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S U M M A R Y
The dynamic coalescence of two mode II cracks on a planar fault is simulated here using the
elastodynamic boundary integral equation method. We focus on the complexity of the resultant
slip rate and seismic radiation in the crack coalescence model (CCM) and on the reconstruction
of a single crack model (SCM) that can reproduce the CCM waveforms from heterogeneous
source parameters rather than coalescence. Simulation results reveal that localized higher slip
rates are generated by coalescence as a result of stress interaction between the approaching
crack tips. The synthesized seismic radiation exhibits a distinct coalescence phase that has
striking similarities to stopping phases in the radiation and propagation properties. The corre-
sponding SCM yields a singular increase in the stress drop distribution, which is accompanied
by a sudden decrease in it across the point of coalescence in the CCM. This implies that the
generation of high-frequency radiation is more efficient from coalescence than from stopping,
although both phenomena exhibit the same strong ω−2-type displacement spectra.

Key words: Numerical solutions; Earthquake dynamics; Earthquake ground motions;
Dynamics and mechanics of faulting; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

Numerous recent inversions of strong motion data have revealed
very complex slip functions and heterogeneous distributions of dy-
namic source parameters such as stress drop, strength excess and
critical slip-weakening distance (e.g. Quin 1990; Ide & Takeo 1997).
In such inversions, it has typically been assumed that a monotoni-
cally spreading rupture front is generated from a flat fault model.
These assumptions are required largely because waveform data have
insufficient resolution to determine the precise geometry of either
the rupture fronts or the fault structures.

On the other hand, substantial progress has also been made in
the numerical analysis of spontaneous rupture propagation. In the
first phase of this research, the effects of heterogeneous source pa-
rameters on the dynamic rupture process have been investigated for
flat source models. Important physical concepts, such as very high-
strength ‘barriers’ and large stress drop ‘asperities’, have emerged
from the early studies (e.g. Das & Aki 1977; Kostrov & Das 1988).
More recently, advanced numerical methods have enabled us to
simulate more realistic processes such as rupture front interaction
(Yamashita & Umeda 1994; Kame & Yamashita 1997; Fukuyama
& Madariaga 2000) and rupture propagation on geometrically com-
plex faults (Harris & Day 1993; Kame & Yamashita 1999a; Aochi
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& Fukuyama 2002; Ando et al. 2007; Kame et al. 2008). It has
been demonstrated that both processes exert significant effects on
the complexity of the slip rate and rupture propagation (Chatterjee
& Knopoff 1990; Umeda et al. 1996; Kame & Yamashita 1999b,
2003; Dunham et al. 2003; Kame et al. 2003; Bhat et al. 2004).

It is important to consider what heterogeneous source parameters
will be inferred from an inversion analysis if the assumptions, on
which it is based, do not fully pertain to the actual earthquake being
studied. To address this topic, we consider here a rupture process,
in which rupture fronts interact and finally coalesce on a flat fault.
Obviously, this scenario does not meet one of the major inversion
assumptions of a ‘monotonically spreading rupture front’. We then
consider another event that produces the same seismic radiation
due, solely, to stress and strength heterogeneities on the fault and
not to any coalescence. Because the assumption of a ‘monotoni-
cally spreading rupture front’ is totally satisfied in this case, the
heterogeneity can be regarded as the ‘apparent’ heterogeneity cor-
responding to unmodelled rupture coalescence, which could have
been inferred from a conventional inversion analysis. Investigat-
ing such apparent heterogeneity is one of main goals of the work
presented here.

Another point of interest here is the seismic radiation generated
by dynamic coalescence. The generation of localized higher slip
rates due to coalescence has been reported in many rupture front
interaction simulations, (Yamashita & Umeda 1994; Fukuyama &
Madariaga 2000; Dunham et al. 2003) and its significant effect
on high-frequency radiation has been anticipated. However, the
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Dynamic coalescence and seismic radiation 697

resultant seismic waveforms have been synthesized only at
particular stations and the overall radiation and propagation char-
acteristics remain unclear. As to the non-planar fault dynamics,
Adda-Bedia & Madariaga (2008) and Madariaga et al. (2006) have
recently calculated the seismic radiation emanating from a kink
on a 2-D fault and found a distinct cylindrical phase, enriched
with high-frequency radiation that is emitted from the kink. Ac-
cordingly, it is also useful to consider in detail here the seismic
radiation accompanying dynamic coalescence and to investigate its
characteristics.

To address these issues, we employ a crack coalescence model
(CCM) consisting of two mode II cracks on a planar fault. We
simulate the dynamic coalescence process in the CCM for homo-
geneous source parameters and investigate the resulting complexity
of the slip rate. We then synthesize the seismic radiation of the
CCM and determine the characteristics of a coalescence phase. We
next attempt to reconstruct a seismically comparable single crack
model (SCM), using heterogeneous source parameters. In this con-
text, ‘seismically comparable’ means that it yields similar seismic
waveforms to the CCM such as the coalescence phase generated
from heterogeneity within a SCM. Based on the specific coales-
cence heterogeneity inferred, we finally discuss the mechanism of
high-frequency radiation from dynamic coalescence.

2 M O D E L A N D M E T H O D

2.1 Crack coalescence model (CCM)

Earthquake faulting is modelled here in terms of the dynamic growth
of mode II cracks in an unbounded homogeneous isotropic elastic
medium. We use Cartesian coordinates (x, y) and align the fault
plane with the x-axis. Here we consider a crack coalescence model
(CCM) in which two cracks, a larger principal crack and a smaller
subsidiary one, exist along the planar fault (Fig. 1a). We presume
that frictional strength has been weakened and that any pre-slip
has thus occurred on the cracks. Failure in the modelling is de-
scribed using a slip-weakening friction law originally proposed by
Ida (1972). The fault strength τ , once reaching the peak strength
τ p, decreases linearly to the residual strength τ r with ongoing fault
slip D, according to,

τ = τr + (τp − τr)(1 − D/Dc)H (1 − D/Dc), (1)

where H(·) and Dc are the Heaviside function and critical slip dis-
placement, respectively. The minimum nucleation size L c obtained
from the fracture energy balance (for Poisson ratio ν = 0.25), as
described by Andrews (1976) and Kame et al. (2003), is determined
using

Lc = 16

3π

μG

(τ0 − τr)2
= 64

9π 2

(
τp − τr

τ0 − τr

)2

R0, (2)

where μ is the shear modulus and G is the fracture energy of the
medium. Here R0 = (3π/4)[μG/(τ p − τ r)2] is the approximate
slip-weakening zone length at low rupture velocities as derived by
Palmer & Rice (1973), which is to be resolved spatially in the
following computations. We choose a specific length L of the main
crack that is slightly greater than L c. This produces an initial stress
concentration which is slightly larger than the peak strength at both
ends of the main crack and which accelerates finite rupture in the
first dynamic time steps (Kame et al. 2003).

