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An efficient boundary integral equation method applicable to the analysis of
non-planar fault dynamics
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We develop a novel and efficient boundary integral equation method based on the spatio-temporal formulation
for the two-dimensional dynamic and quasistatic analyses of an earthquake fault in a single scheme. A major
advantage of this method is its applicability to the analysis of non-planar faults with the same degree of accuracy
as to that of planar faults. Calculation time and memory requirement are reduced through the employment of
asymptotic representations of the integration kernels appearing in the convolution integral. Asymptotic kernels
are factorized into terms dependent on space or time alone, resulting in efficient numerical computations. In
addition, the dependence on time is found to vanish in the asymptotic kernels far behind the S-wave front,
which also contributes to the time-saving efficiency of the calculations. We show that, in a dynamic analysis,
if a 3% error is allowed for the slip rate, computation time and memory requirement are reduced by 25% and
45%, respectively, in an in-plane fault case, and by 60% and 75%, respectively, in an anti-plane fault case. This
method can be employed as a powerful numerical tool in simulating an entire earthquake cycle consisting of both
quasi-static and dynamic processes with a more realistic non-planar geometry of faults.
Key words: Boundary integral equation, non-planar fault dynamics.

1. Introduction
Earthquake ruptures are regarded as nonlinear phenom-

ena and, consequently, numerical calculations are indis-
pensable to simulating realistic problems. Furthermore,
since earthquake ruptures occur over wide spatial and tem-
poral scales, large-scale computer simulations are essential
to investigate the effects of scale dependence of earthquake
ruptures. For such studies, it is critical that computation
time and memory requirement be as short and small, re-
spectively, as possible.

Conversely, an earthquake cycle will consist of both
quasi-static and dynamic processes, and the numerical treat-
ment of these in a single numerical scheme is generally
very difficult, largely because of the limitations of compu-
tational resources. In fact, in many numerical simulations,
earthquake cycles are treated either entirely in a quasi-static
framework (e.g. Tse and Rice, 1986; Kato, 2004) or sep-
arately as quasi-static and dynamic processes, respectively
(e.g. Fukuyama et al., 2002). This approach is not ideal,
as it would be preferable to treat quasi-static and dynamic
processes in a single numerical scheme to fully understand
the process leading to the occurrence of a large earthquake.

Boundary integral equation methods based on the spatio-
temporal formulation (BIEM-ST) are widely used as an ef-
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fective numerical tool in the simulation of dynamic earth-
quake ruptures because they are able to treat non-planar
faults accurately (Kame and Yamashita, 1999a, b; Tada and
Madariaga, 2001; Aochi and Fukuyama, 2002; Aochi et
al., 2003; Kame and Yamashita, 2003; Kame et al., 2003;
Ando et al., 2004). Generally, in the two-dimensional (2-
D) BIEM-ST, the change in the stress tensor σpq on a fault
can be described in terms of the fault slip velocity in a dis-
cretized form:

σ i,n
pq = − µ

2β
Di,n − µ

2β

∑
j

∑
m

K i, j,n−m
σpq

D j,m (1)

at the i-th spatial node and n-th time step, where µ is the
rigidity of the medium, β is the S-wave speed, Di,n is the
fault slip velocity at the i-th node and n-th time step, and
K i, j,n

σpq is the discrete integration kernel for the stress field.
In order to analyze the mixed boundary value problem of
dynamic rupture, the arbitrary stress boundary conditions
in the rupturing surface and displacement condition on the
remaining unbroken part are simultaneously solved with
Eq. (1). In Eq. (1), the evaluation of kernels and spatio-
temporal convolution (the 2nd term on the right-hand side)
is the most computationally demanding part. The form of
Eq. (1) implies that the computation time is proportional to
N 2, where N is the number of total time steps; this is a
distinct disadvantage for large-scale computations. For the
increasing time-step dependency, Lapusta et al. (2000) and
Lapusta and Rice (2003) formulated a BIEM using a spec-
tral representation of the BIE discretized in the wave num-
ber domain in combination with a fast Fourier transform
and successfully reduced the computation time. Lapusta
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and Rice (2003) also succeeded in simulating quasi-static
and dynamic earthquake processes in a single scheme using
a time-truncation method. However, there remains a limita-
tion in that their BIEM can be applied only to the analysis
of planar faults because they used a spatial symmetry valid
only for planar faults.

We report here the development of a novel and efficient
BIEM-ST using newly obtained asymptotic expressions of
the integration kernels; our BIEM-ST is not limited to the
analysis of planar faults but is also applicable to the analysis
of arbitrarily shaped non-planar faults. Using this BIEM-
ST, we are able to significantly reduce the computation time
and memory requirement necessary for the evaluation of
kernels and spatio-temporal convolution in Eq. (1). In ad-
dition, our method can be extended to both quasi-static and
dynamic analyses of non-planar faults in a single scheme.
The formulation of our method is described in Section 2.2
and its accuracy is assessed in detail in Section 2.5. We
show in Section 3.3 that this method is applicable to dy-
namic rupture simulations on non-planar faults with a high
degree of accuracy.

2. Method
In this section, we develop a novel BIEM-ST with the

aid of asymptotic expression of the integration kernel K i, j,n
σpq

in Eq. (1) and show how the numerical analysis of dynamic
fault growth can be made efficient by this method. Through-
out our analysis, the fault is assumed to be located in a 2-D
infinite, homogeneous and isotropic elastic medium.
2.1 Boundary integral equation method

The deformation due to fault growth in an elastic medium
can be described mathematically by the spatio-temporal
convolution of the integration kernel and slip velocity in a
boundary integral equation method, as shown in Eq. (1).
We first derive asymptotic expressions for the integration
kernels obtained by Cochard and Madariaga (1994) for the
anti-plane strain crack and by Tada and Yamashita (1997)
and Tada and Madariaga (2001) for the in-plane crack. The
employment of these asymptotic expressions is a key factor
in our development of the efficient BIEM-ST.

