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Proposal of Extended Boundary
Integral Equation Method for
Rupture Dynamics Interacting
With Medium Interfaces
The boundary integral equation method (BIEM) has been applied to the analysis of rup-
ture propagation of nonplanar faults in an unbounded homogeneous elastic medium.
Here, we propose an extended BIEM (XBIEM) that is applicable in an inhomogeneous
bounded medium consisting of homogeneous sub-regions. In the formulation of the
XBIEM, the interfaces of the sub-regions are regarded as extended boundaries upon
which boundary integral equations are additionally derived. This has been originally
known as a multiregion approach in the analysis of seismic wave propagation in the fre-
quency domain and it is employed here for rupture dynamics interacting with medium
interfaces in time domain. All of the boundary integral equations are fully coupled by
imposing boundary conditions on the extended boundaries and then numerically solved
after spatiotemporal discretization. This paper gives the explicit expressions of discre-
tized stress kernels for anti-plane nonplanar problems and the numerical method for the
implementation of the XBIEM, which are validated in two representative planar fault
problems. [DOI: 10.1115/1.4005899]

1 Introduction

In the field of seismology, earthquake rupture propagation has
been modeled as shear crack growth in an elastic medium. Ana-
lytic approaches have been limited to simple cases [1] and various
numerical techniques have been adopted, such as the finite differ-
ence method (FDM) [2], the finite element method (FEM) [3], and
the boundary integral equation method (BIEM) [4–9] to seismo-
logical applications. Among them, the BIEM is one of the most
powerful and accurate numerical methods, especially when the
medium can be considered homogeneous. It has been extensively
applied to compute the dynamic rupture of nonplanar faults
[10–16] because of its built-in advantages. First, the computations
are done only on the boundary (i.e., the crack surface), so that ge-
ometrical complexities can be introduced rather easily by discre-
tizing the boundary into small finite elements. This further
enables us to investigate self-chosen crack paths in a mesh-free
manner because crack growth is easily represented by putting an
additional boundary element at the crack tip [17]. Second, the
elasto-dynamic equation of motion is directly solved to fit the
boundary conditions using the theoretical Green’s functions, so
that a frictional constitutive law can be rigorously introduced on
the fault surface. This is an essential part for the analysis of earth-
quake rupture where a fault friction plays an important role. Ro-
bust algorithms have been developed in the past decade, following
analytical developments that led to relatively simple and efficient
numerical codes to solve nonplanar crack problems, as summar-
ized by Tada [18].

The BIEM has primarily been developed to analyze earthquake
rupture in an unbounded homogeneous medium, although recent
works succeeded in homogeneous half-space modeling [19,20].
The homogeneous full-space modeling works well for rather deep
buried fault earthquakes, but it will lose the validity for shallow
earthquakes that would closely approach the ground surface or
sediment layers under the ground. In such cases, the stress concen-

tration will be directly affected by their interfaces, and also indi-
rectly by the reflected seismic waves. Such interactions have been
mainly investigated by the FEM and the FDM in which medium
inhomogeneity can be easily introduced by each element or grid,
and significant effects have been found, such as arresting of quasi-
static crack growth due to a compliant sediment layer [21] and
amplification of strong ground motion in the hanging wall of a
dipping fault [22]. Rupture geometry has, however, been mostly
modeled as planar because of the difficulty of a mesh arrangement
dealing with a complex fault shape, and arbitrary nonplanar geom-
etry thus remains unmodeled.

In this paper we propose an extended BIEM (XBIEM) that can,
in principle, deal with the arbitrary geometry of crack growth
interacting with medium interfaces. The key idea of the XBIEM is
the decomposition of an inhomogeneous medium into homogene-
ous sub-regions (Fig. 1). We regard the interfaces of subregions as
‘extended’ boundaries on which the boundary integral equations
are additionally derived. This is a multiregion approach widely
used in the analysis of seismic wave propagation in the frequency
domain [23] and it is employed here for the crack growth prob-
lems in the time-domain.

We first formulate the XBIEM, considering a crack in one of
the sub-regions and derive the boundary integral equations both
on the crack surface and the medium interfaces. All of the bound-
ary integral equations are fully coupled by imposing boundary
conditions on the interfaces. In order to solve the coupled equa-
tions in the XBIEM, we then develop numerical methods. By
applying the collocation method employed with piece-wise con-
stant approximation for the source functions, we derive the discre-
tized stress kernel expressions for anti-plane crack analysis. Our
XBIEM is implemented by an explicit time marching scheme by
effectively using the discretized kernels. Finally, our XBIEM is
tested and validated in two representative planar fault problems
with a planar interface.

2 Extended Boundary Integral Equation Method

2.1 Brief Overview of BIEM. We briefly overview the origi-
nal BIEM for nonplanar rupture analysis in an unbounded
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homogeneous medium, as summarized by Tada [18]. It is based
on the representation theorem (e.g., Eq. (3.2) in Aki and Richards
[24])

ukðx; tÞ ¼
ð

C
dCðnÞ

ðt

0

ds Duiðn; sÞcijpqnjðnÞ
@

@nq

Gkpðx; t� s; n; 0Þ

(1)