2.2 Elastodynamic boundary integral equation method

We use the elastodynamic boundary integral equation method
(BIEM) to simulate spontaneous rupture propagation. Employing
the discretized form of the elastodynamic representation theorem,
evaluated by Kame & Yamashita (1999a); the following algebraic
equation is obtained for the change in shear stress on spatial cell l
at the end of time step n due to the slip rate history up to that point
in time:

�τ ln = − μ

2Cs
V ln +

n−1∑
k=0

∑
i

K ln:ik V ik . (3)

Here V ik is the slip rate of cell i during time step k and K ln:ik is
the response to unit slip rate in cell i in time step k. C s represents
the shear wave speed of the medium. The first term on the right-
hand side, −μ/2C s, is the radiation damping term (Cochard &
Madariaga 1994). It represents the instantaneous contribution of
the current slip rate to the shear stress at the same position. The
second term represents the contribution of the past slip rate history.
The total shear stress, which is the sum of the incremental stress and
the pre-stress τ = �τ + σ 0

xy , is considered in determining the slip
rate that meets the slip-weakening friction law (eq. 1) at the current
time step. Once the slip rate history over the fault has been obtained,
the displacement velocity at an arbitrary point can be synthesized
from similar discretized forms (Tada & Madariaga 2001).

All computations are made using the following non-dimensional
quantities: length x∗ = x/�s, time t∗ = C st/�s, stress σ ∗

i j =
σ i j/(−σ 0

yy), strength τ ∗ = τ/(−σ 0
yy), slip D∗ = μD/(−σ 0

yy �s),
slip rate V ∗ = μ V /(−σ 0

yy C s), displacement acceleration A∗ =
μ�sA/(−σ 0

yy C2
s ) and frequency f ∗ = �s f /C s. We base the nor-

malization on the fault normal stress −σ 0
yy (taking tensile stresses

to be positive), the cell size �s and the shear wave speed C s. We
choose the non-dimensional time interval �t∗ = 0.25 and the collo-
cation parameter et = 1.0 to satisfy the BIEM stability condition in
mode II (Tada & Madariaga 2001). This enables us to avoid intro-
ducing any artificial damping terms for the planar fault calculations.
The star symbols are omitted hereafter for brevity.

2.3 Numerical settings and procedure for spontaneous
crack growth

To most clearly elucidate the rupture complexity associated with
the dynamic coalescence process, the pre-stress state (σ 0

xy) and
frictional properties (τ p, τ r and Dc) in CCM are presumed to be
uniform on the unbroken parts of the fault. First we set σ 0

xy = 0.24
and τ r = 0.12 (Fig. 1b). This means that the stress drop, defined
by �σ = σ 0

xy − τ r, is also uniformly distributed (= 0.12). We set
the peak strength to be τ p = 0.60 and choose a uniform critical slip
distance Dc = 3.92 (Fig. 1a), so that the slip-weakening zone length
R0 is finely resolved as R0 = 9.6�s, where �s is the spatial cell size
and μ = 1.0 is arbitrarily chosen in the computations. In fact, our
simulations confirm that the dynamic slip-weakening zone lengths
are well resolved—they correspond to nine grid intervals just after
dynamic propagation and smoothly reduce to three grid intervals as
the rupture velocity accelerates, approaching the limit velocity of
C R, the Rayleigh wave speed. The critical length of the main crack
is determined by eq. (2) to be Lmain

c = 110.7 and we introduce a
larger initial crack length Lmain = 120 on −240 ≤ x ≤ −120 for
dynamic propagation to start from its tips. Another subsidiary crack
of assumed length Lsub = 60(= Lmain/2) is introduced on 60 ≤ x ≤
120 in the CCM.
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698 N. Kame and K. Uchida

Figure 1. (a) Configuration of the crack coalescence model (CCM) consisting of two pre-existing cracks (solid lines) on a planar fault (a grey line). Thick-dotted
and thin-dashed lines indicate the distribution of the critical slip distance Dc and the pre-slip distribution D0, respectively. (b) Distribution of the peak strength
τ p (thick dashed line), the residual strength τ r (dotted line) and the pre-stress σ 0

xy (grey line). The solid line indicates the initial stress distribution τ 0 just
before dynamic propagation. (c) Spatiotemporal evolution of the simulated slip rate of the CCM. (d) Maximum slip rate experienced at each position. The
solid black line represents the CCM and the grey line is for a simple model. (e) Three types of incremental constitutive curves.
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Dynamic coalescence and seismic radiation 699

Preventing any slip outside these two regions, the pre-slip distri-
bution D0 in the static equilibrium state is determined. This distribu-
tion must satisfy the slip-weakening boundary condition expressed
in eq. (1), and the calculation is performed using the elastostatic
BIEM (Kame et al. 2003). For the pre-slip solution to also exist
on the subsidiary crack, we tentatively employ a lower strength of
τ p = 0.30 there. This condition yields a smaller critical length
L sub

c = 15.6 and the assumed subsidiary crack, being larger than
this, is arrested by the higher-strength regions outside it (Fig. 1b).
Once we obtain the pre-slip distribution, we can evaluate the initial
shear stress distribution τ 0 = �τ + σ 0

xy. Having determined the
initial state (D0 and τ 0), dynamic rupture is allowed to propagate
along the planar fault. The entire rupture propagation process is
arrested by unbreakable barriers τ p = +∞ at x = ±300, that is at
both ends of the planar fault.

