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Quasi-static analysis of strike fault growth in layered media
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S U M M A R Y
We study the effects of structural inhomogeneity on the quasi-static growth of strike-slip
faults. A layered medium is considered, made up of an upper layer bounded by a free surface
and welded to a lower half-space with different elastic property. Mode III crack is employed
as a mathematical model of strike-slip fault, which is nucleated in the lower half-space and
then propagates towards the interface. We adopt FEM-β, newly proposed analysis method
for failure, to simulate the quasi-statistic crack growth governed by the stress distribution in
layered media. Our results show that along planar traces across interfaces a compliant upper
layer has significant effects on promoting/suppressing crack growth before/after its extension
into the layer and vice versa for a rigid one. This proposes a possibility that surface breaks
due to strike-slip faulting could be arrested by deposit layers at the topmost part of the Earth’s
crust.
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1 I N T RO D U C T I O N

In theoretical studies of earthquake faulting, rupture propagation has
been modelled as growth of cracks in elastic media. Analytic solu-
tions exist only for models that consist of a planar crack in a homo-
geneous medium (e.g. Kostrov 1966; Husseini et al. 1975), though
actual earthquakes are generated with non-planar fault geometry in
inhomogeneous media. Such complexities are to be tackled by nu-
merical methods. Regarding non-planarity, boundary integral equa-
tion methods (BIEM) have been successfully applied to self-chosen
faulting path modelling (Kame & Yamashita 1999a,b, 2003; Kame
et al. 2003; Bhat et al. 2004) and have confirmed that non-planar
fault geometry has significant effects on earthquake dynamics. De-
spite of the clear advantage in fault geometry, BIEM analysis is,
however, limited to homogeneous media. Finite element method
(FEM) and discrete elementmethod (DEM) aremajor candidates for
modelling both non-planar geometry and inhomogeneous medium
structure. They are favourable for arbitrary inhomogeneous media
because different values of elastic parameters can be described to
each element. FEM is ordinarily inadequate for unprescribed crack
paths because its smooth and overlapping characteristic function in
an element is not suitable for that. On the other hand DEM is suit-
able for the analysis because failure is easily represented by cutting
springs between elements. There, however, remains uncertainty in
the equivalence of discrete elementmodelwith continuumbody. Re-
cently, FEM-β was newly proposed as a method that has advantages
of both FEM and DEM (Hori et al. 2005), that is, easy treatment
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of failure in inhomogeneous continuum body. Here we try to apply
FEM-β, originally developed for tensile failure, to shear faulting
for the first time.
Our aim here is to investigate the effects of structural inhomo-

geneity on earthquake faulting. With all the knowledge concerning
the significant effect of medium inhomogeneities on seismic wave
propagation, it is rather surprising that so little attention has been
directed to the effect of medium inhomogeneities on rupture prop-
agation within the Earth. A few examples are Rybicki & Yamashita
(1998, 2002), Bonafede et al. (2002) and Rivalta et al. (2002). This
paper is thus intended to be a further step towards this direction.
As the simplest model of strike-slip faulting in the Earth’s inhomo-
geneous crust, we consider antiplane (mode III) crack problems in
media made up of horizontal layers. A seed crack vertically dipping
against horizontal interface is presumed in the deeper half-space,
and its quasi-static growth upward is examined. Our main interest is
in the possibility of arresting of crack before/after crossing the in-
terface. Rybicki & Yamashita (1998, 2002) have proposed possible
arresting mechanisms of rupture in upper compliant layers based
on changes in the stress drops and resultant stresses due to layer
inhomogeneity. Bonafede et al. (2002) have derived integral repre-
sentations for the stress and displacement fields induced by static
cracks with assigned stress drops, located in the proximity of layer
discontinuity. However, the shapes and extends of cracks have been
given a priori in their analyses and arresting of faulting has not been
investigated directly. Here we address this problem by simulating
quasi-static crack growth with the aid of FEM-β. It should be noted
that due to the presence of inhomogeneous medium structure the
stress concentration ahead of crack tip is strongly affected, which
influence the process of crack propagation.
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Figure 1. Model configuration. A medium made up of upper elastic layer:
−H ≤ y ≤ 0 with rigidity μ1, a free surface on y = 0 and welded on y
= −H to a lower half-space: y ≤ −H with elastic parameter μ2. A planar
seed crack with the half-length l is initially embedded within the half-space
and c is its midpoint. Parameters are set to H = 2.00 km, c = 8.00 km, l =
5.00 km, μ2 = 22.5GPa. A compliant layer μ1/μ2 = 1/10 for ‘model A’,
and a rigid layer μ1/μ2 = 10 for ‘model B’ are assumed.