We begin with the prevalent exact expressions of the dis-
crete integration kernels derived by Tada and Madariaga
(2001) for the in-plane shear crack, in which the BIE is
discretized assuming a slip velocity D that is constant on
each spatio-temporal discrete element. We approximate a
non-planar fault by an array of line elements so that the de-
formation due to slip on a non-planar fault can be given by
the sum of contributions from all the elements. Since the
deformation due to slip on any single line element can be
expressed as that due to slip on a single element fixed in a
coordinate system after proper translational and rotational
coordinate transformations (Ando et al., 2004, Appendix
A), we calculate deformation defining the coordinate sys-
tem (x ′

1, x ′
2) so that the single line element may lie on the

x ′
1 axis with its center at the origin. The coordinate system

(x ′
1, x ′

2) is regarded as the local one fixed at each line ele-
ment; the local and global coordinate systems are related in
the form:

x ′
1 = N j

2 (X j
1 − X j

1 ) − N j
1 (X j

2 − X j
2 )

x ′
2 = N j

1 (X j
1 − X j

1 ) + N j
2 (X j

2 − X j
2 ),

(2)

where (Xi
1, Xi

2) and (N i
1, N i

2) denote the center point and

normal vector, respectively, of the i-th line element defined
in the global coordinate system employed in Eq. (1), with
the normal vector being directed to the left toward the ori-
entation of the increasing x ′

1.
The change in the stress component σpq (x ′

1, x ′
2) due to a

unit slip velocity occurring from t = 0 to t = �t on the line
element located at the origin of the local coordinate system
is given by the integration kernels:

Kσpq (x ′
1, x ′

2, t) ≡ Iσpq (x ′
1 + �s/2, x ′

2, t + �t)

− Iσpq (x ′
1 − �s/2, x ′

2, t + �t)

− Iσpq (x ′
1 + �s/2, x ′

2, t)

+ Iσpq (x1 − �s/2, x ′
2, t) (p, q = 1, 2)

(3)

for in-plane deformation, where

Iσ11(x1, x2, t) = − 1

π
H

(
t − r

α

) 2x2

r
p

×
{

2(3x2
1 − x2

2)

3r2
p2

[
(αt/r)2 − 1

]3/2

+
(

1 − 2x2
2

r2
p2

) √
(αt/r)2 − 1

}

+ 1

π
H

(
t − r

β

)
2x2

r

×
{

2(3x2
1 − x2

2)

3r2

[
(βt/r)2 − 1

]3/2

+
(

1 − 2x2
2

r2

) √
(βt/r)2 − 1

}
,(4)

Iσ22(x1, x2, t) = 1

π
H

(
t − r

α

) 2x2

r
p

×
{

2(3x2
1 − x2

2)

3r2
p2

[
(αt/r)2 − 1

]3/2

+
(

2x2
1

r2
p2 − 1

) √
(αt/r)2 − 1

}

− 1

π
H

(
t − r

β

)
2x2

r

×
{

2(3x2
1 − x2

2)

3r2

[
(βt/r)2 − 1

]3/2

+
(

2x2
1

r2
− 1

) √
(βt/r)2 − 1

}
, (5)

Iσ12(x1, x2, t)

= H(x1)H

(
t − |x2|

β

)

− 1

π
sgn(x1)H

(
t − r

α

) 2 |x1|
r

p

×
{

2(3x2
2 − x2

1)

3r2
p2

[
(αt/r)2 − 1

]3/2

+ 2x2
2

r2
p2

√
(αt/r)2 − 1

}

+ 1

π
sgn(x1)H

(
t − r

β

)

×
[

2 |x1|
r

{
2(3x2

2 − x2
1)

3r2

[
(βt/r)2 − 1

]3/2
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+ 2x2
2

r2

√
(βt/r)2 − 1

}

− Arc cos
|x1|√

(βt)2 − x2
2

]
, (6)

r =
√

x2
1 + x2

2 , (7)

p = β/α. (8)

Here, α denotes the speed of the P-wave. The above inte-
gration kernels are referred to as the exact integration ker-
nels in the following text.
2.2 Asymptotic integration kernels

2.2.1 Asymptotic expansion of Iσ i j Here we show
how to derive the asymptotic expression for Iσ i j described
above. First, we recognize that the time dependence is
similar in Eqs. (4) to (6); in other words, the time depen-
dence is described only by two functions

[
(ct/r)2 − 1

]3/2

and
[
(ct/r)2 − 1

]1/2
(c = α or β). These two functions

have asymptotic expansions:

(γ 2 − 1)3/2 = γ 3 − 3

2
γ + 3

8

1

γ
+ 1

16

(
1

γ

)3

+ O

(
1

γ

)4

, (9)

(γ 2 − 1)1/2 = γ − 1

2

1

γ
− 1

8

(
1

γ

)3

+ O

(
1

γ

)4

(10)

for γ = ct/r 
 1. The condition ct/r 
 1 means
that the evaluation point (r, t) must be far behind the body-
wave fronts in the causality cone, over which the discrete
integration is carried out in Eq. (1). The causality cone can
be divided into the following four domains according to the
behavior of the integration kernel (Fig. 1):

(1) αt/r ∼ 1 (immediately behind the P-wave front);
(2) βt/r ∼ 1 (immediately behind the S-wave front);
(3) αt/r 
 1 and βt/r 
 1 (far behind both P- and

S-wave fronts);
(4) αt/r 
 1 and βt/r < 1 (far behind the P-wave

front, but before the arrival of the S-wave front.
While the exact integration kernel Kes(.) [≡ K (.) in Eq.