3 R E S U LT S

3.1 Dynamic coalescence rupture process in the CCM

Dynamic rupture in the CCM begins at t = 0.00. The slip rate at each
time step is determined by BIEM, and the resulting slip rate history
is shown in Fig. 1(c). The Rayleigh C R, shear C s and dilatational
C d wave speeds are plotted for reference. Initially, the main crack
propagates bilaterally and the propagation speed smoothly accel-
erates, approaching C R. Localized higher slip rates are generated
just behind the rupture front and the maximum rates increase with
progressive crack growth (Fig. 1d). This tendency is more clearly
illustrated by the grey line, which corresponds to a simple model in
which the rupture front spreads monotonically without coalescence
starting from homogeneous source parameters. In the CCM, the
rupture reaches the left barrier at t = 174.00, where it is arrested.

Dynamic slip on the subsidiary crack is not excited until the seis-
mic wave reaches it. On arrival, it strengthens the stress concentra-
tion at both ends. The left tip stress exceeds the peak strength at t =
186.75, when leftward dynamic propagation commences. Dynamic
propagation commences at right tip at t = 272.25. The approaching
crack tips of the main and subsidiary cracks finally coalesce at x =
45 and t = 303.50. At the point of coalescence, a relatively higher
slip rate is excited, whose maximum is about 1.6 times larger than
that of the simple model (Fig. 1d). Localized higher slip rates of
such values have been commonly observed in previous coalescence
simulations and been attributed to stress interaction between the
approaching rupture fronts (Yamashita & Umeda 1994; Fukuyama
& Madariaga 2000; Dunham et al. 2003).

The higher slip rate region does not propagate following dynamic
coalescence. Minor disturbances in the slip rate spread bilaterally
from the coalescence point at two different speeds of C d and C R

on the slipping surface. Similar disturbances are generated by the
rupture arresting at the barriers. These are interfacial waves, whose
allowable propagation speeds are predicted theoretically to be C d,
C s and C R in mode II (Yamashita 1983), but C s phases are hardly
identified in our simulations. The disturbances are very small be-
cause there is no strain energy release with propagation and the
stresses on the slipping region maintain a constant residual value of
τ r. However, a prominent localized higher slip-rate region moves
rightwards on the residual stress surface. It originates not from the
coalescence but from the propagating rupture front of the main
crack. On coalescence, the right rupture front suddenly transfers
into the subsidiary right-hand side crack tip, and the higher slip-
rate region in the vicinity of the former rupture front is thus left

behind. It propagates at a speed of C R as an interfacial wave. The
new rupture front again accelerates to C R gradually. Accordingly,
the two localized higher slip-rate regions, originating from the new
and former rupture fronts, propagate simultaneously until they are
terminated successively at the x = +300 barrier at t = 537.50.

3.2 Seismic radiation from dynamic coalescence in CCM

The seismic wavefield in the CCM can now be synthesized and
examined with particular attention paid to waves associated with
dynamic coalescence. Fig. 2(a) shows snapshots of the wavefield in
the fault-parallel (FP) and fault-normal (FN) components. To em-
phasize the high-frequency radiation, we plot accelerations. For the
purposes of these plots, the velocity wavefield is first synthesized
using the integral kernels for the displacement velocity derived by
Tada & Madariaga (2001), and the finite difference is then taken be-
tween successive time steps to obtain acceleration. The time-series
is then low-pass filtered to below a non-dimensional frequency 0.10
to reduce spurious high frequencies associated with discrete rupture
propagation.

Initially, seismic waves emitted from the bilaterally propagating
rupture fronts are identifiable in both the FP and FN components
(t = 160). Leftward rupture is arrested at x = −300, after which a
stopping phase spreads cylindrically from the arresting point (t =
240, 320, . . . ). The approaching rupture fronts of the two cracks
coalesce at x = 45, and a distinct ‘coalescence phase’ is emitted
and spreads cylindrically (t = 320, 400, . . . ). On the rightward
rupture’s arrest at x = +300, two stopping phases are radiated, cor-
responding to termination of the two propagating localized higher
slip-rate regions, and they propagate cylindrically again (t = 560,
640, . . . ). These cylindrical phases, yielded by stopping and co-
alescence, are clearly identified in both components. In terms of
propagation speeds, both the dilatational and shear waves can be
identified.

In appearance, the coalescence phase has striking similarities
to the stopping one. Both phases spread cylindrically from their
points of emission and exhibit the same radiation pattern, namely
the far-field four-lobed patterns of the radial and transverse com-
ponents due to a double couple source (Aki & Richards 2002). For
the dilatational waves (the radial radiation component), maxima ap-
pear in the 45◦ and 135◦ directions, and the node appears in the
90◦ direction in both components. For the transverse shear waves,
the maximum in FP and the node in FN appear in the 90◦ direc-
tion, where the angles are measured counter-clockwise from the
x-axis. These similar seismic radiation patterns can be attributed
to the similar spatiotemporal slip-rate evolutions (Fig. 1c). With
regard to rupture arrest, the propagating localized higher slip-rate
regions are discontinuously terminated in space by the barriers at x =
±300. In the vicinity of the coalescence point, a similar spatial cut-
off occurs after coalescence: on the subsidiary crack, little slip-rate
is generated due to there being no release of strain energy. These
sudden spatial cut-offs against the propagating higher slip-rate re-
gions give rise to the similar seismic radiation patterns.

Seismic radiation associated with the propagating higher slip-
rate regions is quite different. The radiated waves prevail along the
fault surface in FN and are shear waves in terms of propagation
speed. Such waves are commonly referred to as a ‘rupture directiv-
ity pulse’ in observations of historic very large earthquakes and are
responsible for the strongest ground motions (Irikura et al. 1996;
Somerville et al. 1997; Somerville 2003). Note that the directiv-
ity phases in the FN component continue to propagate beyond the
arresting point at x = +300, even after the rupture propagation
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700 N. Kame and K. Uchida

Figure 2. (a) Snapshots of the acceleration wavefield of the CCM. The left and right columns show the fault-parallel (FP) and fault-normal (FN) components,
respectively. Based on the final rupture extent of −300 ≤ x ≤ 300 and the model symmetry with respect to the y-axis, each shot is displayed within the region
−600 ≤ x ≤ 600 and 0 ≤ y ≤ 300. Thin lines indicate the locations of the crack coalescence point (x = 45) and barriers (x = ±300). (b) The maximum
acceleration distribution of the CCM (top) and the simple model (bottom). (c) The maximum velocity distribution of the CCM (top) and the simple model
(bottom).

terminates there. Waves from the two separate higher slip rate re-
gions are clearly distinguishable from each other after coalescence
(t = 400, 480, . . . ).