where uk(x, t) is the displacement in the kth direction at receiver
location x and time t, C is the fault surface, n is the source position
lying on C, Dui(n, s) is the slip across C in the ith direction at
location n and time s, Gkp(x, t� s; n, 0) is the displacement
Green’s function denoting the displacement in the kth direction at
receiver location x and time t� s due to a unit force in the pth
direction applied at source position n and time 0, cijpq is the com-
ponent of the modulus tensor, and n(n) is the unit normal vector
to the fault surface C pointing from the negative side C� to the
positive side Cþ by which Dui ¼ uþi � u�i is defined. The summa-
tion over repeated indices is implied, and no body force is
assumed in the medium. By combining with Hooke’s law, the
stress component rkl(x, t) at any location x and time t is also rep-
resented in terms of the slip on the fault

rklðx; tÞ ¼ r0
klðxÞ þ rDu

kl ðx; tÞ (2)

rDu
kl ðx; tÞ ¼cklrs

@

@xs
urðx; tÞ ¼�

ð
C

dCðnÞ

�
ðt

0

ds Duiðn; sÞcijpqcklrsnjðnÞ
@2

@xq@xs
Grpðx; t� s; n; 0Þ

(3)

where r0
klðxÞ accounts for an initial field of applied stress that may

be present, rDu
kl ðx; tÞ is the incremental stress induced by the slip

on the fault (crack), and the reciprocity property for the derivative
of the Green’s function @G=@nq ¼ �@G=@xq is used.

Equation (3) should hold in the limiting case where the receiver
location x approaches the fault surface C. The shear traction T(x, t)

on C, that is, the stress component that acts on the fault surface in
the direction of a unit vector t(x) that is tangential to the fault at
location x, is therefore given by

Tðx; tÞ ¼ nkðxÞtlðxÞrklðx; tÞ ¼ T0ðxÞ þ TDuðx; tÞ

¼ T0ðxÞ �
ð

C
dCðnÞ

ðt

0

dsDuiðn; sÞcijpqcklrsnkðxÞtlðxÞnjðnÞ

� @2

@xq@xs
Grpðx; t� s; n; 0Þ ðx; n 2 CÞ (4)

where T0ðxÞ ¼ nkðxÞtlðxÞr0
klðxÞ accounts for the initial traction

arising from the presence of the initial applied stress and TDu(x, t)
is the incremental traction induced by the slip on the fault. This is
the boundary integral equation, which is the fundamental relation-
ship between the spatiotemporal distributions of traction and of
slip on the fault embedded in an unbounded homogeneous
medium.

2.2 XBIEM Formulation: Multiregion Approach. In the
formulation of the XBIEM, we consider an inhomogeneous me-
dium consisting of two homogeneous sub-regions V and V0 that
are bounded by S and S0, respectively (Fig. 1). In order to intro-
duce a medium boundary S into the original BIEM, we shall go
back to the representation theorem (e.g., Eqs. (3.1) and (3.2) in
Aki and Richards [24])

ukðx; tÞ ¼
ð

C
dCðnÞ

ðt

0

ds Duiðn; sÞcijpqnjðnÞ
@

@nq

Gkpðx; t� s; n; 0Þ

þ
ð

S

dSðgÞ
ðt

0

ds

�
Tpðg; sÞGkpðx; t� s; g; 0Þ

� uiðg; sÞcijpqnjðgÞ
@

@gq

Gkpðx; t� s; g; 0Þ
�

(5)

where S is the medium surface, g is the location on S, Tp(g, s) is the
pth component of traction on S at location g and time s, ui(g, s) is
the ith component of displacement on S at time s, and n(g) is a unit
normal vector for the surface S pointing outward. Variables regard-
ing the fault surface are taken the same as in the BIEM.

In the original BIEM, the integral on the medium surface S has
been omitted. This is justified when S goes to infinity because the
integral becomes zero. On the contrary, we have to exactly
include the integral on S in the formulation of the XBIEM: the
medium surfaces are regarded as the ‘extended’ boundaries on
which boundary integral equations are additionally derived.

It is worth mentioning that the BIEM has also been applied to
the field of seismic wave propagation in an inhomogeneous me-
dium consisting of homogeneous sub-regions. The crack surface
has been a side issue and usually omitted for mathematical simplic-
ity. Contrary to the crack growth analysis, the medium interface is
a ‘primary’ boundary in this case, and the wave field in each sub-
region is connected with one another at the interface. Connecting
the elastic fields via the interface has been known as a multiregion
approach in the BIEM and is mostly applied in the frequency-
domain for cases where the interface extent S does not change with
time [23]. Here, we apply this approach in the time-domain because
the boundary extent may evolve with time.

The stress component rkl at any location x and time t is then
represented as

rklðx; tÞ ¼ r0
klðxÞ þ cklrs

@

@xs
urðx; tÞ

¼ r0
klðxÞ þ rDu

kl ðx; tÞ þ rT
klðx; tÞ þ ru

klðx; tÞ (6)

where rT
klðx; tÞ and ru

klðx; tÞ are the stresses arising from the distri-
bution of traction and displacement on the medium surface S

Fig. 1 Schematic illustration of the configuration of a crack
and homogeneous sub-regions. A crack surface C is in a homo-
geneous volume V that is bounded by a medium surface S.
Another volume V’ with a surface S’ is adjoining. The two surfa-
ces S and S0 are identical except that their normal vectors n and
n0 are in the opposite direction.
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rT
klðx; tÞ ¼

ð
S

dSðgÞ
ðt

0

ds Tpðg; sÞcklrs
@

@xs
Grpðx; t� s; g; 0Þ (7)

ru
klðx; tÞ ¼

ð
S

dSðgÞ
ðt

0

ds uiðg; sÞcijpqcklrsnjðgÞ

� @2

@xq@xs
Grpðx; t� s; g; 0Þ (8)

where the property @G=@gq ¼ �@G=@xq is used again.
In this multiregion approach, the boundary integral equations are

derived on the medium surfaces and on the fault surface. First, we
derive the boundary integral equation on the fault. When x! C,
the shear traction T(x, t) in the direction of t(x) is given by