(3)] should be used in the domains (1) and (2), the asymp-
totic ones Kas(.) and Kst (.) can be used in the domains (3)
and (4), as will be shown below, because of the satisfaction
of the condition γ = ct/r 
 1 there. Note that the bound-
aries of integration domains (3) and (4) are dependent on
space and time in contrast to the spatially independent one
in the spectral BIE (Lapusta et al., 2000; Lapusta and Rice,
2003). In the spectral BIE, the integration kernel can be
described in a time series and, consequently, a simple trun-
cation in time can be effectively applied for the reduction of
computation time in the stress evaluation. For non-planar
faults, we cannot use such a truncation of kernels in time
because of their dependence on both space and time.

2.2.2 Static asymptotic kernel valid for αt/r 
 1
and βt/r 
 1 We now derive the expression of the
integration kernel asymptotically valid for αt/r 
 1 and
βt/r 
 1 in domain (3) mentioned in Section 2.2.1. We
observe in Eqs. (4) to (6) that the dependence on time t is

Fig. 1. Four domains of integration corresponding to three kernels.

described by the two functions in Iσpq (·):
A(t/r) = p3[(αt/r)2 − 1]3/2 − [(βt/r)2 − 1]3/2,(11)

B(t/r) = p3
√

(αt/r)2 − 1 −
√

(βt/r)2 − 1. (12)

If we employ the asymptotic expansions (9) and (10), we
find that Eqs. (11) and (12) behave in the form for αt/r 
 1
and βt/r 
 1:

A

(
t

r

)
≈ p3

[(
αt

r

)3

− 3

2

αt

r

]
−

[(
βt

r

)3

− 3

2

βt

r

]

= 3

2

βt

r

(
1 − p2

)
, (13)

B

(
t

r

)
≈ p3

(
αt

r

)
−

(
βt

r

)

= −βt

r

(
1 − p2

)
. (14)

We therefore obtain the asymptotic expressions of Iσpq (·)
(p, q = 1, 2) valid for αt/r 
 1 and βt/r 
 1 in the
form:

Iσ11(x1, x2, t) ≈ −(1 − p2)
x2

r

3x2
1 + x2

2

r2

2β

πr
t

= −(1 − p2)
x2

r
(1 + 2

x2
1

r2
)

2β

πr
t, (15)

Iσ22(x1, x2, t) ≈ (1 − p2)
x2

r

x2
1 − x2

2

r2

2β

πr
t

= −(1 − p2)
x2

r
(1 − 2

x2
1

r2
)

2β

πr
t, (16)

Iσ12(x1, x2, t) ≈ (1 − p2) sgn(x1)
|x1|
r

x2
1 − x2

2

r2

2β

πr
t

= (1 − p2)
x1

r

x2
1 − x2

2

r2

2β

πr
t (17)

after substituting Eqs. (13) and (14) into Eqs. (4)–(6),
where the other terms dependent on time t , that is, H(ζ )

and Arccos(ζ ), can be discarded because the conditions
|H(ζ )| � γ and |Arccos(ζ )| � γ are satisfied for any
real numbers γ 
 1.

We find in Eqs. (15) to (17) that Iσpq (·) is factorized into
two terms dependent only on space or time. Equation (3)
can therefore be reduced to a simple form:

K (x1, x2, t)
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= [Ist (x1 + �s/2, x2) − Ist (x1 − �s/2, x2)]�t

≡ Kst (x1, x2)�t, (18)

where the subscript σpq is omitted for brevity. We should
note here that Kst (x1, x2) is independent of time t ; the
subscript st here denotes a function independent of time.
The concrete expression for Ist (.) is given by

Ist;σ11(x1, x2, t) ≡ −2β

π
(1 − p2)

x2

r2
(1 + 2

x2
1

r2
), (19)

Ist;σ22(x1, x2, t) ≡ −2β

π
(1 − p2)

x2

r2
(1 − 2

x2
1

r2
), (20)

Ist;σ12(x1, x2, t) ≡ −2β

π
(1 − p2)

x1

r2

x2
2 − x2

1

r2
(21)

for each stress component. As will be shown below, the
advantage of our approach is that we do not have to carry
out the temporal integration if the asymptotic expression
(18) is used.

Since the slip Si,n at the i-th line fault element and n-th
time step is related to the slip velocity Di,m in the form:

Si,n =
n∑

m=0

Di,m�t, (22)

the integration with respect to time can be carried out ana-
lytically in Eq. (1), and we have

∑
j

n∑
m=0

K i, j,n−m D j,m =
∑

j

K i, j
st S j,n . (23)

In this way, we can reduce the spatio-temporal integration
into the spatial one because the integration can be carried
out analytically with respect to time.

Since Kst (.) is independent of time, Kst (.) is expected to
be identical to the static integration kernel directly obtain-
able from the static BIE (Ando et al., 2004). It is shown
that this is actually the case: see Ando et al. (2004). In the
following text, we refer to the above asymptotic integra-
tion kernel Kst (.) as the static asymptotic kernel. It should
be noted that the numerical computation of the exact ker-
nels (Eqs. (4)–(6)) could cause a computer problem under
a long-time condition since the P- and S-wave parts of the
above integration kernels diverge as t3. However, this diver-
gence is removed by the use of the above static asymptotic
kernels.

