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1. Introduction.  

There have been proposed many numerical methods to simulate dynamic shear 

crack growth in an elastic medium, which is a model of earthquake faulting in 

seismology. Such numerical studies began in the 1960’s and we are still seeking 

more precise methods. The difficulty comes from the existence of discontinuity, 

shear crack(s), in a continuum body. It always generates a kind of singularity that 

is hard to evaluate numerically and spurious oscillations thus tend to occur in the 

solutions.  

 

A boundary integral equation method (BIEM) has been a powerful tool in such 

crack problems. The advantage is in the relatively small resources required in 

computation because the problem is solved not in the whole volume, but only on 

the crack interfaces. In most cases, BIEM is formulated in an infinite 

homogeneous elastic medium for which the Green function can be derived in an 

analytic form [1,2]. It is because the stress kernels of BIEM consist of the analytic 

Green function, which guarantees the accuracy of the kernels. Consequently 

BIEM is accurate in such homogeneous cases, but not applicable to arbitrary 

inhomogeneous medium. In order to compensate this inconvenience, some 

numerical efforts have been studied recently [3,4], and we make a further step 

towards this direction.  

 

For this purpose, we here newly develop a hybrid method using BIEM and a finite 

difference method (FDM), hereafter we call “ Hybrid finite Difference-Boundary 

integral equation Method (HDBM)”. This is an extension of BIEM to an arbitrary 

inhomogeneous medium with the facilitative use of FDM in evaluating the stress 

kernels numerically.  

 

2.  Method 

(2.1)  Boundary Integral Equation Method (BIEM) as our starting point 

In a linear elastic medium we consider, the displacement field anywhere can be 

written in the form of convolution over the origin of deformation, which is now 

the discontinuity on the interface  without any external forces. This is known as 

a representation theorem, 

un (x) = d uicijpq j
q

Gnp (x,t ; ,0)d ,   (Eq.1) 

where  is a normal vector on the interface , Gnp  is the Green function of the 

medium, representing the n-th displacement component for an impulse force in 

the p-direction and the summation rule is taken for the repeated subscripts on the 

right hand side. BIEM is based on its derivative form, namely the stress 
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expression in terms of the slip on the fault, after renormalizing hypersingularity 

appeared in the derivative of the Green function [5,6,7,8].  

 

In the case of an infinite, homogeneous medium, the analytical expression of the 

Green function is available for (Eq.1) so that the boundary integral equation for 

the stress field on the interface can be written down. The mathematical 

formulation is quite long to show here but well summarized in [8]. For the 

discretization, it is often used to divide the interface with equally spaced elements 

and with time step equally taken. Then a constant, uniform slip-rate, d u /dt , is 

given on an element of a length s during a time step t  and the evaluation of 

stress is carried out on the center of the element at the end of the time step. The 

stress on the I-th element at the K-th time step is written in a very simple 

formulation using the discretized slip-rate V I :K , 
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where on the right hand side, the first term is the instantaneous term and the 

second one is the contribution from the past history, being P the stress kernel of 

BIEM, which has the spatial and temporal symmetry. Here the time step is taken 

as  

t =
s

2VP

.        (Eq.3) 

Note that a longer time step than this does not allow the isolation of the 

instantaneous term like (Eq. 2), which clearly indicates the instantaneous response 

of V I :K , to the stress drop in I :K .  

 

(2.2)  Hybrid finite Difference-Boundary integral equation Method (HDBM) 

We here aim to replace the BIEM stress kernel PI :K  in (Eq.2) by the one 

numerically evaluated using FDM. Similar method has been proposed in [3] for 

simulating the rupture dynamic in a heterogeneous medium, in which the 

numerical kernel in it is calculated and its deviation to the one in a homogeneous 

medium is appended in the BIEM framework. However in their framework, the 

numerical kernels are canceled out in a homogeneous medium so that the 

technique is not verified in a homogeneous medium. Therefore, we calculate all 

the kernels numerically so that we are able to verify our method in a simple 

homogeneous case. The calculated kernels are stocked for the later HDBM 

simulations. It is to be noted that this can be expensive for a complex problem that 

does not have any spatial symmetry in the kernels.  

 

First we examine in detail the FDM evaluated kernel that is to be used in the later 

HDBM simulations. We consider mode II deformation in an infinite  

homogeneous medium with the density =3000[kg/m^3], the P-wave velocity 

VP=5480[m/s], and the S-wave velocity VS=3164[m/s]. The situation we test is as 

follows. A unit element of a length sBIEM  corresponding to the BIEM is located 

at the origin in (x1,x2)  coordinate. Writing exactly, this element is embedded 

between (-50[m], 0[m]) and (50[m], 0[m]) within a time step tBIEM  between 



 3 

0[sec] and 0.0091[sec] ( tBIEM = sBIEM /2VP ). A kinematic source of a unit 

velocity on the BIEM element is given in the form of equivalent moment release 

rate 
dM0

dt
/ s3  by adding to the FDM shear grids, where M0  is the released 

moment on the BIEM element. 