Tðx; tÞ ¼ nkðxÞtlðxÞrklðx; tÞ ¼ T0ðxÞ þ TDuðx; tÞ þ TTðx; tÞ
þ Tuðx; tÞ ¼ T0ðxÞ þ TTðx; tÞ þ Tuðx; tÞ

�
ð

C
dCðnÞ

ðt

0

ds Duiðn; sÞcijpqcklrsnkðxÞtlðxÞnjðnÞ

� @2

@xq@xs
Grpðx; t� s; n; 0Þ ðx; n 2 CÞ (9)

where TTðx; tÞ ¼ nkðxÞtlðxÞrT
klðx; tÞ and Tuðx; tÞ ¼ nkðxÞtlðxÞ

ru
klðx; tÞ are the incremental tractions observed at x arising from

the traction and displacement sources distributed on the medium
surface gð2 SÞ. The original boundary integral equation (Eq. (4))
is just modified with these two terms.

The boundary condition on the fault surface is given by an appro-
priate frictional constitutive law. An example of this is that the
shear traction is described in terms of the slip or the slip rate as

Tðx; tÞ ¼ FðDu; D _uÞ ðx 2 CðtÞÞ (10)

where CðtÞ denotes the slipping part of the fault C at time t (The
geometry of CðtÞ may evolve with t, that is, the rupture may grow
with time). In earthquake simulations the experimentally derived
rate and state-dependent friction has been widely employed as a
reasonable constitutive law [25]. It is described by the slip rate D _u
and a general state variable h which could be the slip on the fault.

When x! S, the situation becomes slightly different. Equation
(7), the surface traction integral term, has to be evaluated at (g,
s)¼ (x, t) where T(x, t) appears in the integrand. The shear trac-
tion is thus composed of

Tðx; tÞ ¼ nkðxÞtlðxÞrklðx; tÞ

¼ T0ðxÞ þ TDuðx; tÞ þ TTðx; tÞjðg; sÞ¼ðx; tÞ
þ TTðx; tÞjðg; sÞ6¼ðx; tÞ þ Tuðx; tÞ (11)

With a mathematical property of the Green’s function, the inte-

gral TTðx; tÞjðg; sÞ¼ðx; tÞ is proven to be equal to T(x, t)/2 on the con-

dition that S is smooth enough [23]. By canceling the term on
both sides, the boundary integral equation on the medium surface
is finally given by

Tðx; tÞ=2 ¼ nkðxÞtlðxÞrklðx; tÞ ¼ T0ðxÞ þ TDuðx; tÞ
þ TTðx; tÞjðg; sÞ6¼ðx; tÞ þ Tuðx; tÞ ¼ T0ðxÞ þ TDuðx; tÞ

þ
ð

S

dSðgÞ
ðt

0

ds Tpðg; sÞcklrsnkðxÞtlðxÞ

� @

@xs
Grpðx; t� s; g; 0Þjðg; sÞ6¼ðx; tÞ

þ
ð

S

dSðgÞ
ðt

0

ds uiðg; sÞcijpqcklrsnkðxÞtlðxÞnjðgÞ

� @2

@xq@xs
Grpðx; t� s; g; 0Þ ðx; g 2 SÞ (12)

where TDuðx; tÞ ¼ nkðxÞtlðxÞrDu
kl ðx; tÞ is the incremental traction

observed at x arising from the slip source distributed on the fault
surface nð2 CÞ. Note that the traction at the receiver location T(x,
t) is represented by the surface traction distribution, excluding the
receiver point T(x, t), and this enables us to solve the boundary in-
tegral equation rather easily in numerical computations.

We then turn to the volume V0 where no crack exists. The varia-
bles are denoted with a superscript prime when necessary. On the
surface S0, we derive the boundary integral equation just by omit-
ting TDu(x, t)

T0ðx; tÞ=2 ¼ T00ðxÞ þ T0T
0 ðx; tÞjðg; sÞ6¼ðx; tÞ þ T0u

0 ðx; tÞ ðx; g 2 S0Þ
(13)

The volumes V and V0 are coupled by imposing an appropriate
boundary condition on the interface S (¼S0) based on the contact
state. One typical example is that the two surfaces are welded and
the traction and displacement are thus continuous on S. The
boundary conditions are

Tðx; tÞ ¼ � T0ðx; tÞ
uðx; tÞ ¼u0ðx; tÞ ðx 2 SÞ

(14)

Another example is a slipping interface. The traction is again con-
tinuous, but the displacement is discontinuous (i.e., the slip
Du¼ u� u0 occurs). If the slip is controlled by an appropriate fric-
tional constitutive law T ¼ f ðDu; D _uÞ, the boundary conditions
are given by

Tðx; tÞ ¼ � T0ðx; tÞ ¼ f ðDu; D _uÞ
uðx; tÞ�u0ðx; tÞ ¼ Du ðx 2 SÞ

(15)

where f is a function that differs from one friction law to another.
Finally, we have three boundary integral equations (Eqs. (9),

(12), and (13)) and three boundary conditions (Eqs. (10), and (14),
or (15)) in terms of the six unknown functions T(x, t) and Du(x, t)
on C, T(x, t) and u(x, t) on S, and T’(x, t) and u0(x, t) on S0, with
an appropriate initial condition (e.g., the medium is at rest at
t¼ 0). We numerically solve the six coupled equations and obtain
the spatiotemporal histories of these six unknown functions, as we
will show in the following subsection.