2.2.3 Dynamic asymptotic kernel valid for αt/r 
 1
and βt/r < 1 We next derive the asymptotic expres-
sion for integration kernel Kas(.) valid for αt/r 
 1 and
βt/r < 1 in domain (4) mentioned in Section 2.2.1. We
are now able to employ the asymptotic expansions (9) and
(10) associated with the P-wave only. We then obtain the
asymptotic expressions for the function I as

σpq
(p, q = 1, 2)

in the form:

I as
σ11

(x1, x2, t)

≡ − 1

π
H

(
t − r

α

) 2x2

r
p

×
{

2(3x2
1 − x2

2)

3r2
p2

[
(αt/r)3 − 3

2
(αt/r)

]

+
(

1 − 2x2
2

r2
p2

)
(αt/r)

}

= −4α3 p3

3π
x2(3x2

1 − x2
2) (1/r)6 t3

+ 2αp

π
x2

[(
1 + 2x2

1

r2

)
p2 − 1

]
(1/r)2t, (24)

I as
σ22

(x1, x2, t)

≡ 1

π
H

(
t − r

α

) 2x2

r
p

×
{

2(3x2
1 − x2

2)

3r2
p2

[
(αt/r)3 − 3

2
(αt/r)

]

+
(

2x2
1

r2
p2 − 1

)
(αt/r)

}

= 4α3 p3

3π
x2(3x2

1 − x2
2) (1/r)6 t3

− 2αp

π
x2

[(
1 − 2x2

2

r2

)
p2 + 1

]
(1/r)2t, (25)

I as
σ12

(x1, x2, t)

≡ − 1

π
H

(
t − r

α

) 2x1

r
p

×
{

2(3x2
2 − x2

1)

3r2
p2

[
(αt/r)3 − 3

2
(αt/r)

]

+ 2x2
2

r2
p2(αt/r)

}

= −4α3 p3

3π
x1(3x2

2 − x2
1) (1/r)6 t3

− 2αp3

π
x1(x2

1 − x2
2)(1/r)4t. (26)

It should be noted here again that each term is factorized
into two terms dependent only on space or time. Attention
should be given to the fact that Eqs. (24)–(26) involve the
third-order terms in addition to the first-order ones on time
t , so that both temporal and spatial integrations are required
in Eq. (1). The requirement of temporal integration phys-
ically means that the static equilibrium state has not been
attained because the S-wave has not arrived yet. We refer to
the asymptotic integration kernel given by Eqs. (24)–(26) as
the dynamic asymptotic kernel taking account of the above
property.
2.3 Efficient calculation of integration kernels

In this section we demonstrate that our method becomes
highly efficient when the integration kernel is factorized
into terms dependent only on space or time.

When the function I (.) can be expressed in the form
I (x1, x2, t) = ∑

k fk(x1, x2)t k , the kernel K (x1, x2, t) is
written as

K (x1, x2, t)

=
∑

k

{[ fk(x1 + �s/2, x2) − fk(x1 − �s/2, x2)]

× (t + �t)k

− [ fk(x1 + �s/2, x2) − fk(x1 − �s/2, x2)]t
k}

=
∑

k

{([ fk(x1 + �s/2, x2) − fk(x1 − �s/2, x2)]

× [(t + �t)k − t k]}, (27)
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where we find that each term in the expansion of K (.) is
factorized into two terms dependent only on space or time;
the subscript σpq is omitted here for brevity.

In general, the integration kernel has the form of a dense
matrix in the BIEM; consequently, the evaluation of the
matrix elements becomes the numerically demanding part,
in contrast with the finite element methods described by
sparse matrices. The application of the above factorization
of the integration kernel can reduce this numerical load
significantly.

Let us try to evaluate a dense matrix of order J × M :

K =




K11 · · · K1M
...

. . .
...

K J1 · · · K J M


 , (28)

where each element is assumed to denote an integration
kernel, and the two subscripts denote the space node and
time step, respectively. We find that the calculation time
of the matrix is given by J · M · C1 and that the memory
requirement is proportional to J ·M , where C1 is the average
calculation time of each matrix element. However, when
each matrix element is factorized into terms dependent only
on space or time, the matrix can be written in a form of
vector product:

K =




F1
...

FJ


 (

G1 · · · G M
)
, (29)

where the calculation time is reduced to (J +M)·C2+ J ·M
and the required memory, which is now proportional to
J + M , is also significantly reduced, where the constant
C2 is the average calculation time of each element of the
vectors in Eq. (29). We can derive a relation C2 ∼ 1/100C1

by comparing the number of operations of floating points
and internal functions (such as square root or trigonomet-
ric functions) in Eqs. (4)–(6) with those in Eqs. (24)–(26),
which means the reduction of calculation time by a fac-
tor of 100. It should be noted that the computation time
and memory requirement is further reduced when the static
asymptotic kernel can be employed because then there is no
contribution from terms dependent on time.
2.4 Representation of integration kernel for the anti-

plane fault
A much simpler asymptotic expression of the integration

kernel is obtained for the anti-plane fault than for the in-
plane fault because of the contribution of the S-wave alone
in the former. Following the above analysis of the in-plane
fault, the causality cone can be divided into two domains,
that is, at the vicinity of the S-wave front and outside of
it. The exact and asymptotic kernels are employed in the
former and latter domains, respectively.

The exact expressions for the function Iσpq (·) (p, q =
1, 2) are written as

Iσ31(x1, x2, t) = − x2

πr
H

(
t − r

β

) √
(βt/r)2 − 1, (30)

Iσ32(x1, x2, t)

= H(x1)H

(
t − |x2|

β

)
+ 1

π
sgn(x1)H

(
t − r

β

)

Fig. 2. Spatio-temporal distribution of error of asymptotic solution for the
12 components of the integration kernel at x2/�s = 0. (a) Distribution
of error on the plane x2 = 0. The areas in white have error values
ranging from 0.002 to 0.6. The distribution of error is found to be
approximated by hyperbolic functions near the P- and S-wave fronts.
We therefore assume a hyperbolic function to describe the boundary
between the domains where the exact or asymptotic kernels are used.
(b) Temporal cross sections of error at tα/�s = 10 and 20. Note that
the tensile stress components, the 11 and 22 components, are identically
zero on the plane x2/�s = 0.