 

With regard to FDM, we here adopt the second-order staggered grid [9]. A 

kinematic source of a unit slip velocity on a fault element corresponding to a unit 

BIEM element size and time step is equivalently replaced in the form of released 

moment release rate by adding (dM0 /dt) / s3  on the FDM shear component 

grids [10]. As the unit source defined in the BIEM is a piece-wise both in space 

and in time (highly rapid change) and FDM calculation is inevitably accompanied 

with numerical oscillations in high frequencies. Note that, as the number of points 

per wavelength is required 10 in the second order FDM, the frequency limit is 

estimated as fmax =Vmin /10 s, where Vmin  is the lowest velocity of the medium if 

inhomogeneity is considered. The FDM grids corresponding the unit source 

element just include the edge points at x1= -50[m] and 50[m]. According to the 

BIEM framework, the evaluation point of stress value is located at i sBIEM  on 

x2  axis and at time (k +1) tBIEM , letting i and k zero or positive integer 

numbers. 

 

Fig.1 shows raw results of FDM calculation with four different resolutions 

sFDM for this configuration. The sharp signal can be reproduced as the FDM grids 

are finer and the stress field at a long time is also well reproduced in its amplitude. 

As the supposed type of the unit source is discontinuous in space and time, high 

frequency oscillations are significant as we expected. Thus it requires some 

technique to remove them. 

 

 
 

(Fig.1) Raw simulation results of FDM for calculating the numerical kernels. The 

grid spacing of FDM simulations is 10, 5, 2 and 0.8 m and time step is 0.5[ms], 

0.25[ms], 0.01[ms] and 0.004[ms], respectively. Four positions are at x1 = 0, 100, 

2000 and 4000[m]. Red lines represent the analytical solutions (BIEM kernels) 

with a time step of tBIEM = 0.0091[s].  
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Our collocation point (stress evaluation point) of the BIEM is chosen at the center 

of each element and at the end of each time step, and the discretization is strictly 

based on the P-wave velocity VP . This means that the causality before and after 

the collocation points is different especially when the P-wave arrives (see time 

tBIEM = 0.0091[s] in the first two panels in Fig.1). This is why we do not apply 

any filter in frequency domain. Instead, we adopt an averaging filter before each 

collocation point in time domain. Thus  

PFDM
I :K

= ave( (x = I sBIEM ),t) ; t = [(K + co) t : (K +1) t],   (Eq.4) 

where we change the value of co, theoretically between 0 and 1. In the case of co 

= 1, no smoothing is applied and the value at t = (K +1) t  is instantaneously used. 

We first try co=0.99 for different FDM resolutions and then take mixed values 

co=0.99 and 0.95, or co=0.99 and co=0.9 for the finest resolution as stated in 

Fig.2. 

 

In order to seek an optimum co value, we consider the spatial summations of the 

kernels at each time step I P
I :K . Fig.2 shows the time series in a short (left) and a 

long (right) time ranges. Analytically this quantity must be zero except for K=0, 

where the instantaneous term P 0:0  only appears, and can thus be used as a 

checkpoint for the FDM kernels. It is observed that the convergence is sufficiently 

good for the finest grid sFDM = 0.8[m] (Fig.2, left). In the later time steps, each 

curve shows larger fluctuation (Fig.2, right). This is due to the reflected waves 

from the FDM model boundary, although we impose a strict absorbing condition 

[11] at all the boundaries. These reflected waves are not so visible in the time 

series of the kernels, but clearly seen in the summations and they must affect the 

results of longer duration simulations.  

 

 
(Fig. 2) The spatial summation of the numerical kernels ( I P

I :K ) at each time step 

K [FD2m_099, FD1m_099, FD0.8m_099]. The first three colors curves are 

created by co=0.99 for different FDM resolutions, sFDM = 2, 1, and 0.8[m]. 

[FD0.8m_095] co= 0.95 for sFDM does not improve a lot. [FD0.8m_099+095, 
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FD0.8m_099+09] The last two curves apply co=0.95 and 0.9 for the kernel at 

origin (I = 0) while co=0.99 for the others ( I 0). 

 

In order to improve our results, we try to reduce the oscillations on the numerical 

kernels without losing any physical signals. When we take co=0.95, but the result 

is not significantly better. This is especially because the kernel on the origin (I = 

0) is oscillated more than the others. Then we apply co=0.95 or 0.9 only for the 

element of I=0, while we keep co=0.99 for other kernels ( I 0). This procedure 

provides a quite good result and we finally choose optimum co values as stated 

below. The checkpoint we adopted is helpful to judge the quality of the FDM 

calculation. When we in future extend FDM calculation for a case of 

heterogeneous medium where I P
I :K  is not necessarily zero, we employ the 

optimum co for this homogeneous case. 