Figs 2(b) and (c) illustrate the maximum distributions of the
acceleration and velocity for each component. Note that the ve-
locity waveforms have also been low-pass filtered to below a non-
dimensional frequency of 0.10. In each figure, the top and bottom
panels correspond to the CCM and the simple model (employed in
the preceding subsection), respectively. In the FP component for the
CCM (Figs 2b and c top), the coalescence and stopping shear waves
play important roles in determining the distinct patterns: the max-

ima are distributed normal to the fault plane, which directly reflects
the radiation pattern for the shear waves with a maximum in the 90◦

direction and their less rapidly decaying cylindrical propagation
property. On the other hand, phases associated with the propagating
higher slip-rate regions are dominant in the FN component. The
maximum contours are densely distributed along the plane and are
amplified by the directivity effect in the rupture propagation direc-
tion. The bottom panels of Figs 2(b) and (c) illustrate results for
the simple model, for reference. In the FP component, we observe
larger accelerations and velocities due to the stopping phase around
x = +300. This is because the maximum slip rate has grown to be
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Figure 3. Velocity waveforms observed at stations evenly distributed between x = −400 and +400 along y = +8 (left-hand column) and y = +300 (right-hand
column). The upper and lower rows correspond to the FP and FN components, respectively.

larger in the simple model than in the CCM just before arresting,
as shown in Fig. 1(d). In the FN component, the maxima are also
stronger than for the CCM for the same reason. This implies that
the strongest ground motion depends on how large the maximum
slip rate becomes: the strain energy released in the CCM is not con-
centrated on a single rupture front but split into two fronts, resulting
in the smaller maximum slip rate and the weaker seismic radiation
accordingly. In general, the acceleration distributions are steeper
than the velocity distributions, due to being relatively enriched in
higher-frequency energy.

Fig. 3 shows the velocity waveforms generated by the CCM. The
observation points are aligned on the two lines parallel to the fault

plane: one lies at y = +8, very close to the fault, and the other is at
y = +300, a half-length of the final rupture length away from the
plane. The stations are put on each line at intervals of 40 between
x = −400 and +400. Along y = +8, the first arrivals of the co-
alescence phase, (x, t) = (40, 300), and the stopping phases from
the both ends of the fault, (x, t) = (−320, 170) and (320, 560), can
be identified in the FP records. On the other hand, phases from the
propagating localized higher slip rate regions are dominant in the
FN component. Due to the low attenuation there, this is directly
reflected in the near-field radiation pattern of each phase in each
component. Note that the waveforms in the FN component (x ≥
160) clearly show two successive pulses, corresponding to the two

C© 2008 The Authors, GJI, 174, 696–706

Journal compilation C© 2008 RAS
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split higher slip rate regions. Along y = +300, the propagating
higher slip-rate phases have markedly decayed, and only the cylin-
drical phases can be identified in both components. The shear wave
arrivals of the coalescence phase, (x, t) = (40, 600), and the stopping
phases from both ends of the fault, (−320, 460) and (+320, 840),
are clearly identified for the FP records. On the FN component, the
earlier-arriving dilatational waves of those phases have amplitudes
comparable to the shear waves. These velocity waveforms also ex-
hibit distinct differences in the radiation and propagation properties
between the cylindrical phases and the propagating higher slip-rate
phases. With respect to the terminology used to describe seismic
radiation from a double couple point source (Aki & Richards 2002),
the near-field term seems to prevail for the propagating higher slip-
rate phase and the far-field term for the cylindrical one. As illustrated
by Fig. 2(a), a quadratic pattern is again recognized for the far-field
radiation of the two cylindrical phases observed along y = +300.
For the transverse shear waves, the maxima in the FP component
and the nodes in the FN component are in the 90◦ direction. Like-
wise, for the dilatational waves, the maxima appear in the 45◦ and
135◦ directions and the node appears in the 90◦ direction.

3.3 Reconstruction of a seismically comparable single
crack model (SCM) and apparent heterogeneity in the
source parameters

Another goal of this paper is to examine what heterogeneous source
parameters will be inferred for a dynamic coalescence process if the
assumption of a ‘monotonically spreading rupture front’ is made in
the waveform inversion analysis. Such an assumption is not valid
for in a CCM and thus some apparent heterogeneity will necessarily
emerge in the inversion results, which we examine further here.

To characterize such heterogeneity in the CCM, we attempt to
reconstruct a seismically comparable single crack model (SCM). In
a SCM, the rupture fronts spread monotonically for heterogeneous
source parameters and no dynamic coalescence occurs. ‘Seismi-
cally comparable’ here is taken to mean that the SCM radiates
seismic waves comparable to those of CCM. Because the rupture
front assumption holds throughout rupture growth in a SCM, the re-
constructed source parameters contain apparent heterogeneity that
would be inferred from the inversion of a CCM event. In the follow-
ing, we consider two models for the reconstruction: as neither of
them used alone can reproduce the CCM results completely, we em-
ploy a certain quantifiable validation to evaluate the two alternatives
in terms of waveform fitting to the CCM results.

We first summarize briefly a standard procedure for the recon-
struction of dynamic source parameters, based on a kinematic wave-
form inversion analysis (Ide & Takeo 1997). This approach usually
consists of the following three steps. (1) The slip rate history is first
determined by an inversion assuming that the rupture front spreads
monotonically. (2) The stress change history on the fault is next
calculated by solving the elastodynamic equation of motion for a
given displacement boundary condition, namely the slip rate his-
tory computed in the previous step. (3) Finally, by combining the
two histories, the constitutive relation between the slip and stress
changes is determined on the fault surface, from which the dynamic
parameters can be derived.