×

 |x1|

r

√
(βt/r)2 − 1 − arccos

|x1|√
(βt)2 − x2

2




(31)

(Tada and Madariaga, 2001). We find that the asymptotic
expressions valid for βt/r 
 1 are given by

Iσ31(x1, x2, t) ≈ −β

π

x2

r2
t, (32)

Iσ32(x1, x2, t) ≈ β

π
sgn(x1)

|x1|
r2

t (33)

taking account of the asymptotic expansion (10). Since
these asymptotic expressions are linear functions of t , the
static asymptotic expressions referred to as Ias;σpq (.) (see
Section 2.2) can be derived in the form:

I st
σ31

(x1, x2) = −β

π

x2

r2
, (34)

I st
σ32

(x1, x2) = β

π
sgn(x1)

|x1|
r2

. (35)
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Fig. 3. Spatio-temporal distribution of the error of the asymptotic solution for the integration kernel at x2/�s = 10. Distributions of error for the 12, 11
and 22 components are shown in (a), (c) and (d), respectively, and an example of temporal cross sections of error is shown in (b) for the 12-component
distribution. The spatio-temporal distribution and magnitude of error are found to be similar to those observed in the case x2/�s = 0 (Fig. 2), which
implies that our method is also applicable to the analysis of non-planar faults with the same degree of accuracy.

2.5 Accuracy of the method and boundaries of the in-
tegration domains

In this section, we first examine errors due to the employ-
ment of the asymptotic kernels, using an in-plane fault as an
illustrative example. Based on this error analysis, we deter-
mine the boundaries of each integration domain where the
asymptotic or exact integration kernel is used.

2.5.1 Spatio-temporal distribution of error We
show the spatio-temporal distribution of error in order to
check the accuracy of dynamic and static asymptotic repre-
sentations (Figs. 2 or 3). Hereafter, we assume a Poisson
solid, which is β/α = 1/

√
3. Here, the error is defined as

the absolute value of the difference between the exact and
asymptotic kernels divided by the maximum value of the
exact kernel. The error is shown as a function of both time
and space in Fig. 2(a), and as a function of space with time
fixed in Fig. 2(b); the locations of source and array of re-
ceivers are assumed to be coplanar. As clearly observed in
these figures, the error is largest near the wave fronts and
quickly decays with distance from the wave fronts, rapidly
becoming less than 2 × 10−3.

The locations of the source and array of receivers are
assumed to be non-coplanar (x2/�s = 10) in Fig. 3. A
comparison of Figs. 2 and 3 reveals that the spatio-temporal
distribution of error is similar, except for a difference due to
the radiation pattern of elastic waves.

The practical significance of the above result of error
analysis is worth noting. For analyses of arbitrarily oriented
non-planar faults, we need integration kernels for the non-
coplanar locations of the source and receiver. Since the
degree of accuracy is almost the same in coplanar and non-
coplanar distributions of source and array of receivers, it is
fully expected that non-planar faults can be analyzed with

the same degree of accuracy as planar faults. This will
actually be confirmed in Section 3.3.

Figures 2 and 3 show that the asymptotic kernels do
not approximate the exact one very well directly behind
the P- and S-wave fronts. This indicates that we have
to use the exact kernels for this point onwards because
the condition of asymptotic convergence is not satisfied, as
shown in Section 2.2.3.

2.5.2 Definition of integration domains character-
ized by different representations of the integration ker-
nels We now define each integration domain where the
asymptotic or exact integration kernel is used on the basis
of the observations presented in Figs. 2 and 3 showing that
the error is largest directly behind the fronts of the P- and
S-waves and that the spatio-temporal distribution of errors
appears to be hyperbolic. To be concrete, the exact ker-
nels are employed in domains immediately behind the P-
and S-wave fronts where the largest error is found in the
asymptotic kernels, while the asymptotic kernels are used in
domains where the error is smaller than a certain threshold.
The boundaries of the domains are assumed to be described
by hyperbolas that take the spatio-temporal distribution of
error into account.

In practice, as shown in Fig. 4, the boundaries of integra-
tion domains are defined near the wave fronts by the follow-
ing two hyperbolic functions for the in-plane fault{

t =
√

(r/α)2 + H 2
p ,

t = √
(r/β)2 + H 2

s .
, (36)

The boundary is defined by the single function

t =
√

(r/β)2 + H 2
s (37)
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Fig. 4. Definition of integration domains and control parameters.

in the modeling of the anti-plane fault because of the con-
tribution of the S-wave alone. The parameters Hp and Hs

lie in the range 0 < Hc < Tmax (c = P or S), where
Tmax = N�t and N is the number of total time steps in each
simulation. In conclusion, the exact kernels are assumed in
the domains: {

r/α ≤ t ≤
√

(r/α)2 + H 2
p

r/β ≤ t ≤ √
(r/β)2 + H 2

s

(38)

for the in-plane fault and

r/β ≤ t ≤
√

(r/β)2 + H 2
s (39)

for the anti-plane fault, respectively. A larger value of
Hc/Tmax (c = p or s) implies that a larger domain is
assumed for the exact kernel; hence, a longer calculation
time is required, although a higher accuracy is attained.

3. Application to Fault Analyses
In this section, we first confirm the accuracy of our anal-

yses on planar and non-planar faults. We then show that the
use of a static asymptotic integration kernel, which charac-
terizes our method, leads to the treatment of quasi-static and
dynamic fault growth in a single numerical scheme.
3.1 Error in slip velocity

We generally try to obtain fault slip velocity on the as-
sumption of traction applied on the fault in theoretical or
numerical analyses of fault growth. If the BIEM is em-
ployed in the analysis, we have to evaluate the convolution
of the integration kernel and fault slip velocity in the past
to obtain the fault slip velocity at a certain instance of time.
Hence, when the asymptotic integration kernel is employed,
the error tends to increase with the time step in the slip ve-
locity because of the accumulation of error in the assumed

integration kernel. We now investigate how the error is ac-
cumulated with the time step in comparison with the case
when the exact integration kernel is used over the causality
cone.