2 M O D E L A N D M E T H O D

2.1 Crack in layered medium

Configuration of our model is shown in Fig. 1. It is the same as in
Bonafede et al. (2002). An antiplane deformation is considered, in
which the only non-vanishing component of the displacement field is
uz(x, y), which is independent of the coordinate z. The medium con-
sists of an upper layer that is bounded by a free surface and welded
along its base to a half-space with different rigidity and a mode III
crack is employed as a model for strike-slip fault. A seed crack is
initially assumed in the half-space and quasi-static growth from this
is examined. In this paper, two opposite cases are considered for the
rigidity ratio of the upper layer μ1 to the lower μ2: ‘model A’ for a
compliant case with μ1/μ2 = 1/10 [the same ratio as employed in
Bonafede et al. (2002)] and ‘model B’ for a rigid case withμ1/μ2 =
10 (adopted here for comparison). Remotely applied stresses of
σ 0
xz = 5.00 × 10−1 MPa, 5.00 × 101 MPa, and 5.00MPa are con-

sidered in the upper layers of model A, model B and the lower half-
spaces, respectively. Shear stresses are assumed to be completely
released on crack surfaces and thus a stress-drop discontinuity con-
dition, �σ 1/�σ 2 = μ1/μ2, is satisfied on cracks if they extend
across interfaces with planar traces. The material interface is kept
welded for such intersecting cracks under this condition (Bonafede
et al. 2002; Rybicki & Yamashita 2002). Accordingly planar paths
without fracturing the interface are possible in our simulation.

2.2 Implementation of crack growth by FEM-β

FEM-β is very facilitative for the analysis of crack propagation: or-
dinary FEM requires intensive mesh adaptation while FEM-β does
not require any special treatment. It solves a boundary value prob-
lem of a continuum body by applying Voronoi block particle dis-

Figure 2. (a) Mesh configuration: close view (|x| ≤ 2.5 km,−5≤ y≤ 0 km)
in the vicinity of the interface. Voronoi blocks (blue lines) and Delaunay
triangles (red lines) are distributed at even intervals along the seed crack,
layer interface, and free surface within the part of our interest (|x| ≤ 7.5 km,
−15≤ y≤ 0 km). Separation of any two adjacent Voronoi block is possible in
FEM-β analysis. (b) Mesh configuration of the whole domain (|x| ≤ 50 km,
−100≤ y≤ 0 km). It totally consists of 30 892 blocks (blue lines) and 61 257
triangles (not plotted for brevity). Solid and dashed lines indicate regions
for the close view and the part of our interest, respectively.

cretization and the conjugateDelaunay tessellations to displacement
and stress fields, respectively (Fig. 2a). The key point of FEM-β is
the ease of expressing failure as separation of two adjacent Voronoi
blocks owing to the particle discretization that uses non-overlapping
characteristic functions, and results from FEM-β is more reliable
than that from DEM in the sense that equivalence to the continuum
is assured in FEM-β. It is shown that a solution of FEM-β has the
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same accuracy as that of ordinary FEM with triangular elements
(Hori et al. 2005). Note that separated blocks no longer sustain any
shear stresses and thus residual stresses such as friction can not be
assigned in FEM-β in the present form because it is originally aimed
for tensile failure.
Whole mesh configuration employed in our simulation is shown

in Fig. 2(b). A finite 100× 100 km rectangular domain is discretized
as an approximation of infinite layered medium and our interest is
concentrated in a much smaller part of 15 × 15 km2 within which
the stress fields are plotted hereafter. In order to attain the remotely
applied stresses,we impose afixeddisplacement boundary condition
on the two vertical edges of the whole domain that gives a uniform
strain of ε0xz = 1.11 × 10−4 if there is no crack. This realizes a
nearly constant stress loading stated above, over the part of interest
throughout the crack growth. A planar seed crack with initial length
l is first introduced in the half-space and the stress distribution is
computed.Thequasi-static growthof crackupward is then simulated
from this state.
Prior to simulation, we first corroborate FEM-β accuracy by com-

paring the numerical solution with analytic one for a mode III crack.
In unbounded homogeneous medium, analytic solution is available
in a simple algebraic form (e.g. Pollard& Segall 1987). Fig. 3 shows
a detailed comparison of stress changes in �σ xz component along
the crack plane. For the FEM-β solution, mesh is arranged as fine as
in Fig. 2: only exception is that the finer mesh part is centred on the
whole domain. Both our stress distribution and the analytical one fit
with each other very well except for two points outside the crack tip.
The computation errors are 4 and 1 per cent for the first and second
points, respectively. Note that this range of errors is precise enough
for the present analysis and does not make a significant difference
in our conclusions. Fig. 4 shows comparison of the stress changes
�σ xz in layered medium. It also shows good quantitative agreement
both in space and in magnitude.
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Figure 3. Comparison between analytical solution (broken line) and FEM-β
computation (dots) for stress changes �σ xz along a crack plane in homoge-
neous medium, where position r is measured from the centre of crack. r and
�σ xz are normalized by the crack half-length l and the assigned stress drop
�σ , respectively.