Our reconstruction of a SCM starts from step (2), that is, assuming
that the slip rate history in the CCM is specified completely. This
is justified if we eventually succeed in the reconstruction of SCM,
whose slip rate can be ideally inferred from the inversion even
if the assumption of a monotonically spreading rupture front is

given. Note that the given slip rate history itself tells us neither the
initial stress distribution τ 0 nor the pre-slip distribution D0 shown in
Figs 1(a) and (b)—only changes from these are measurable. When
the slip rate history has been given, the incremental stress history
�τ ln on each element is determined by the elastodynamic BIEM
(eq. 3). The incremental slip history �Dln is determined by time
step summation of the given slip rate multiplied by �t, ultimately
yielding the incremental constitutive relationship between �τ ln and
�Dln for each element.

We next proceed to step (3). Fig. 1(e) shows three types of the
incremental constitutive curves. In type (i), the incremental stress
initially increases to the peak value �τ p and then decreases with
incremental slip �D. After the slip has reached the incremental
critical displacement �Dc, the stress maintains a residual level of
�τ r. This behaviour pertains to the unbroken part of the fault in the
CCM (D0 = 0). In type (ii), the stress simply decreases with slip and
�Dc becomes shorter than the original Dc. This pertains to the pre-
slip part where D0 < Dc in the CCM. In type (iii), the stress remains
unchanged and this corresponds to the pre-slip region where D0 >

Dc. Conventionally, �τ p and the negative of �τ r are referred to as
the strength excess and the stress drop (�σ = −�τ r), respectively,
in the terminology of dynamic source parameters (Quin 1990).

Fig. 4(a) shows the distribution of the dynamic source parameters
�τ p, �τ r and �Dc extracted from each curve and compiled over
the fault. It can be noted immediately that they are represented by
the subtraction of the initial state from the original slip-weakening
friction law (eq. 1) as:

�τ = �τr + (�τp − �τr) × (1 − �D/�Dc)H (1 − �D/�Dc),

(4)

where �τ p = (τ p − τ 0) × [1 − H (D0)], �τ r = (τ r − τ 0) and
�Dc = (Dc − D0) × H (Dc − D0). Note that if we simulate
spontaneous rupture obeying eq. (4), without any constraints on the
rupture fronts (that is, dynamic slip is potentially allowed at any time
at all points on the fault), the CCM slip rate is perfectly reproduced.
In that case, the dynamic slip starts from a zero-strength region
(−240 ≤ x ≤ −120), and then another zero-strength region (60 ≤ x
≤ 120) is dynamically excited by stress wave interaction, before the
rupture front of the first slipping region arrives. Accordingly, the
dynamic coalescence between two slipping regions does occur—
this is not what is to be reconstructed.

To achieve a ‘monotonically spreading rupture front’, we have to
impose the constraint that each point on the fault outside the first
zero-strength region is allowed to slip dynamically only after the
rupture fronts has reached it. A dynamic rupture model with this
constraint is the first candidate for the SCM we seek: we refer to
this model as SCM1 and simulate its spontaneous rupture growth.
As a preliminary check on the SCM reconstruction, we compare the
maximum slip rate distributions for the CCM and SCM1, because
they affect the resultant waveforms significantly (Fig. 4b). It is clear
that SCM1 does not match the CCM adequately: the peak of SCM1
is shifted from x = 45, the dynamic coalescence point to x = 59, the
original subsidiary crack tip in the CCM and the maximum level
stays lower on x ≥ 150. This is because the stress interaction with the
dynamically excited slip on the second zero-strength region prior
to coalescence is lost in SCM1. Fig. 4(c) show comparisons of the
CCM and SCM1 in two representative velocity waveforms. One is
for the cylindrical coalescence and stopping phases, and the other
is for the propagating higher slip rate phases. They are observed at
(x, y) = (0, 300) in the FP component and at (x, y) = (320, 8) for the
FN component, respectively. Their waveforms do not fit each other
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Figure 4. (a) Distribution of the incremental constitutive parameters: strength excess �τ p (dashed line), critical displacement �Dc (grey line) and residual
strength �τ r (solid line). The stress drop �σ is the negative of the residual strength (= −�τ r). These parameters are hereafter employed for SCM1 with the
constraint of a monotonically spreading rupture front. (b) The maximum slip rate distribution for three models: CCM (solid line), SCM1 (dotted line) and
SCM2 (grey line). (c) The velocity waveforms of the three models observed at (x, y) = (0, 300) for the FP component (left-hand side) and at (x, y) = (320, 8) for
the FN component (right-hand side). The notations are the same as in (c). (d) Distribution of the slip increment �Dexcited (grey line) and the stress increment
�τ excited (dashed line) on the subsidiary crack. (e) Distribution of dynamic source parameters of SCM2 with modification of the increments �Dexcited and
�τ excited. The notations are the same as in (b). (f) Normalized root mean square (nrms) values of the waveform misfit function calculated at each observation
station. Circles are for the FP component on y = 300 and triangles are for the FN component on y = 8. Dotted and grey lines represent SCM1 and SCM2,
respectively.

very well, as anticipated on the basis of the misfit in the maximum
slip-rate distributions.

To improve on SCM1, we must take into account the stress in-
teraction with the dynamically excited slip on the subsidiary crack.
The contribution of this dynamic stress is extracted as follows: first,
we draw a line in Fig. 1(c) starting from the coalescence point (x,
t) = (45, 303.50) and increasing with a slope of C d . Dynamically
excited slip prior to this line can be regarded as what happened be-

fore dynamic coalescence in terms of causality. Fig. 4(d) shows the
resultant slip increment �Dexcited: it is distributed on 46 ≤ x ≤ 127
and becomes larger than originally, because of the dynamic prop-
agation before coalescence. The stress increment �τ excited due to
�Dexcited is calculated using the elastostatic BIEM (Fig. 4d). These
increments of slip and stress are then included in the source pa-
rameters of SCM1 (�τ p, �τ r and �Dc) as follows: �τ SCM2

p =
(�τ p − �τ excited) × [1 − H (�Dexcited)], �τ SCM2

r = (�τ r −
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�τ excited), �DSCM2
c = (�Dc − �Dexcited) × H (�Dc − �Dexcited).