We assume a simple problem for this investigation of the
behavior of the error: a rupture is nucleated at the origin
and propagates bilaterally with a constant speed on a pla-
nar fault (Section 3.2) or a non-planar fault (Section 3.3);
The shear stress is assumed to drop suddenly by a constant
value at the propagating fault tips. For numerical imple-
mentation, the Courant-Friedrichs-Lewy (CFL) parameter
is taken to be 0.5, and the temporal collocation points are
chosen at the top of each unit time-step interval (i.e. et = 1
following the definition of Tada and Madariaga, 2001). We
adopt the following procedure to investigate how the error is
generated during all of the time steps. The asymptotic ker-
nels are employed at each time step for the domains deter-
mined by the above-mentioned control parameters Hc/Tmax

(c = α, β) in the causality cone (see Fig. 4). For each
time step, Hc/Tmax is fixed at a certain value; this means
the domains for which the asymptotic kernels are assumed
expand with increasing time. We consider the error as the
difference between the two cases: only the exact kernels
are used over the causality cones in one case, while both
asymptotic and exact kernels are joined in the other case, as
depicted in Fig. 4. In particular, as a measure of the error,
we assume the relative difference of the two solutions av-
eraged over the fault in time and space, which is given by∑

m

∑
j |Dm,i

es − Dm,i
as |/ ∑

m

∑
j |Dm,i

es |, where Dm,i
es is the

slip velocity at the m-th time step and the i-th fault element
evaluated using only the exact kernel, while both exact and
asymptotic kernels are used for the calculation of slip ve-
locity Dm,i

as . We study the dependences of error on the con-
trol parameters Hc/Tmax and on the computation time and
memory requirement below.
3.2 Accuracy of the analysis of planar fault

We first assume a planar fault for both in-plane and anti-
plane faults. An example of slip velocity distribution and
its dependence on the value of Hs/Tmax is shown in Fig. 5
for the in-plane fault with Hs/Tmax = 0.16 and 0.24. For
comparison purposes, we also show the solution obtained
by assuming the exact kernel over the causality cone; such a
solution is referred to in the following text as the exact solu-
tion (note that “exact” refers only to the kernels and that the
analysis is done numerically). This calculation shows that
the dependence on the parameter Hp/Tmax is small enough
in the range 0.08 < Hp/Tmax < 0.2 and is negligible
in comparison to the effect of Hs/Tmax; consequently, the
value of Hp/Tmax is fixed at 0.18 in the following calcula-
tions. As exemplified in Fig. 5(b), the slip velocity increases
and is converged monotonically to the exact solution with
increasing Hs/Tmax. It should be noted that the short wave-
length oscillation observed in each curve is the error due to
the discreteness of our calculation; it has nothing to do with
the use of the asymptotic kernels.

The dependence of error on the required calculation time
and amount of memory is shown in Fig. 6 for both in-plane
and antiplane planar faults in the range 0.16 < Hs/Tmax <

0.56 with the increment of 0.08. As expected, the error de-
creases as the calculation time increases and the memory re-



370 R. ANDO et al.: EFFICIENT BIEM APPLICABLE TO NON-PLANAR FAULT DYNAMICS

Fig. 5. Slip velocity for a self-similar in-plane fault. (a) Configuration
of the assumed model. The fault tip velocity is assumed to be 80% of
the speed of the S-wave. (b) Spatial distribution of slip velocities at
time step N = 100; two different values are assumed for the control
parameter Hs/Tmax. The result obtained in the analysis in which only
the exact kernel is used over the causality cone is also shown for com-
parison. Shown here is the non-dimensional slip velocity that is given
by the slip velocity divided by α�σo/µ, where �σo is the shear stress
drop assumed on the fault.

Fig. 6. Dependence of error on calculation time and memory required in
the analysis of planar fault. Solid and dotted black curves denote the
calculation time and memory requirement in the analysis of in-plane
fault, respectively; solid and dotted gray curves are for the anti-plane
fault.

quirement is enhanced, which is associated with the expan-
sion of the domains where the exact kernels are assumed.
For example, if a 10% error is allowed in the modeling of
planar fault, the reductions in the calculation time and the
memory requirement are about 45% and 60%, respectively,
in comparison to the exact solution. Similarly, if a 3% error
is allowed when Hs/Tmax ∼ 0.48, the reductions are about
25% and 45%, respectively.

Figure 6 also shows that the error is much smaller in the
simulation of the anti-plane fault than in that of the in-plane
fault. This difference occurs because we can employ only
the exact and static asymptotic kernels in the calculation
due to the contribution of the S-wave only, as mentioned in
Section 2.4. The calculation time and memory requirement
(60% and 75% reductions for a 3% error, respectively) are
also much smaller in the simulation of the anti-plane fault
for the same reason. In addition, it should be mentioned
that the reduction in calculation time in the analysis of in-

Fig. 7. Dependence of error on calculation time required in the analysis of
non-planar fault. The black curve denotes the case for the non-planar
fault. The gray curve denotes the error for the planar fault. Fault
geometries are shown in the inset, where L denotes the whole length
of each fault. In both examples, the fault tip velocity is assumed to be
80% of the S-wave speed, and the same shear stress drop is assumed
along each fault trace.

plane fault will be comparable to that found in the analysis
of anti-plane fault as the ratio β/α approaches unity since
the domain between the fronts of the P- and S-wave, over
which the most time-consuming convolution has to be car-
ried out, shrinks in the causality cone (see Fig. 1).