For a fracture criterion, we adopt a simple criterion of strength-of-
material type as inHori et al. (2005). In FEM-β simulation, if a trian-
gular element has themaximumshear stress τmax(�n) = σxznx+σyzny
that reaches threshold strengths τ ci(i = 1, 2 for upper layers and
half-spaces, respectively), a Voronoi block interface whose normal
vector is closest to the maximum direction �n is broken. This crite-
rion is similar to that often used in the DEM simulations and the
only difference is the usage of the maximum stress as an indicator
of fracture; force applied to the spring is used in DEM. It is often
a problem that stress evaluated numerically at the tip is strongly
dependent on the dimensions of elements because of the singularity
(e.g. Fig. 3). When the element spacing is fixed, however, the simple
strength criterion is approximately equivalent to the stress intensity
factor based criterion (Das & Aki 1977). In order to validate the
simple strength criterion, we employ an almost identical spacing
for elements inside the part of our interest (Fig. 2a). We search all
the elements in it for the largest τmax(�n) throughout simulation. It
enables us not to miss unnoticed non-planar failure paths across the
boundaries though planar paths are sufficiently possible under the
stress discontinuity condition.
The material strength over the half-space is set to τ c2 that is

slightly smaller than the largest τ max value locating just above the
upper tip of the seed crack. In the simulation, the stress distribu-
tion is recomputed after the crack extension for the same boundary
condition and another interface to be broken is found. This process
is repeated until τ max no longer reaches τ ci. As well as the rigidity
ratio μ1/μ2, the strength ratio τ c1/τ c2 also affects the whole failure
processes as will be shown in the following section.

3 R E S U LT S

Fig. 5 shows snap shots of the crack growth with the corresponding
σ xz stress field in model A with a compliant upper layer, μ1/μ2 =
1/10. Clear stress gaps are identified across the interface: strain
ε xz must be continuous across it because of the ‘welded’ condi-
tion during the crack growth and stresses just above it are thus
discontinuously reduced to 1/10 due to the rigidity contrast. Be-
ing proceeded by the largest τmax(�n) element, the crack path initially
extends straight in the half-space until the tip touches the interface.
If τ c is uniform over the whole domain (denoted as ‘stress case’
with τ c1/τ c2 = 1), the crack will be arrested there at the interface
y = −2.00 km. In order for the crack to propagate further we here
tentatively assume that the strength of compliant layer τ c1 is sim-
ply reduced to τ c1 = (1/10) τ c2, so that the ratio of τ c1/τ c2 is the
same as μ1/μ2. It means that the same critical strain is assumed as
a fracture criterion over the domain (‘strain case’). Then the crack
continues to grow upward in a straight way and finally penetrates
the layer up to the surface.
Fig. 6(a) shows τ max evolution with the crack growth, that is,

the peak stresses reached before failure at each position. For conve-
nience, the stresses and strengths are plotted with a magnification of
10 within the compliant layer. In model A, there occurs significant
increases of τ max towards the interface and surface. These can be
attribute to the so-called mirror effect with respect to a free surface:
stress enhancement against a free surface due to a mode III crack is
equivalently modelled by two symmetrically distributed cracks with
respect to the virtual surface in an unbounded body. The interface
in model A affects as a kind of free surface due to the more com-
pliant layer and this contributes to the first peak. After crossing the
interface, the mirror source effect with respect to it vanishes and
τ max decreases accordingly. As the crack tip approaches the true
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Figure 4. Comparison between analytic integral representation (left-hand side) (after Bonafede et al. 2002) and FEM-β computation (right-hand side) for the
stress changes �σ xz induced by a crack with stress drop �σ = 5.00MPa in layered medium.

Figure 5. Snap shots of crack growth in model A (μ1/μ2 = 1/10 and τ cz = 59.9MPa) with the corresponding σ xz stress field. Upper crack tip locations are
y = −3.00,− 2.13 and −2.00 km from left- to right-hand side in the upper row and y = −1.88, −1.63 and −0.25 km in the lower row, respectively.