2.3 XBIEM Numerical Method: Anti-Plane Case. In the
original BIEM, robust algorithms have been developed in the past
decade, following analytical developments that led to relatively
simple and efficient numerical codes to solve nonplanar crack
problems [18]. Based on these algorithms, here we develop the
numerical methods of the XBIEM for solving the coupled bound-
ary integral equations in the anti-plane problems. Some additional
steps in the time marching scheme are newly required on the me-
dium surface, whereas the crack part is almost the same as in the
original BIEM.

We consider anti-plane crack problems and choose the coordi-
nate axes (x1, x2) so that the elastic field variables are independent
of the third coordinate x3. Then x¼ (x1, x2) and the relevant
boundary variables are T(x, t) and Du3(x, t) on C, T(x, t) and
u3(x, t) on S, and T0(x, t) and u03ðx; tÞ on S0. In the anti-plane prob-
lems, the shear tractions T(x, t) and T0(x, t) are in the direction of
t¼ (0,0,1) and they coincide with the traction vector components
T3(x, t) and T03ðx; tÞ.

We first summarize the BIEM numerical methods. The colloca-
tion method has been widely used, combined with what is known
as the piecewise-constant approximation for the slip rate source
function. The nonplanar fault surface is first divided into finite lin-
ear segments by a constant length Ds and the variables, T(x, t) and
Du3(x, t) in the anti-plane cases, are discretized by an interval Dt on
each segment. The (i,k) th element lies in the ith fault segment Ci

Journal of Applied Mechanics MAY 2012, Vol. 79 / 031017-3

Downloaded 25 Apr 2012 to 133.11.55.138. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



on the fault C ¼ RCið Þ and the kth step in the discretized time se-
ries. Then the slip rate source function is assumed spatially and
temporally piecewise-constant over the (i,k) th element and denoted
as D _u3 : i; k. Note that this discretization itself does not limit the re-
ceiver location and time (x, t), that is, the stress r3a(x, t) (and the
shear traction T(x, t)) can be evaluated at any (x, t)¼ (x1, x2, t). In
order to construct the boundary integral equation, we have to
choose the collocation point ðxcol; tcolÞ ¼ ðxl

1; xl
2; tnÞ where and

when the traction is evaluated on the (l,n) th receiver element. It
has conventionally been chosen at the midpoint of the segment, and
at a certain time during the nth time step, depending on the prob-
lems [8]. The traction at the collocation point is denoted by Tl,n and
the subscript ‘3’ for the variables is omitted hereafter for brevity.

The boundary integral equation, Eq. (4), on the fault surface is
thus discretized into the following algebraic form

Tl; n � T0
l ¼ KD _u

0 D _ul; n þ
X

i

Xn�1

k¼0

KD _u
l; i : n�kD _ui; k ð¼ TDu

l; nÞ (16)

where D _ui; k is the piecewise-constant slip rate on the (i,k) th

source element, and KD _u
l; i:n�k is the stress kernel representing the

incremental traction at the collocation point on the (l,n) th receiver
element induced by the slip rate. The stress kernels are repre-
sented by using the theoretical anti-plane Green’s function charac-
terized by the medium rigidity l and the shear wave velocity b.

The right hand side of Eq. (16) corresponds to TDu
l; n, that is, the

incremental traction arising from the slip history on the fault sur-

face. Here, TDu
l; n consists of two terms: the first represents an in-

stantaneous response where KD _u
0 ¼ �l=ð2bÞ relates the current

slip rate D _ul; n to the current traction Tl,n, and the second indicates

the contribution of the past slip rate ð¼ TDu
l; pastÞ.

One of the most essential developments in the BIEM is a very
simple and efficient procedure for the stress kernel calculation for
the nonplanar fault. Each kernel KD _u

l; i; n�k can be easily represented
by a linear sum of the theoretical stress response of r3aðx1; x2; tÞ
to the specific semi-infinite distribution of the slip rate
D _u ¼ HðtÞHðx1Þ lying on the x1-axis. This was originally devel-
oped by Cochard and Madariaga [5] and extensively investigated
for 2-D and 3-D crack problems by Tada [18] (see references
therein). The stress kernels in the (global) coordinate of interest
are computed in the local coordinate: we first take the local coor-
dinate along a source element (i,k) and calculate the D _ui; k induced
stress r3a:l,n at the collocation point on the receiver (l,n) element
in the local coordinate. Second, we calculate the shear traction
T¼ nat3r3a¼ t3 (r31n1þ r32n2), considering the normal and tan-
gential vectors in the local coordinate, and this is KD _u

l; i; n�k in the
global coordinate. The BIEM exactly includes the stress interac-
tion among nonplanar fault elements by using the theoretical
Green’s functions and it is the reason why the BIEM is one of the
most accurate numerical methods for nonplanar rupture dynamics.

The discretized boundary integral equation is solved in the fol-
lowing explicit time marching scheme combined with an appro-
priate boundary condition on the fault surface. If we consider the
simplest case Tl,n¼ 0 (free surface), for example, the unknown
slip rate D _ul; n is just given in terms of the past slip rate as

D _ul; n ¼ �ðT0
l þ TDu

l; pastÞ=KD _u
0 (17)

Generally, we can solve the two unknowns, Tl,n and D _ul; n, under a
frictional constitutive law Tl; n ¼ FðDul; n; D _ul; nÞ ¼ FðD _ul; nDt
þDul; n�1; D _ul; nÞ by an explicit time stepping scheme.