These modified values constitute SCM2 (Fig. 4e), with which the
constraint of a ‘monotonically spreading rupture front’ and sponta-
neous rupture propagation is then simulated. Note that the total co-
seismic slip in SCM2 is less than in the CCM due to the subtracted
slip component, �Dexcited. The maximum slip rate and waveforms
are shown in Figs 4(b) and (c) and SCM2 seems to represent a
substantial improvement over SCM1.

As a quantifiable validation of the improvement of SCM2 in
the waveform fitting to the CCM, we employ the normalized root
mean square (nrms) of the velocity waveform misfit function. The
definition of nrms used here is

nrms =
∑

k

(
U̇ k

SCM(i) − U̇ k
CCM

)2
/
∑

k

(
U̇ k

CCM

)2
, (i = 1, 2), (5)

where U̇ k represents a synthesized velocity at t = k�t , (k = 1, . . . ,
4800) for each model. For example, in Fig. 4(c) the values are
nrmsFP

SCM1 = 0.40 and nrmsFP
SCM2 = 0.10 (left-hand side) and

nrmsFN
SCM1 = 0.86 and nrmsFN

SCM2 = 0.16 (right-hand side). We cal-
culate nrms values for the waveforms observed along y = 300 for
the FP component and y = 8 for the FN component, to focus on
the cylindrical phases and the propagating higher slip rate phases,
respectively. Fig. 4(f) shows the nrms value at each station. These
results confirm quantitatively that SCM2 yields improved wave-
form fittings: the averages are nrmsFP

SCM1 = 0.39 and nrmsFP
SCM2 =

0.12 on y = 300, and nrmsFN
SCM1 = 0.66 and nrmsFN

SCM2 = 0.25 on
y = 8, respectively. Accordingly, SCM2 is regarded as the preferred
plausible model in the reconstruction of the SCM. Note that nrms
is relatively close between SCM1 and SCM2 at a range of −400 ≤
x ≤ −240 in both components: the discrepancy in the coalescence
phases is less significant there because of their relatively smaller am-
plitudes compared with the dominating almost identical stopping
phases from the left barrier.

We further examine the heterogeneous source parameters appear-
ing in SCM2. Dynamic nucleation starts from the two points (x =
−241, −119) where the strength excess �τ p is negative and the
stress drop �σ (= −�τ r) is largest. As the rupture front spreads,
�τ p increases and �σ decreases rapidly. This directly reflects the
initial state of the CCM as incrementally shown in eq. (4) (Fig. 4a)
and is responsible for the gradual initial acceleration of propaga-
tion speed. At the arresting points x = ±300, �τ p is estimated as
the maximum stress experienced in the CCM. As to heterogeneity
associated with dynamic coalescence, �τ p and �σ change at the
same rate towards the coalescence point. Note that this part does
not exist there originally but is dynamically constructed due to the
moving subsidiary crack tip in the CCM. At the coalescence point
x = 45, �σ has a sharp peak due to the square-root singularity of
the crack tip (precisely speaking, the singularity is weakened in a
slip-weakening model), and this generates the localized higher slip
rate. Across this point, �σ abruptly decreases to negative values,
and this suppresses the slip rate to values near zero there. This results
in a spatial cut-off of the higher slip rate region. Across x = 125,
a singularity-like increase in the stress drop increases the slip rate,
but the accompanying discontinuous increase in �τ p suppresses
acceleration of the propagation speed.

Overall, we observe with SCM2 a singularity-like increase in the
stress drop and a sudden decrease in the strength excess at the coa-
lescence point of the CCM. This feature does not exist originally but
is constructed dynamically. The heterogeneity appearing in SCM2
can approximately account for the waveforms of the CCM: it is
an alternative quantitative representation of the somewhat qualita-

tive explanation of ‘the rupture front interaction’ in the previous
coalescence simulations.

4 D I S C U S S I O N

4.1 High-frequency radiation mechanism of dynamic
coalescence

High-frequency radiation from earthquakes has been a major con-
cern in engineering seismology circles. Here we discuss the mecha-
nism by which high-frequency waves are generated due to dynamic
coalescence based on our simulation results.

The stopping phase has long been known as the strongest source
of high-frequency radiation, which has the minimum ω−2 decay at
high frequencies in the displacement spectrum. Madariaga (1976)
showed numerically that radiation of ω−2 type occurs due to rupture
arrest in a 3-D circular expanding crack model. Madariaga (1977)
also demonstrated analytically for a 2-D problem that ω−2 radia-
tion is generated by the rupture speed discontinuity—stopping. As
shown by our 2-D calculations, the sudden arrest of rupture by a
barrier results in a spatial cut-off in the slip rate evolution. It tem-
porally induces a sharply negative change in the increasing moment
release rate for the spreading rupture, which is an essential factor in
the overall ω−2 high-frequency radiation mechanism. In addition,
Madariaga (1983) analytically demonstrated that the arresting of a
rupture results in a step-type wave-front velocity radiation. In our
simulations, such stopping phase characteristics are clearly seen in
the waveforms for both the CCM and the simple model at (x, y) =
(0, 300) in the FP component (Fig. 5a). They both contain step-like
changes at t = 420, 600 corresponding to the dilatational and shear
waves of a stopping phase propagating from the left barrier at x =
−300. Feature associated with a second stopping phase from the
right barrier at x = 300 are also identified at t = 860 and 1040 in
the simple model and at t = 780 and 960 in the CCM. The wave-
forms in the simple model, not possessing the coalescence phase,
actually reveal ω−1 high-frequency decay in the velocity spectrum,
or equivalently ω−2 high-frequency radiation of the stopping phases
in the displacement spectrum (Fig. 5b).