surface, another mirror effect emerges and τ max again increases sig-
nificantly. τ max in the upper layer takes the minimum 13.3MPa at
y = −0.82 km. This means that if we assume τ c1 as an intermediate
value between the minimum and the ‘stress case’ strength, the crack
growth is arrested in the compliant layer (‘intermediate case’). It
should be noted that three cases of τ c1 assumed here are totally sup-
positional: we do not have any experimental data on rocks that show
clear dependency of strength on the rigidity. However, τ c1 assump-

tion between the two specific cases of ‘stress’ and ‘strain’ seems
acceptable and realistic to rocks in the Earth’s crust.
Finally we examine crack growth in model B with a rigid upper

layer, μ1/μ2 = 10. In this model, τ max decreases with the first
extension of the tip, that is, the crack does not propagate quasi-
statically. For clarification of the effect of a rigid layer, we here force
the crack to extend up to the surface choosing the largest τmax(�n)
element even if it does not reach τ ci. Our simulation again shows that
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Figure 6. (a) τmax evolution with the quasi-static crack growth in model A
(μ1/μ2 = 1/10). τ c2 = 59.9MPa is plotted with a solid line in the half-
space. In the upper layer, the strengths for ‘stress case’ (τ c1/τ c2 = 1: dotted
line) and for ‘strain case’ (τ c1/τ c2 = 1/10: dashed line) are plotted for ref-
erence. (b) τmax evolution with the compulsory crack extension in model B
(μ1/μ2 = 10). τ c2 = 44.8MPa is plotted with a solid line on the half-space.
The strengths for ‘stress case’ (τ c1/τ c2 = 1: dotted line) and for ‘strain
case’ (τ c1/τ c2 = 10: dashed line) are also plotted. Note that all the quanti-
ties within the upper layers are plotted with magnification of 10 (model A)
and 1/10 (model B), respectively.

totally planar crack path is chosen in model B. The resulting τ max
evolution accompanied with such compulsive extension is plotted
in Fig. 6(b) with a magnification of 1/10 in the rigid upper layer this
time. A significant decrease of τ max appears towards the interface.
This is because the deformation in the half-space is prevented by

the upper rigid layer. After prolongation of the crack into the upper
layer, the stresses turn to increase: the stresses are enhanced by the
larger stress drop in the rigid layer (�σ 1/�σ 2 = 10) and by the
mirror source effect towards the free surface. Relative relationship
between the two speculative types of strength (τ c1/τ c2 = 10 for
‘strain case’ and τ c1/τ c2 = 1 for ‘stress case’) indicates that the
‘strain case’ becomes more difficult for a surface break than the
‘stress case’ and this is quite contrary to model A.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We investigated the effects of structural inhomogeneity on the
growth of strike-slip faults, considering a model that consists of
a mode III crack in a layered medium. With facilitative use of
FEM-β we simulated successfully the quasi-statistic crack growth
governed by stress distribution in the layered medium. Our results
directly showed that totally planar crack paths are formed across
layer boundaries quasi-statically under the stress drop discontinuity
condition (�σ 1/�σ 2 = μ1/μ2), which has not been straightfor-
wardly shown in the pioneer analyses of faulting in layered media
(Rybicki & Yamashita 1998, 2002; Bonafede et al. 2002). And we
clearly demonstrated that a compliant upper layer has significant
effects on promoting/suppressing crack growth before/after exten-
sion into the layer and vice versa for a rigid one. The effect of struc-
tural inhomogeneity (μ1/μ2 < 1) on strike-slip faulting suggests
the possibility that the surface break is prohibited under specific
(and realistic) assumptions related to medium strength τ c, with a
strike-slip fault being arrested in upper deposit layers. Our simula-
tion results support quantitatively the possible arresting mechanism
of earthquake rupture due to a compliant upper layer proposed by
Rybicki & Yamashita (1998, 2002).
Wemay note that the existence of compliant upper layers of thick-

ness of few kilometres, located above mode rigid lower bedrock is
known to take place frequently in the Earth’s crust. However, the
rigidity contrast assumed in model A is not realistic from the point
of view of available data related to medium structure: the value of
rigidity contrast about 1/2 is much more realistic (Ben-Zion et al.
1992). We thus tested an additional case with the ratio μ1/μ2 =
1/2: τ max evolution with the planar crack growth shows the same
tendency as in Fig. 6(a): it first increases, then reduces beyond the
interface and takes the minimum at y = −1.19 km in the upper
compliant layer. Finally it turns to increase towards the free surface.
Theminimum τ max again becomes smaller than the ‘stress case’ and
larger than the ‘strain case’ as same as in model A. This means that
our conclusions are valid for the more realistic case.
As the first step in applying FEM-β to earthquake shear faulting,

we have concentrated the cases for which the stress-drop disconti-
nuity condition is satisfied. Otherwise (e.g. inhomogeneous initial
strains across interfaces) the welded interface state are not guaran-
teed and thus there raises a possibility that crack fails to keep its
planarity as pointed out by Bonafede et al. (2002). Such process
does affect the arresting of rupture propagation and is to be inves-
tigated in further studies by FEM-β. Non-planar crack growth is
also expected dynamically even under the stress drop discontinuity
condition (Kame &Yamashita 1999a). Such possibility is also to be
examined by dynamic version of FEM-β.
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