In the development of the XBIEM numerical methods, we
apply the same piecewise-constant approximation to the source
variables on the extended boundaries, T(x, t) and _u3ðx; tÞ on S,
and T0 (x, t) and _u03ðx; tÞ on S0. They are discretized and denoted
as Ti,k and _ui; k on S, and T0i; k and _u0i; k on S0. By choosing the collo-

cation points in the same way, ðxcol; tcolÞ ¼ ðxl
1; xl

2; tnÞ for the

traction Tl,n on the (l,n) th receiver element, the boundary integral
equations on C; S, and S0 are discretized into the following alge-
braic element, and the boundary integral equations on C; S, and S0

are discretized into the following algebraic forms

Tl;n�T0
l ¼ ðKD _u

0 D _ul;nþTDu
l;pastÞþTT

l;pastþTu
l;past : Tl;n; D _ul;n on C

(18)

Tl;n=2�T0
l ¼ TDu

l;pastþ TT
l;pastþðK _u

0 _ul;nþ Tu
l;pastÞ : Tl;n; _ul;n on S

(19)

T0l; n=2� T00l ¼ T0T
0

l; past þ ðK0 _u
0

0 _u0l; n þ T0u
0

l; pastÞ : T0l; n; _u0l; n on S0

(20)

and

TDu
l;n ¼ KD _u

0 D _ul; n þ TDu
l; past TDu

l; past ¼
X

i

Xn�1

k¼0

KD _u
l; i; n�kD _ui; k

 !
:

D _ui; k on C

(21)

TT
l; n ¼ TT

l; past TT
l; past ¼

X
i

Xn�1

k¼0

KT
l; i; n�kTi; k

 !
: Ti; k on S (22)

Tu
l; n ¼ K _u

0 _ul; n þ Tu
l; past Tu

l; past ¼
X

i

Xn�1

k¼0

K _u
l; i; n�k _ui; k

 !
:

_ui; k on S

(23)

where TT
l; n and Tu

l; n represent the incremental traction at the collo-
cation point arising from the traction Ti,k and the displacement
rate _ui; k on the medium surface S. Parallel representations hold for
T
0T
0

l; n and T
0u
0

l; n, but are omitted for brevity. Here, TDu
l; n and Tu

l; n con-
sist of the instantaneous and past response terms, and the instanta-
neous term appears only when the source element of D _ul; n (or
_ul; n) coincides with the receiver element of Tl,n in the boundary in-
tegral equations. Note that Eq. (22) does not involve the instanta-
neous response KT

0 Tl;n because it has been isolated from the
integral prior to the discretization and is already canceled at both
sides of the boundary integral equation (Eq. (12)) in the XBIEM
formulation. Finally, Tl,n on the surface S is related to the dis-
placement rate _ul; n on S whereas Tl,n on the crack C is related to
the slip rate D _ul; n on C.

In order to calculate the stress kernels in the XBIEM, we
employ the same procedure as in the BIEM. We employ the same
specific function T, _u ¼ H tð ÞH x1ð Þ distributed on the x1-axis and
derive the theoretical stress response r3a at an arbitrary receiver
point (x1, x2, t). Note that the stress responses arising from the dis-
placement rate on the surface in Eq. (8) are just the negative of
those for the slip rate on the fault in Eq. (3). We can, therefore,
make use of the previously derived kernel function for the dis-
placement rate. This immediately leads to the instantaneous
response K _u

0 ¼ �KD _u
0 ¼ l=ð2bÞ. The stress responses induced by

the traction rate are newly derived and completely described in
Appendix A.

The discretized boundary integral equations enable us to solve
the six unknowns at the time step n in the following explicit time
marching scheme. When we consider the fault surface, Tl,n and
D _ul; n on C, the integral equation (18) is decoupled from the other
two at the current time step, so that we can solve two unknowns,
Tl,n and D _ul; n, under the boundary condition given on a fault sur-
face. If we simply consider a traction free fault (Tl,n¼ 0), the
unknown slip rate is determined as

D _ul; n ¼ �ðT0
l þ TDu

l; past þ TT
l; past þ Tu

l; pastÞ=KD _u
0 (24)

It is almost the same as Eq. (17), except for the two additional
traction terms, TT

l; past and Tu
l; past, arising from the medium surface
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S. The two unknowns can be determined in an explicit time step-
ping if we consider a frictional constitutive law (e.g.,
Tl; n ¼ FðDul; n; D _ul; nÞ) on the fault.

On the medium interface, we have four equations (two bound-
ary integral equations and two boundary conditions) for four
unknowns Tl; n; _ul; n; T0l; n; and _u0l; n. When the two volumes are
welded at the interface and the boundary conditions are given by
Eqs. (14), the solutions are

_ul; n ð¼ _u0l; nÞ ¼ � ðTDu
l; past þ TT

l; past þ Tu
l; past þ T0T

0

l; past þ T0u
0

l; pastÞ=
ðK _u

0 þ K0 _u
0

0 Þ (25)

Tl; n ð¼ �T0l; nÞ ¼ 2ðK _u
0 _ul; n þ T0

l þ TDu
l; past þ TT

l; past þ Tu
l; pastÞ (26)

On the contrary, when the interface is slipping, we can also deter-
mine the four unknowns in an explicit time scheme. If we consider
a traction free interface, for example, the solutions are

_ul; n ¼ �ðT0
l þ TDu

l; past þ TT
l; past þ Tu

l; pastÞ=K _u
0 (27)

_u0l; n ¼ �ðT00l þ T0T
0

l; past þ T0u
0

l; pastÞ=K0 _u
0

0 (28)

Tl; n ¼ T0l; n ¼ 0 (29)

If the boundary conditions are given by Eqs. (15), we can also
determine the four unknowns.