With respect to the dynamic coalescence process in the CCM,
the propagating slip-pulse is also spatially cut-off across the co-
alescence point as shown in Fig. 1(c). It necessarily results in a
similar abrupt change in the moment release rate, and the same
ω−2 characteristics in the displacement spectrum is also expected at
high-frequencies. In addition, we have noted that the dynamic coa-
lescence process involves another high-frequency radiation factor:
the generation of localized higher slip rates due to coalescence. We
have demonstrated that this could be equivalently generated by a
singular stress drop in the SCM2 model. It is demonstrated theoret-
ically by the analysis of a propagating mode III crack with a certain
constant propagation speed that the strong ω−2 wave is also radiated
by a square-root singularity in the stress drop (Madariaga 1983).
SCM2 does contain such a stress-drop singularity. This means that
dynamic coalescence involves two ω−2 radiation mechanisms op-
erating simultaneously and is therefore more efficient in radiating
high-frequency waves than stopping phases. The SCM2 waveforms
actually show ω−1 high-frequency decay in the velocity spectrum (or
equivalently ω−2 high-frequency decay in the displacement spec-
trum), at levels higher than in the simple model (Fig. 5b). This
is because of the predominant amplitude of the coalescence phase
at about t = 620 in the CCM (Fig. 5a). Note that the effects of
strength excess have less significance in generating ω−2 radiation,
unless the change is large enough to cause a discontinuous change
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Figure 5. (a) Velocity waveforms of the CCM (solid line) and the simple
model (grey line) for the FP component observed at (x, y) = (0, 300).
(b) Velocity amplitude spectra for the two models. The Fourier transform is
done in the time range 160 ≤ t ≤ 1184.

in the propagation speed, as quantitatively shown by Madariaga
(1983); this does not occur in our simulation. In SCM2, there are
three other stress-drop singularities (x = −241, −119 and 125)
and the same ω−2 high-frequency radiation is expected from them:
they are known as starting phases (Madariaga 1977). The starting
phases from x = −241 and −119 can be identified in Fig. 2(a)
(t = 160, 240). Their very small amplitudes can be attributed to the
accompanying increasing strength excess regions at each point of
emission (Fig. 4e): this suppresses rupture growth and brings about
very small initial moment release rates (Fig. 1c).

4.2 Limitations of the reconstruction and the possibility
of determining coalescence heterogeneity

We have analysed the CCM and reconstructed a seismically compa-
rable SCM, with heterogeneity equivalent to dynamic coalescence.
However, we have employed an ad hoc method in the reconstruc-
tion and not actually performed a true inversion analysis. Here we
discuss the limitations of our method and the possibility of finding
coalescence heterogeneity via formal inversion.

We have simulated dynamic crack coalescence for only one con-
figuration and considered a relatively small subsidiary crack. This is
because the reconstruction of the SCM is limited to cases in which
the dynamically excited slip rate before coalescence can be omitted

in seismic radiation. If this condition is not met, the reconstruction
of the SCM fails because the seismic radiation before the rupture
front arrival cannot be accounted for. An example is the approach-
ing rupture fronts for two growing cracks with the same dimension.
Clearly, the dynamic coalescence is not represented by a single crack
growth model in this case. However, the high-frequency radiation
mechanism of dynamic coalescence, which originates from higher
slip rate generation and the spatial cut-off in the slip rate evolution,
remains valid for any coalescence cases.

Regarding the possibility of accurately observing coalescence
heterogeneity, most waveform data have insufficient resolution to
determine the exact rupture front evolution, as referred to in the
introduction. Based on the shortest reliable wavelengths, a whole
fault is usually divided into at best a few tens of elements along the
fault trace. On the other hand, dynamic modelling requires much
finer meshes to represent faithfully a continuously propagating rup-
ture front. Here we have employed 600 elements along the fault and
found that for the specific coalescence heterogeneity, singularity-
like increases appeared in the stress drop and the strength excess at
scales shorter than 20 elements. This is not large enough to resolve
in the actual inversions and any sharp singularities would typically
be averaged within a coarse inversion mesh. Accordingly, there
may be practical difficulties in detecting heterogeneity responsible
for dynamic coalescence in waveform inversions.

5 C O N C LU S I O N S

We have considered a crack coalescence model (CCM) in which the
dynamic coalescence of two mode II cracks occur on a planar fault.
We first simulated spontaneous rupture growth in this CCM using
BIEM and investigated the complexity in the resultant slip rate his-
tory. We have shown that localized higher slip rates are generated
by dynamic coalescence as a result of stress interaction between
approaching crack tips, even for homogeneous source parameters.
We then synthesized the seismic radiation in the CCM and found
striking similarities in the radiation and propagation properties be-
tween coalescence and stopping phases. Both phases are radiated
from a spatial cut-off in the slip rate evolution, for which ω−2 high-
frequency radiation is anticipated, and spread cylindrically to dom-
inate acceleration and velocity distributions in the FP component.
The strongest ground motion is, however, generated by the propagat-
ing higher slip-rate phases with its rupture directivity effect on the
FN component. We finally reconstructed a seismically comparable
single crack model (SCM) to examine the apparent inhomogeneity
that would have been inferred from waveform inversion analysis. In
the SCM, we observe a singularity increase in the stress drop distri-
bution at the coalescence point in the CCM, which is an additional
factor in the production of ω−2 radiation from dynamic coalescence.
These results imply that the coalescence process is more efficient
in radiating ω−2 waves than stopping phases.

As noted in the introduction, the apparent heterogeneity on a pla-
nar fault could also come from non-planar fault structures, such as
kinks, steps, bends and branches. Their seismic radiation character-
istics and equivalent source parameters are fascinating problems for
future research. This class of studies needs to be further advanced
to obtain deeper understanding of dynamic earthquake process and
seismic radiation mechanisms.

A C K N OW L E D G M E N T S

We are grateful to two reviewers and Y. Ben-Zion for thoughtful
comments. This research was supported by the DaiDaiToku project,

C© 2008 The Authors, GJI, 174, 696–706

Journal compilation C© 2008 RAS



706 N. Kame and K. Uchida

MEXT, Japan and the Earthquake Research Institute cooperative
research program.

R E F E R E N C E S

Adda-Bedia, M. & Madariaga, R., 2008. Seismic radiation from a kink on
an antiplane fault, Bull. seism. Soc. Am., in press.

