under biaxial compression, bending larger than a critical thresh-
old leads to negative stress drop on the curved crack branch. A
negative stress drop brings down the stress concentration at the tip,
which never exceeds the critical value (see the hoop shear distribu-
tions around the both tips at t = 44.5 a while after the final crack-tip
growth at t = 29.5). The branch in the compressive side can grow
more because the negative stress drop on that shallow bending sur-
face is not so large as to terminate rupture growth immediately. This
result contradicts the presumption in the frictionless case (model C
in Kame & Yamashita 1999b) that crack propagation will be eas-
ier in the tensile side because of virtual friction. Our analysis is an
example that such an intuitive presumption does not hold when we
consider a dynamic bending process. Either way, the branch paths
encouraged by off-fault stressing very near the tip are discouraged
by the larger-scale pre-stress as pointed out in Kame & Yamashita
(1999a,b).

It has been pointed out that surface traces of active faults tend
to bend in a direction where the frictional force is larger (Matsuda
1967). The geodetically estimated varied fault trace of the 1943
Tottori earthquake also shows a fine compressional side bending at
both ends (Kanamori 1972). However, the mechanism of bending in
the compressional side remained unclear because slip is thought to
be easier to occur on the extensional side than in the compressional
side based on Coulomb friction levels on branches. The dynamic
process we showed here can naturally explain the observed tendency
of fault bend to dominate on the compressional side: after dynamic
bifurcation, lower friction on the branch in the tensile side leads to a
larger rate for bending that results in a quicker arresting of its growth
and vice versa. An apparently paradoxical bending direction can be,
in fact, a natural result of a dynamic branching process under the
effect of Coulomb friction.

4 E L A S T I C WAV E R A D I AT I O N D U E
T O B R A N C H I N G A N D A R R E S T I N G

In this section, we synthesize the velocity waveforms of the ‘branch-
ing model’ in the preceding section in order to find phases associated
with dynamic branching and arresting. For this purpose, we com-
pare them with those radiated by two other models in which rup-
ture is arrested remaining on the original planar plane: the ‘sudden
stopping model’ and the ‘gradual stopping model’. In the ‘sudden
stopping model’, we assume that the pre-stress state is uniform and
rupture is suddenly arrested when the crack tips reach high strength
regions called barriers. The barrier regions are assumed on |ξ 1| ≥
10.5. In the ‘gradual stopping model’, we assume that the strength
is uniform, however, the pre-stress state is inhomogeneous. We con-
sider stress-drop decreasing regions where spontaneous growth of
rupture is gradually but finally discouraged. The stress drop �σ is
presumed to decrease linearly between |ξ 1| = 5.5 and 10.5 from 1.0
to −0.25 and keeps a negative value �σ = −0.25 on |ξ 1| ≥ 10.5.
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Figure 4. Snapshots of the model. The right-hand column represents the angular distribution of the hoop shear traction corresponding to the left column. The
arrows indicate the angles at which the maximum hoop shear exceeds T c. Marks + and − indicate the incrementally compressional and tensile stress regions,
respectively.

We assume the same condition for the pre-stress and the fracture
strength around a seed crack in each model and inhomogeneous
regions are chosen so that the total moments released in the three
models become approximately the same.

We first show spatio-temporal evolution of the crack tip positions
(Fig. 5). The crack tip of the ‘sudden stopping model’ increases the
rupture speed monotonically after nucleation and is arrested sud-
denly after reaching the rupture speed vr = 0.87cs at the barrier
ξ 1 = 10.5. On the other hand, that of the ‘gradual stopping model’
accelerates up to vr = 0.87cs and then decelerates gradually after
entering the negative stress-drop region and finally stops at ξ 1 =
16.5. In the ‘branching model’, rupture on the original plane bifur-
cates at ξ 1 = 9.5 and then transfers into two branches. The tip in the
tensile side stops first and that in the compressional side stops after

a while. The positions of the final tips are ξ 1 = 10.14 and 12.39,
respectively, where they are measured after projecting on to the
ξ 1-axis.

The synthesized velocity waveforms radiated from these three
rupture processes are shown in Fig. 6. The observation point is (ξ 1,
ξ 2) = (25, 0). We first compare the waveforms of the ‘branching
model’ and the ‘sudden stopping model’ in the transverse (ξ 2) com-
ponent (Fig. 6a). The onset is at t = 21.5, which corresponds to the
arrival of the nucleation phase. In the ‘sudden stopping model’, the
rupture duration time is 16.5 and stopping information accordingly
arrives around t = 38.0. It corresponds to a time when the velocity
waveform begins to turn around. We can find that both models show
little difference. The reason is this: the slip velocities of both models
are almost the same on the original planar plane and they contribute
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Figure 5. Spatio-temporal plot of the propagating tips of (a) the branching model, (b) the sudden stopping model and (c) the gradual stopping model. The
lower figures show their final traces. The dotted line in (a) indicates the branch tip in the compressional side. The grey regions indicate the barrier regions in
(b) and the negative stress-drop regions in (c). The Rayleigh cR, the shear cs and the dilatational cd wave speeds are also plotted for reference.