Last, we consider two typical cases with the Earth’s surface
where no adjacent volume V0 exists. We have two unknowns Tl,n

and _ul; n on S. When Tl,n is specified (i.e., the Neumann condition),
_ul; n is determined as

_ul; n ¼ �ðT0
l þ TDu

l; past þ TT
l; past þ Tu

l; past � Tl; n=2Þ=K _u
0 (30)

and when _ul; n is specified (i.e., the Dirichlet condition), Tl,n is
determined as

Tl; n ¼ 2ðK _u
0 _ul; n þ T0

l þ TDu
l; past þ TT

l; past þ Tu
l; pastÞ (31)

Repeating the preceding time marching scheme step by step, we
investigate the time evolution of boundary variables in the
XBIEM.

3 XBIEM Validation Tests

We have shown the explicit time marching scheme of the
XBIEM for dynamic rupture interacting with medium interfaces.
Here, the XBIEM is implemented and validated in two classical
planar crack problems for which analytic solutions exist in limited
aspects: one is in an unbounded homogeneous medium and
another is in a bimaterial.

3.1 Slip-Rate on Instantaneous Crack. Burridge [26] found
an analytic solution for the slip rate on a finite anti-plane crack
without friction in an unbounded homogeneous medium. The
crack lying on the x1-axis with length 2a instantaneously appears
along its entire length at t¼ 0 with a stress drop Dr and does not
propagate. As a validation test of our XBIEM, we compare the nu-
merical solution with the analytic one, as was done in the develop-
ment of the BIEM [5].

In order to compute the full-space problem by using the
XBIEM, an equivalent problem is considered in a homogenous
half-space (consider only the upper half-space Vþ bounded by a
surface Sþ on the x1-axis in Fig. 2). The equivalent problem is
attained by imposing the stress boundary condition on the crack
region (T¼ 0 for� a � x1 � a) and the displacement boundary
condition outside it (u3¼ 0 for jx1j> a) under a homogeneously
applied initial stress r0

32 ¼ Dr. The displacement condition comes
from the antisymmetry of the displacement field in the full space

with respect to the x1-axis. With a sudden stress drop at t¼ 0, we
investigate the displacement rate on the crack region by using Eq.
(30) and the traction evolution outside it by using Eq. (31).

We compare the slip rate as a function of time for the analytical
solution and for the numerical one (Fig. 3). We see that the nu-
merical solution is very close to the analytical one, except near
the arrival of the stopping phases, indicated by arrows, arising
from the edges of the crack. The accuracy of the numerical
method is verified in this simple problem.

3.2 Spontaneous Crack Growth Along a Bimaterial
Interface. Next, the XBIEM is tested in the simulation of sponta-
neous growth of a crack along a planar bimaterial interface at
which two homogeneous half-spaces V 6 with surfaces S 6 are
adjoining on the x1-axis (Fig. 2). Each homogeneous material is
characterized by the medium rigidity l 6 and the shear wave ve-
locity b 6 , respectively. The analytically derived stress coefficient
for a semi-infinite kinematic rupture propagating with a constant

Fig. 2 Configuration of a bimaterial consisting of two homoge-
neous half-spaces (x2 > 0 for V 1 and x2 < 0 for V 2 ) bounded by
surfaces S 6 adjoining on the x1-axis. Each medium is charac-
terized by the rigidity l 6 and the shear wave velocity b 6 . In the
validation tests shown in Figs. 3 and 4, an initial crack with
length 2a is assumed on the x1-axis.

Fig. 3 Analytic (solid line) and numerical solution (dotted line)
for the 101th element of an instantaneous crack discretized into
402 elements. The computation is done with normalized quanti-
ties: traction Tnrml 5 T/Dr, length xnrml 5 x/a, time tnrml ¼ t=ða=bÞ
and displacement velocity _unrml ¼ _u=ðbDr=lÞ, where Dr is the
stress drop, a is the crack half-length, l is the medium rigidity,
and b is the shear wave velocity of the medium. A time step is
assumed as Dt 5 Ds/(2b).
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sub-shear rupture velocity vr(<b 6 ) shows that the stress concen-
tration approaches zero when vr ! b� , where b� indicates the
lower shear wave velocity in the bimaterial (see Appendix B). It
implies that the upper limit of the rupture velocity is b� for spon-
taneously accelerating crack growth from a static state. This pre-
diction is confirmed by numerical simulations by the XBIEM.

We start the spontaneous rupture from a seed crack with length
2a instantaneously appearing at t¼ 0 under a homogeneously
applied initial stress r0

32 ¼ Dr. On the crack surface (¼ slipping
interface), the stress boundary condition is given by T¼ 0 (the
stress drop is Dr). Otherwise, the two volumes are welded at the
interface and the boundary conditions are given by Eq. (14). Here,
the crack growth is assumed to be described by a finite stress crite-
rion sp: if the shear traction T at the crack tip exceeds sp, the crack
propagates by one element at that time step. We set sp¼ 3Dr. By
applying the time stepping scheme in Eqs. (27), (28), and (29) to
the slipping interface and Eqs. (25) and (26) to the welded inter-
face, we determine the spatiotemporal history of the traction and
the displacement rate on both Sþ and S� .