Aki, K. & Richards, P.G., 2002. Quantitative Seismology, 2nd edn, Univer-
sity Science Books, Sausalito.

Ando, R., Kame, N. & Yamashita, T., 2007. An efficient boundary integral
equation method applicable to the analysis of non-planar fault dynamics,
Earth Planets Space, 59, 363–373.

Andrews, D.J., 1976. Rupture velocity of plane strain shear cracks, J. geo-
phys. Res., 81, 5679–5687.

Aochi, H. & Fukuyama, E., 2002. Three-dimensional non-planar sim-
ulation of the 1992 Landers earthquake, J. geophys. Res., 107(B2),
doi:10.1029/2000JB000061.

Bhat, H.S., Dmowska, R., Rice, J.R. & Kame, N., 2004. Dynamic slip
transfer from the Denali to Totschunda faults, Alaska: testing theory for
fault branching, Bull. seism. Soc. Am., 94(6B), 202–213.

Chatterjee, A.K. & Knopoff, L., 1990. Crack breakout dynamics, Bull. seism.
Soc. Am., 80, 1571–1579.

Cochard, A. & Madariaga, R., 1994. Dynamic faulting under rate-dependent
friction, Pageoph, 142, 419–445.

Das, S. & Aki, K., 1977. Fault plane with barriers: a versatile earthquake
model, J. geophys. Res., 82, 5658–5670.

Dunham, E.M., Favreau, P. & Carlson, J.M., 2003. A supershear transition
mechanism for cracks, Science, 299, 1557–1559.

Fukuyama, E. & Madariaga, R., 2000. Dynamic propagation and interaction
of a rupture front on a planar fault, Pageoph, 157, 1959–1979.

Harris, R. & Day, S.M., 1993. Dynamics of fault interaction: parallel strike-
slip faults, J. geophys. Res., 98, 4461–4472.

Ida Y., 1972. Cohesive force across the tip of longitudial-shear crack prop-
agation, J. geophys. Res., 77, 3796–3805.

Ide, S. & Takeo, M., 1997. Determination of constitutive relations of fault
slip based on seismic wave analysis, J. geophys. Res., 102, 27 379–27 391.

Irikura, K., Iwata, T., Sekiguchi, H., Pitarka, A. & Kamae, K., 1996. Lesson
from the 1995 Hyogo-ken Nanbu earthquake: why were such destructive
motions generated to buildings?, J. Nat. Disas. Sci., 18, 99–127.

Kame, N. & Yamashita, T., 1997. Dynamic nucleation process of shallow
earthquake faulting in a fault zone, Geophys. J. Int., 128, 204–216.

Kame, N. & Yamashita, T., 1999a. Simulation of the spontaneous growth
of a dynamic crack without constraints on the crack tip path, Geophys. J.
Int., 139, 345–358.

Kame, N. & Yamashita, T., 1999b. A new light on arresting mechanism of
dynamic earthquake faulting, Geophys. Res. Lett., 26, 1997–2000.

Kame, N. & Yamashita, T., 2003. Dynamic branching, arresting of rupture
and the seismic wave radiation in a self-chosen crack path modelling,
Geophys. J. Int., 155, 1042–1050.

Kame, N., Rice, J.R. & Dmowska, R., 2003. Effects of pre-stress state and
rupture velocity on dynamic fault branching, J. geophys. Res., 108(B5),
2265, doi:10.1029/2002JB002189.

Kame, N., Saito, S. & Oguni, K., 2008. Quasi-static analysis of strike
fault growth in layered media, Geophys. J. Int., 173, doi:10.1111/j.1365-
246X.2008.03728.x.

Kostrov, B.V. & Das, S., 1988. Principles of Earthquake Source Mechanics,
pp. 171–258, Cambridge University Press, Cambridge.

Madariaga, R., 1976. Dynamics of an expanding circular fault, Bull. seism.
Soc. Am., 65, 163–182.

Madariaga, R., 1977. High-frequency radiation from crack (stress drop)
models of earthquake faulting, Geophys. J. R. astr. Soc., 51, 625–651.

Madariaga, R., 1983. High-frequency radiation from dynamic earthquake
fault models, Annales Geophysicae, 1, 17–23.

Madariaga, R., Ampuero, J.P. & Adda-Bedia, 2006. Seismic radiation from
simple models of earthquakes, in Earthquakes: radiated Energy and the
Physics of Faulting, pp. 223–236, eds Abercrombie, R., McGarr, A.,
Kanamori, H. & DiToro, G., American Geophysical Union, Washington.

Palmer, A.C. & Rice, J.R., 1973. The growth of slip surfaces in the pro-
gressive failure of over-consolidated clay, Proc. R. Soc. London A, 332,
527–548.

Quin, H., 1990. Dynamic stress drop and rupture dynamics of the October
15, 1979 Imperial Valley, California, earthquake, Tectonophysics, 175,
93–117.

Somerville, P.G., 2003. Magnitude scaling of the near fault rupture directiv-
ity pulse, Phys. Earth planet. Inter., 137, 201–212.

Somerville, P.G., Smith, N.F., Graves, R.W. & Abrahamson, N.A., 1997.
Modification of empirical strong ground motion attenuation relations to
include the amplitude and duration effects of rupture directivity, Seism.
Res. Lett., 68, 199–222.

Tada, T. & Madariaga, R., 2001. Dynamic modelling of the flat 2-D crack by
a semi-analytic BIEM scheme, Int. J. Numer. Mech. Eng., 50, 227–251.

Umeda, Y., Yamashita, T., Tada, T. & Kame, N., 1996. Possible mechanisms
of dynamic nucleation and arresting mechanisms, Tectonophysics, 261,
179–192.

Yamashita, T., 1983. High-frequency acceleration radiated by unsteadily
propagating cracks and its near-source geometrical attenuation, J. Phys.
Earth, 31, 1–32.

Yamashita, T. & Umeda, Y., 1994. Earthquake rupture complexity due to
dynamic nucleation and interaction of subsidiary faults, Pageoph, 143,
89–116.

C© 2008 The Authors, GJI, 174, 696–706

Journal compilation C© 2008 RAS