to the waveforms the most. On the other hand, the slip velocity on
branches in the ‘branching model’ is negligible due to a negative
stress drop so that they cannot make a little contribution to the wave-
form. The branching process itself contributes to sudden arresting of
rupture on the original plane, which brings a sharp waveform around
t = 42.0 rich in high frequencies similar to the ‘sudden stopping
model’. Sudden arresting of rupture is known as one of the major
sources for radiating high-frequency waves (Madariaga 1977). In the
‘branching model’, such a discontinuous rupture stopping is caused
by self-radiating wave stresses even without any inhomogeneity in
the fracture strength or the pre-stress.

Then we see the waveforms in the radial (ξ 1) component (Fig. 6b).
Note that the observation point is on ξ 1-axis that is a nodal plane for
mode II ruptures where no radial waves are expected by the planar
models. Thus, we can find a branching phase unless its amplitude
is zero. Regardless of the small slip velocity on branches, we can
certainly see a slight weak phase directly associated to dynamic
branching. We see that the branching phase is so weak that it cannot
be identified in the transverse component. From a waveform point of
view, the ‘branching model’ is practically equivalent to the ‘sudden
stopping model’.

The transverse (ξ 2) component of waveforms of the ‘branching
model’ and the ‘gradual stopping model’ is plotted in Fig. 6(c). Here
we can recognize a clear difference between the two. The ‘gradual
stopping model’ has a lower and wider peak around t = 42.0 than the
‘branching model’. The difference can be attributed to the different
way of rupture arresting: a rupture gradually decelerates to stop after
entering into the negative stress-drop region in the ‘gradual stopping

model’. This means the waveform contains a smaller high-frequency
component than the ‘branching model’.

After all, we could not find a distinctive phase associated with
dynamic branching. These results lead us to a general idea for radi-
ation of seismic waves on a branched fault: if the planar part of the
branched fault is inclined at an optimum angle for a frictional slip
with respect to a remotely applied pre-stress, we can expect little
wave radiation from the branching parts of the fault. This is be-
cause an insignificant stress drop will occur on them. This gives the
pessimistic view that kinematic inversion analyses using observed
waveform data of large events that often are followed by surface
branching/bending traces, are helpless in detecting branch structure
underground. At the same time, we could find the significant effect
of the branching process on high-frequency wave radiation. Because
dynamic branching occurs at the high-speed propagation stage and
then results in a sudden arresting of rupture on the original plane, it
can be a major source for high-frequency radiation as expected in
the theoretical study of a planar faulting (Madariaga 1977). High-
frequency wave radiation by dynamic branching is a novel idea in
that it is a self-excited phenomenon due to high off-plane stressing
at high-speed propagation without recourse to any strong hetero-
geneities in the fracture strength and/or the pre-stress state assumed
in classical planar rupture models.

5 D I S C U S S I O N S A N D C O N C L U S I O N S

We investigated mode II shear crack growth in which rupture path is
dynamically self-chosen. The simulations were implemented using
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Figure 6. Comparison of the synthesized velocity waveforms of three models. Low-pass filtering of the original data is done at non-dimensional frequency
0.10. (a) Transverse (ξ2) component of the velocity waves radiated by the ‘branching model’ and the ‘sudden stopping model’. (b) Radial (ξ1) component of
all the three models. (c) Transverse (ξ2) component of the velocity waveforms of the ‘branching model’ and the ‘gradual stopping model’.

the boundary integral equation method proposed by Kame &
Yamashita (1999b), which does not impose any constraints on the
crack tip path. We considered a crack in an unbounded medium
under biaxial compression. The crack tip was assumed to extend
dynamically in the direction where the incremental hoop shear trac-
tion takes its maximum and exceeds the fracture strength.

First, we investigated rupture paths under the effects of wave
stresses and Coulomb friction. Our simulation showed that the crack
spontaneously bifurcates due to high off-plane stresses at the high-
speed propagation stage. The branches increase their angles asym-
metrically due to different friction levels acting on them. Finally, the
branch in the compressional side grows more than that in the tensile
side. Either way, the branch paths nucleated by off-fault stressing
very near the tip are arrested by the larger-scale pre-stress. Though
the resultant trace is apparently paradoxical in terms of friction level,
it is dynamically reasonable and is consistent with field observations
of active faults. The ratio of the branched segment to the planar
part of the crack is approximately 20 per cent in the simulation,
which is larger than those in observed traces. In our modelling,
the ratio will be smaller for smaller friction coefficient f and/or a
larger differential stress |Smax − Smin| encouraged by the high rate of
bending.