 

Fig.3 compares the analytical (BIEM) and the numerical (FDM) kernels. The 

latter will be used in the later HDBM simulations. With respect to the unit source 

of BIEM (a duration of 0.0091[sec] = 110[Hz]), fmax is 396[Hz] for the s=80[m] 

of FDM. Through preliminary experiences above, the numerical kernels are 

finally obtained after smoothing the raw FDM calculations during the last one 

percent of the BIEM time step. The residual is less than 10% of signals including 

the adjacent and on-source elements. Main difference appears around the wave 

fronts, where the FDM suffers the numerical dissipations, however the amplitude 

of signals and the residual stress are evaluated correctly. To conserve the quantity 

PI :K  equal to zero is satisfactory. 

 

 
 

(Fig.3) Comparison of the analytical (BIEM) and numerical (FDM) kernels. A 

unit source is given at the origin. Both axes are shown in grid s and in time step 
t . In physical unit, s=100[m], t = 0.009[s] and VP =5.48[km/s]. The grid 

spacing and time step of the FDM calculation are taken as 0.8[m] and 0.04[ms]. 

This kernel corresponds to FD0.8m_099+09. 

 

3. Test Problem: Spontaneous Rupture Propagation 

We test our HDBM with a simple test problem where an initiated crack 

propagates spontaneously on a planar fault and validate how fine FDM grids are 

sufficient to HDBM. In order to describe spontaneous rupture, we employ a slip-

weakening law [12], 

( u) = Tp (1 u /Dc )H(1 u /Dc ),    (Eq.5) 
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where the breakdown strength drop  is defined as Tp Tr, being Tp  and Tr  

peak strength and residual strength, respectively. H( )  is the Heaviside step 

function, and the parameter Dc  is called as critical slip displacement, which is 

considered to control the scaling behavior in earthquake. This relation is 

graphically shown in (Fig.4a) and the given initial condition and the model 

parameters are shown in (Fig.4b). In this study, the effect of normal stress does 

not play a role because we consider a plane fault. 

 

 

 
 

(Fig.4) (a) Constitutive relation between shear stress and slip defined by the slip-

weakening law, (Eq.5). (b) Initial condition along a crack: initial crack length 

L=1000[m], initial shear stress 0 =2.8[MPa], strength in the initial crack 

Tp=0.0[MPa], strength outside the initial crack Tp=4.2[MPa], residual strength 

Tr=0.0[MPa], and critical slip displacement Dc=0.1[m]. On the initial crack L, 

given shear stress exceeds the yielding stress Tp . 

 

 



 7 

(Fig.5) HDBM simulation results for the test problem using three different FDM 

kernels with grid sizes, 2[m], 1[m], 0.8[m]. Filtering parameter is chosen to 

co=0.99.  Graphics are smoothed every 0.02 second along the time axis 

 

Fig.5 shows the simulation results using three numerical kernels for the test 

problem. As expected, the convergence of the cases sFDM = 2[m] and 1[m] is not 

enough to obtain the correct solution. Regardless of the perturbation of the kernel 

with sFDM = 0.8[m], we can obtain qualitatively good results in terms of the 

rupture velocity and peak slip rate. It is found that the required FD resolution is a 

hundred times finer for a basic element of the BIEM, and this is reasonable from 

the viewpoint of the maximum frequency that the FD scheme can reproduce 

(Fig.1) as pointed out above.  

 

In addition, we made a further effort, smoothing the kernel applying spatially 

different co parameters, to extract more suitable discrete kernels. Finally a better 

result comparable to BIEM is simulated using the kernel with 0.8[m] grid 

smoothed over a 1% of time step before each collocation time point at origin 

except a 10% for the rest element [FD0.8m_099+09] (Fig.6). Compared with the 

[FD0.8m_099] result in Fig.5, the velocity peak with a sharp form moving with 

the rupture front propagation is reproduced better by the [FD0.8m_099+09] result. 

Both BIEM and HDBM include more of oscillations as the integral domain 

becomes larger in space and in time, but the global behaviors of rupture 

propagation are kept consistent.  

 

 
 

(Fig.6).  Simulation results for spontaneous rupture propagation by BIEM and 

HDBM with the best kernel. Graphics are smoothed every 0.02 second along the 

time axis. 

 

4. Summary 

We proposed a hybrid method in which the stress kernels of BIEM are evaluated 

numerically by using FDM and named it “Hybrid finite Difference Boundary 

integral equation Method (HDBM)”. It is aimed to simulate a spontaneous 

earthquake rupture process in an inhomogeneous medium. We first asserted its 

validity in a homogeneous medium though HDBM is principally applicable for 

any inhomogeneity. We found that FDM calculation needs about 100 times finer 
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grids for a corresponding analytic BIEM kernel and that some additional 

smoothing in time series are also useful in the improvement of the FDM kernel. 

We then confirmed that our approach works sufficiently for a simple problem of 

mode II rupture propagation on a planar fault. Dynamic rupture growth in the 

presence of structural heterogeneity is to be investigated in future.  
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