Figure 5(b) implies that a higher accuracy is attained
only if the amplitude of the longer wavelength variation is
increased slightly because shorter wavelength components
are reproduced well, even for smaller values of Hc/Tmax.
Since longer wave components are associated with slow
fault motion, while shorter wave components are associated
with fast fault motion, it is suggested that the deficit in the
longer wavelength components are recovered by retaining
higher order terms in the asymptotic approximation at the
long wavelength limit. An example of the correction proce-
dure is shown in Appendix A.
3.3 Applicability to non-planar fault analyses

Let us explore the applicability of our method to the
analysis of non-planar faults under the assumption that one
of the simplest models has a feature of non-planar faults; as
such, a non-planar fault with an abrupt bend is assumed, as
illustrated in the inset of Fig. 7. The error is plotted as a
function of calculation time in Fig. 7; the error for a planar
fault is also shown for comparison. As clearly observed,
the dependence of error on the calculation time is almost
the same for the two faults. The memory requirement is
found to have a similar dependence.

The above consideration indicates that our method can
treat non-planar faults with the same degree of accuracy as
planar faults.

4. A Further Reduction in Computation Time and
Required Memory by the Repetitive Use of In-
tegration Kernels

The integration kernels in the elasto-dynamic BIEM have
translational symmetry with respect to time

K (x, t; ξ, τ ) = K (x, t − τ ; ξ, 0). (40)

This symmetry suggests that the integration kernels stored
in computer memory can be used repeatedly in the calcula-
tion. Figure 8 shows how the calculation time is reduced if
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Fig. 8. Reduction of calculation time by the repetitive use of kernels stored
in computer memory. The dependence of calculation time on the time
step is reduced from N 2 to N . The exact kernel is used over the causality
cone in each example.

the property (40) is employed; a self-similar in-plane fault is
assumed in the calculation. The kernels stored in computer
memory are used repeatedly in one example, and the ker-
nels are calculated at each time step in the other example;
the calculation times are shown to be dependent on N and
N 2 in both examples. Hence, the employment of property
(40) is found to lead to a significant reduction in calcula-
tion time, and a large-scale calculation will be facilitated by
our method. This reduction in calculation time can be un-
derstood as follows; as mentioned earlier, the time required
for the calculation of the integration kernel is proportional
to n2 at time step n. Hence, the total calculation time is
proportional to N 3 ∼ ∑N

n=1 n2 if the integration kernel is
calculated at each time step, where N is the number of total
calculation steps. However, this summation does not con-
tribute to the calculation time when the stored kernels are
employed repeatedly; in this latter case, the calculation time
is reduced to the order of N 2.

5. Note on the application to modeling of earth-
quake cycles

We briefly explain how to apply our efficient BIEM to the
modeling of an earthquake cycle consisting of both quasi-
static and dynamic phases. If we use a striking feature of
our BIEM that the contribution from far behind the S-wave
front is represented only by the spatial convolution of slip
and the static asymptotic integration kernel, then we can
efficiently simulate both phases in a single scheme with
high accuracy. Although such a numerical scheme has been
developed for planar faults (Lapusta and Rice, 2003), our
method has an advantage that both planar and non-planar
faults are treated similarly.

Figure 9 schematically illustrates how to treat quasi-static
and dynamic processes in a single scheme. The ruptured
area (shaded zone) is assumed to expand quasi-statically at
the initial stage and then its growth is gradually acceler-
ated to a dynamic one. Three collocation points (marked
by crosses) corresponding to three typical growth stages are
arbitrarily assumed on the fault, and the causality cone asso-
ciated with each collocation point is illustrated; each causal-
ity cone is divided into integration domains according to the

Fig. 9. Schematic illustration of unified treatment of dynamic and
quasi-static fault ruptures in a single earthquake cycle. Three causal-
ity cones are shown in individual stages of an earthquake cycle where
the spatio-temporal expansion of the ruptured area is shown by the grey
zone. Three different line segments shown on the right schematically
denote the discrete time intervals �t to be assumed at each stage. Refer
to text for the description of T ∗.

difference in the representation of kernel (refer to Fig. 1 for
the color-coding of integration domains). It should be noted
here that the exact and dynamic asymptotic kernels must be
employed in the dotted and gray domains, while the static
one is used on the thick curve.

As schematically illustrated in Fig. 9, the temporal in-
tegration is required only in the analysis of the dynamic
phase. The fact that the range of temporal integration T ∗

is far less than the time required for the analysis of an earth-
quake cycle is important for the efficient calculation. Since
the upper limit of the temporal integration can be truncated
at T ∗, the time required for the calculation of the dynamic
phase is independent of the number of total steps for the
calculation of earthquake cycle.

It is also important for the rapid calculation in our method
that we can vary the time step �t.; we can assume much
larger value for �t. in the quasi-static phase than in dy-
namic phase. While we have to assume a sufficiently small
magnitude for �t in the dynamic phase, the integration is
reduced to the spatial one far behind the S-wave front. This
facilitates the fast calculation.

6. Conclusions
We have developed a novel and efficient boundary inte-

gral equation method based on the spatio-temporal formu-
lation for the analysis of 2-D in-plane and anti-plane faults;
the calculation time and memory requirement are highly re-
duced in comparison to existing BIEMs. The unique advan-
tage of our method is that it can be applicable to the analy-
sis of non-planar faults with the same degree of accuracy as
when applied to the analysis of planar faults. The reduction
in calculation time and memory requirement is attributable
to the employment of asymptotic representations of the in-
tegration kernels appearing in the convolution integral. The
increased efficiency of our method is also due to the fact that
the asymptotic representations can be factorized into terms
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dependent on space or time, resulting in the numerical treat-
ment being fully efficient. No temporal terms are shown to
contribute to the kernels far behind the S-wave front, so that
any further speed-up of the calculation is attained because
only the spatial integration is necessary. We show that, in a
dynamic analysis, if a 3% error is allowed for the slip rate,
the computation time and memory requirement are reduced
by 25% and 45%, respectively, in an in-plane fault case; in
an anti-plane fault case, the respective reductions are 60%
and 75%. The calculation time is further reduced if we use
the translational symmetry of the integration kernel with re-
spect to time. It should also be noted that our method of
analysis is useful even for earthquake rupture whose growth
rate is much slower than the speed of the S-wave.