Figure 4 shows the spatiotemporal evolution of the crack tip
position for different material contrast r¼ b� /bþ . It clearly
shows that the rupture velocity finally approaches the lower shear
wave velocity of the bimaterial. The XBIEM for rupture dynamics
interacting with medium interface is successfully validated in this
problem.

4 Conclusions

Aiming for the simulation of nonplanar earthquake rupture
interacting with medium interfaces, we proposed an extended
boundary integral equation method (XBIEM). In the formulation
of the XBIEM, we employ a multiregion approach where the
interfaces of the sub-regions are regarded as extended boundaries
on which boundary integral equations are additionally derived.

We derived a complete set of the boundary integral equations that
are fully coupled by boundary conditions on the extended
boundaries.

We next developed the numerical methods necessary for solv-
ing the coupled boundary integral equations for anti-plane prob-
lems. Based on the established BIEM algorithms, we derived the
discretized stress kernels that represent dynamic interactions
among nonplanar boundary elements. We developed an explicit
time marching scheme in order to determine the spatiotemporal
functions on all of the boundaries, the crack surface, and the me-
dium surfaces.

We tested and validated our XBIEM in two classical problems
for which analytic solutions exist. The XBIEM calculation of the
slipping rate on a instantaneous crack in an unbounded homogene-
ous medium showed a good agreement with the analytic solution.
We then tested our XBIEM in a bimaterial. In the simulation of
spontaneous rupture propagation along a bimaterial interface, the
numerical results successfully agreed with the theoretical predic-
tion that the rupture velocity approached the lower shear wave ve-
locity of the bimaterial.

Although we have just demonstrated our XBIEM in the simple
planar crack problems with planar surfaces, the XBIEM is, in
principle, applicable to the dynamic rupture of nonplanar faults.
The kernels derived here are enough for modeling the arbitrary
nonplanar geometry of faults, and can be applied to a self-chosen
crack path modeling with a mesh-free manner. We challenge it in
order to investigate the effects of stress interaction with medium
interfaces on the formation of nonplanar geometry of earthquake
faults.

Our numerical development was made only in anti-plane cases,
although our formulation works in all of the 2-D and 3-D prob-
lems. We hope that the XBIEM is applied to various problems in
the field of earthquake seismology.

Acknowledgment

This work is dedicated to Professor James R. Rice for his semi-
nal contributions to the analysis of fracture mechanics problems.
N.K. is supported by a JSPS Grant-in-Aid for Scientific
Research(C) Grant No. 22540429 and a MEXT Grant-in-Aid for
Scientific Research on Innovative Areas Grant No. 21107007. We
largely owe Appendix B to Mr. Shiro Hirano.

Appendix A: Convolution Coefficients for Elastic Stress

Field

Here we give the convolution coefficients for the discrete
expressions of the stress field arising from the slip rate D _u3 on the
crack surface C, the traction T3 on the medium surface S, and the
displacement rate _u3 on S

rDu
3a ðxl

1; xm
2 ; tnÞ ¼ �

ð
C

dn1

ðt

0

ds Du3ðn1; sÞl2 @2

@xa@x2

G33

¼
X
i; k

Kr3a : D _u
l;m; n; i; kD _ui; k (A1)

rT
3aðxl

1; xm
2 ; tnÞ ¼ þ

ð
S

dn1

ðt

0

ds T3ðn1; sÞl @

@xa
G33

¼
X
i; k

Kr3a : T
l;m; n; i; kTi; k (A2)

ru
3aðxl

1; xm
2 ; tnÞ ¼ þ

ð
S

dn1

ðt

0

dsu3ðn1; sÞl2 @2

@xa@x2

G33

¼
X
i; k

Kr3a : _u
l;m; n; i; k _ui; k (A3)

where G33 denotes the anti-plane Green’s function

Fig. 4 Spatiotemporal evolution of the crack tip position spon-
taneously propagating along the bimaterial interface for differ-
ent material contrasts r 5 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The
material contrast is characterized by r 5 b 2 /b 1 , the ratio of the
lower medium shear wave velocity to the upper velocity. Unit
quantities for the computation are based on those in the upper
medium. The initial crack with length 2a is discretized by 40 ele-
ments, and the unit time a/b 1 is discretized by 40 time steps.
The interface is represented by 800 elements, which is large
enough to eliminate the diffracted wave from the artificial edges
of the computational domain coming back to the crack tip. The
predicted upper limit rupture velocities for r 5 0.5 (vr/b

1 5 0.5)
and r 5 1.0(vr/b

1 5 1.0) are plotted for reference.
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G33ðxl
1 � n1; xm

2 ; tn � s; 0; 0; 0Þ ¼ 1

2pl
Hððtn � sÞ � r=bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtn � sÞ2 � ðr=bÞ2

q
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl

1 � n1Þ
2 þ ðxm

2 Þ
2

q
(A4)

and Hð�Þ is the Heaviside step function. A temporally and spatially
piecewise-constant interpolation is applied to the slip rate, trac-
tion, and displacement rate (all assumed to distributed on the x1-
axis) as

D _u3ðx1; tÞ ¼
X

i;k

D _ui;kdi;kðx1; tÞ; T3ðx1; tÞ

¼
X

i;k

Ti;kdi;kðx1; tÞ; _u3ðx1; tÞ ¼
X

i;k

_ui;kdi;kðx1; tÞ (A5)

di;kðx1; tÞ � ½Hðx1 � xi
1 þ Ds=2Þ � Hðx1 � xi

1 � Ds=2Þ�

� ½Hðt� tkshortÞ � Hðt� tklongÞ� (A6)

tkshort � tk � etDt; tk
long � tk þ ð1� etÞDt; 0 < et < 1 (A7)