Then we synthesized the waveform to find distinctive phases as-
sociated with dynamic branching. We could not find any significant
branching phases in comparison with waveforms of planar rupture
models for which rupture is arrested by strong heterogeneities in
the pre-stress or the fracture strength. We deduce from this that the
curved branches are less efficient for wave radiation than the pla-
nar part of the crack. On the other hand, we found that dynamic
branching can be a radiation source of high-frequency waves be-
cause of a significant discontinuity in the rupture velocity on the
original planar plane. Our result gives a new insight into the dy-
namics of high-frequency seismic wave radiation: a high-frequency
wave can be radiated in a self-excited dynamic process due to high
off-plane stressing without recourse to any strong inhomogeneities
in the pre-stress state and/or the fracture strength.

There is a certain model-specific assumption concerning crack
growth: we implicitly prohibit re-nucleation of arrested rupture on
the original plane after bifurcation. This is because the order of stress
singularity produced in the vicinity of the branch point is lower
than that at the crack tip. This means that no rupture is expected to
nucleate at the branch point after the termination of rupture growth
so long as a singular crack is assumed. If a finite stress model such as
a slip-weakening model (Ida 1972; Palmer & Rice 1973) is assumed,
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the stress in the vicinity of a branch point can be higher than that
at the crack tip; hence, rupture can re-nucleate at a branch point in
such a case after the termination of rupture growth.

If we consider a finite stress crack, a finite strength-weakening
zone is inevitably accompanied behind the tip (Ida 1972; Palmer &
Rice 1973). If a strength-weakening zone were present, the stress
concentration in the vicinity of the rupture front would be diffused
in a different way (Poliakov et al. 2002). In addition, pre-stress will
also be directly related to the hoop stress distribution around the
crack tip. A dynamically self-chosen rupture path has to also be in-
vestigated in a finite stress model including re-nucleation of rupture
after branching in further simulations. In this case, rupture nucle-
ation should be allowed not only for rupture ends, but also allowed
wherever stress exceeds a finite threshold value. Some researchers
have investigated what rupture path is dynamically self-chosen on
a branched fault system allowing re-nucleation with such a finite
stress model (Aochi et al. 2000, 2002; Aochi & Fukuyama 2002;
Kame et al. 2003), though rupture is only allowed on the prescribed
paths.

We successfully showed that dynamically excited off-plane stress-
ing can make a non-planar rupture path that does control the dynamic
process including branching of the rupture, its arresting and the elas-
tic wave radiation. Dynamically self-chosen crack path modelling
gave us a profound understanding of the rupture dynamics. Using
this modelling, we will have a set of interesting problems in earth-
quake fracture dynamics. One example is dynamic interaction
among cracks. The crack traces are expected to be strongly affected
by waves reflected from each crack surface. In a matured fault zone
where lots of cracks are expected to exist, off-fault stressing should
contribute to either self-arresting of a single crack or activation of
other cracks accompanied by off-plane coalescence. This will give
a new way of thinking about the origin of small earthquakes and the
frequency–magnitude relation, because it provides a way to stop and
continue ruptures without recourse to assuming strong heterogene-
ity along the fault zone itself. This paper is just a start and will trigger
a number of challenging problems in the physics of earthquakes.
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A P P E N D I X : E L A S T O DY N A M I C
S I N G U L A R C R A C K S O L U T I O N

For mode II deformation, the incremental hoop traction distribution
near a running crack tip at a speed of vr has the following form:

�Ti (ϕ) = KII√
2πr

F II
i (ϕ, vr) + o(1) as r → +0, (A1)

where K II is the mode II stress intensity factor at the moment and
the subscript i will either be ‘t’ denoting tangential or ‘n’ denoting
a normal component.

The stress components due to the running crack on x1-axis with
stress drop �σ are

�τ11 = − KII√
2πr

2αs

D

×
[(

1 + 2α2
d − α2

s

) sin(θd/2)√
γd

− (
1 + α2

s

) sin(θs/2)√
γs

]
, (A2)

�τ22 = KII√
2πr

2αs

(
1 + α2

s

)
D

[
sin(θd/2)√

γd
− sin(θs/2)√

γs

]
, (A3)

�τ12 = KII√
2πr

1

D

×
[

4αdαs
cos(θd/2)√

γd
− (

1 + α2
s

)2 cos(θs/2)√
γs

]
− �σ

as r → +0 (A4)

(Freund 1989; Poliakov et al. 2002). Here α j = √
1 − (vr/c j )2, D =

4αdαs − (1 + α2
s )2, γ j = √

1 − (vr sin ϕ/c j )2, θ j = tan−1(α j tan ϕ),
where the variable α, γ , θ will have either ‘d’ or ‘s’ as a sub-
script. The above equations are used for plotting F II

t (ϕ, vr) in
Fig. 2. They are also used for finding the ‘critical speed’ vcrt

across which the hoop maximum shift from the original plane to
off-plane.
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