We have therefore demonstrated that the present method
is a powerful numerical tool to simulate an entire earth-
quake cycle with a more realistic non-planar fault model
in a single scheme. We conclude with a remark that it can
be extended to 3-D problems without large difficulties al-
though only 2-D cases are validated here.
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Appendix A. Improvement of accuracy by retain-
ing a higher order term

We now show how the accuracy of the calculation is
improved by retaining a higher order term in the asymptotic
expansion. Following the procedure shown in Section 2.2.2,
the contribution from the term on the order of γ −1G(−1)

σi j
is

obtained to each stress component in the form

G(−1)
σ11

(x1, x2, t) = − (3p2 + 1)(p2 − 1)

2π

x2

βt
, (A.1)

G(−1)
σ22

(x1, x2, t) = (p2 − 1)2

2π

x2

βt
, (A.2)

G(−1)
σ12

(x1, x2, t) = (p4 − 1)

2π

x1

βt
. (A.3)

We find that the term on the order of t−1 appears in each
equation, so that the asymptotic expression is no longer
time-independent. Hence, in order to retain the useful static
property of the static asymptotic expression, we assume
that the slip velocity is constant D at each fault element
throughout the slip duration only when the contributions
(A.1) to (A.2) are taken into account; this enables us to
carry out the temporal convolution analytically for the terms
proportional to t−1.

The temporal convolution of the integration kernel and
constant slip velocity Dcrr can be carried out in the form:

∫ to−Tstart

to−Tfinal

K ′(x1, x2, τ )Dcrr dτ

= ([ f (−1)(x1 + �s/2, x2)

− f (−1)(x1 − �s/2, x2)]Dcrr

Fig. A.1. Slip velocities simulated with (gray curve) and without (dot-
ted curve) the correction terms obtained at time step N = 100;
Hs/Tmax = 0.08 is assumed in the calculation. The exact solution
(black curve) is shown for reference. Refer to the caption of Fig. 5
for the unit of non-dimensional slip velocity.

Fig. A.2. Dependence of error on required calculation time and memory.
The two solid curves denote calculation time and memory requirement,
respectively, when the correction term is applied; note that the accuracy
is improved by the introduction of the correction term (compared with
gray curves).

×
∫ to−Tstart

to−Tfinal

{1/(τ + �t) − 1/τ }dτ

= ([ f (−1)(x1 + �s/2, x2)

− f (−1)(x1 − �s/2, x2)]Dcrr

× log

[
(to − Tfinal){(to − (Tstart + �t)}
(to − Tstart){to − (Tfinal + �t)}

]
,

(A.4)

where to and Tstart are current time and the time of slip on-
set, respectively, and the asymptotic expression for the ker-
nel K is assumed to be valid in the range 0 < to − Tstart <

τ < to − Tfinal = √
(r/β)2 + H 2

s ; see Eq. (37). The func-
tion f (−1)(·) is obtained from spatial term in Eqs. (A.1)–
(A.3). We finally find that the following correction term
Rσpq (to, Tstart, Tfinal) should be added to the spatial convolu-
tion term with the asymptotic static kernel as∫

K st
σpq

(x1 − ξ, x2)S(ξ)dξ + Rσpq (to, Tstart, Tfinal), (A.5)

where

Rσpq (to, Tstart, Tfinal)
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= Dcrr log

[
(to − Tfinal){(to − (Tstart + �t)}
(to − Tstart){to − (Tfinal + �t)}

]

×
∫

K (−1)

st;σpq
(x1 − ξ, x2)dξ (A.6)

with

K (−1)

st;σpq
(x1, x2) = [I (−1)

st;σpq
(x1 + �s/2, x2)

−I (−1)

st;σpq
(x1 − �s/2, x2)] (A.7)

I (−1)

st;σ11
(x1, x2) = − (3p2 + 1)(p2 − 1)

2π

x2

β
, (A.8)

I (−1)

st;σ22
(x1, x2) = (p2 − 1)2

2π

x2

β
, (A.9)

I (−1)

st;σ12
(x1, x2) = (p4 − 1)

2π

x1

β
. (A.10)

We now investigate how the accuracy of the calculation is
improved by the addition of the correction terms in a simu-
lation of fault growth; a self-similar in-plane fault studied in
Fig. 5 is assumed to be once again one of the simplest mod-
els. The distribution of slip velocity on the fault is shown
in Fig. A1 for the case of Dcrr/(α�σ/µ) = 4; the exact
solution is also illustrated as reference. In comparison with
the solutions with and without the correction term, the accu-
racy is improved by the introduction of the correction term.
We also investigate the dependence of error on the calcula-
tion time and memory requirement (see Fig. A2) and find
that the accuracy is improved when calculation time and re-
quired memory are fixed (e.g., the reduction of 40% in the
calculation time with 3% error). The value of Dcrr is de-
termined by trial and error in the calculation here so that
the error may take the minimum value when the calculation
time is 60% of the time required for the calculation of the
exact solution.

As shown above, the introduction of a higher order cor-
rection term is found to contribute to the increase in the
accuracy of the analysis of self-similar fault. However, the
development of a generally applicable method to improve
the accuracy is a future task.
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