After applying the integration by parts with respect to s for the
reduction of the hyper-singularity that would appear in the second
order derivative of the Green’s function, we substitute the discre-
tized functions, Eq. (A5), for the integrals and derive the coeffi-
cients. The coefficients for the stress are

Kr3a:src
l;m; n; i; k � Ir3a :src xl

1 � xi
1 þ

1

2
Ds; xm

2 ; tn � tkshort

� �

� Ir3a:src xl
1 � xi

1 �
1

2
Ds; xm

2 ; tn � tk
short

� �

� Ir3a:src xl
1 � xi

1 þ
1

2
Ds; xm

2 ; tn � tk
long

� �

þ Ir3a:src xl
1 � xi

1 �
1

2
Ds; xm

2 ; tn � tk
long

� �
(A8)

and

Ir31:D _uðx; tÞ ¼ � l
2b
� x2

pr
H t� r

b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbt=rÞ2 � 1

q� �
(A9)

Ir32D _uðx; tÞ ¼ � l
2b

Hðx1ÞH t� jx2j
b

� �
þ 1

p
sgnðx1Þ

�

�H t� r

b

� �
jx1j
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbt=rÞ2 � 1

q
� Arccos

jx1j
bub

� ��
(A10)

Ir31:Tðx; tÞ ¼ � 1

4p
H t� r

b

� �
log

t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðr=bÞ2

q
tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðr=bÞ2

q (A11)

Ir32:Tðx; tÞ ¼ �sgnðx2ÞHðx1ÞH t� jx2j
b

� �
1

2

þ sgnðx1Þsgnðx2ÞH t� r

b

� �
1

2p
Arccos

jx1jt
rub

(A12)

Ir31: _uðx; tÞ ¼ �Ir31:D _uðx; tÞ (A13)

Ir32: _uðx; tÞ ¼ �Ir32:D _uðx; tÞ (A14)

where ub �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðx2=bÞ2

q
. Note that Kr3a:D _u

l;m; n; i; k had been derived
in Tada and Madariaga [8] and is reproduced here for the reader’s
convenience.

Appendix B: Shear Stress for Kinematic Rupture at a

Bimaterial Interface

We consider a bimaterial in which two isotropic homogeneous
elastic half-spaces are adjoining at the x1-axis. We presume anti-
plane deformation in the x3-direction, and the equations of motion
are thus

1

ðb6Þ2
@2u6

3

@t2
¼ @

2u6
3

@x2
1

þ @
2u6

3

@x2
2

(B1)

where u6
3 are the displacements, b 6 are the shear wave velocities

of the half-spaces, and 6 denotes the quantities in the upper
(x2> 0) and lower (x2< 0) half-spaces, respectively. We denote
the medium rigidities l 6 and assume b� � bþ .

We consider a kinematic rupture propagating at the bimaterial
interface in theþ x1 direction with a prescribed rupture velocity and
a presumed displacement discontinuity. We shall consider the case in
which phenomena appear to be stationary if looked at in a coordinate

x01 ¼ x1 � vrt; x02 ¼ x2; t0 ¼ t (B2)

on the condition that the rupture is semi-infinite and propagating
from t ¼ �1 with a constant rupture velocity vr. The boundary
condition regarding the displacement discontinuity across the rup-
ture is given by

uþ3 ðx01;þ 0; t0Þ � u�3 ðx01;�0; t0Þ ¼ DuHð�x01Þ (B3)

where Du is a constant and Hð�Þ is the Heaviside step function.
The stress across the interface is continuous, so that the stress
boundary condition is given by

lþ
@uþ3
@x02
ðx01;þ 0; t0Þ ¼ l�

@u�3
@x02
ðx01;�0; t0Þ (B4)

If looked at in the moving coordinate, Eq. (B1) is rewritten as

ðc6Þ2 @
2u6

3

@x021
þ @

2u6
3

@x022
¼ 0 (B5)

where c6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð vr

b6Þ2
q

, and vr is assumed sub-shear velocity
(i.e., vr � b6).

By applying the Fourier transform to u3ðx01Þ in Eq. (B5), the sol-
utions ~u3ðk1Þ in the wavenumber domain that are bounded at
x02 ! 61 shall be

~u6
3 ðk1; x02Þ ¼ A6 expð�jk1jc6x02Þ (B6)

where A 6 are constant coefficients that should be constrained by the
boundary conditions (Eqs. (B3) and (B4)), and they, therefore, lead to

A6 ¼ 6
l�c�

lþcþ þ l�c�
i

k1

(B7)

By applying the inverse Fourier transform to ~u3ðk1; x02Þ with the
preceding coefficients, we shall obtain the displacement u3ðx01; x02Þ
that satisfies the boundary conditions. Followed by Hooke’s law,
the shear stress r32 near the propagating rupture front is finally
expressed by

r6
32ðx

0

1; x
0

2Þ ¼
Du

p

lþl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr

bþ

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� vr

b�

� �2
s

lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr

bþ

� �2
s

þ l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr

b�

� �2
s

� x
0
1

x
02
1 þ 1� vr

b6

� �2

x
02
2

: (B8)
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This indicates that the shear stress concentration becomes zero if
the rupture velocity vr increases to be the lower shear wave veloc-
ity b� . It implies that the upper limit of the rupture velocity in
the sub-shear regime would be b� in the bimaterial.
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