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Abstract Moment tensor representation is useful for interpreting source processes from seismic and/or
geodetic observations. However, there remains difficulty to determine the source processes because some
models cannot be distinguished from moment tensors and the range of moment tensor represented
by particular process is generally limited. We examine magma movement between two ellipsoids with
consideration of mass conservation and pressure balance. The resultant moment tensor component ratio
(MTCR) range is clearly distinguished from that generated by expanding ellipsoids. However, there is a range
of the MTCR that cannot be explained by either fluid expansion or movement; in such cases, partial pressure
recovery after fluid movement provides a plausible explanation. The MTCR for fluid movement between
two ellipsoids with randomly varying geometry and relative orientation is shown to exhibit a concentrated
trend representing a linear combination of a double-couple source and an opening crack. Although such an
MTCR is generally interpreted as a crack with both tensile and shear dislocations, we demonstrate that it can
be generated by fluid movement between two thin ellipsoids. Our results provide a physically reasonable
mechanism for interpreting the MTCR obtained from observed data with a comprehensive view of possible
source processes.

1. Introduction

Moment tensor inversion is widely used in seismological and volcanological research to infer source
processes from seismic and/or geodetic signals. A typical earthquake source mechanism is a shear dislocation
across a fault that does not include volumetric change. However, moment tensor inversions in active volcanic
regions frequently include volumetric components. Such observations indicate pressure change inside a vol-
cano due to fluid movement (magma and/or gas) or a phase transition (magma degassing). The identification
and quantification of these processes are important in understanding and forecasting volcanic activity.

A seismic or geodetic moment tensor is generally represented by a symmetric 3 × 3 matrix that can be diago-
nalized by a rotation of axes. The three diagonal components represent the eigenvalues of the moment tensor,
giving information regarding the mechanism, geometry, and volume change of the source.

Problems often arise in interpreting particular source processes from moment tensors. The volume changes
represented by the moment tensor and the actual volume change are different, and their relation is
nonunique. The classical theory that links the source volume change to the moment tensor components has
been explained by Aki and Richards [1980], based on the stress-free transformation [Eshelby, 1957]. However,
the physical meaning of the stress-free transformation has not been clearly explained. In addition, its quanti-
tative relationship to the actual volume change has only been shown for specific source models with simple
geometries (e.g., a sphere, a cylinder, a crack, or an ellipsoid), and its general relationship to arbitrary geome-
tries remains unknown. In fact, there are discrepancies regarding the volume change to be used in the
moment tensor [Wielandt, 2003; Richards and Kim, 2005; Kumagai et al., 2014]. Kumagai et al. [2014] explicitly
showed that isotropic source models, such as an expanding sphere and a set of three perpendicular open
cracks, all of which generate an identical isotropic moment tensor, result in different volume changes.

It should be noted that the moment tensor representation is based solely on the elastodynamic framework.
While it considers elastic deformation outside the source, it does not consider fluid mechanical constraints for
the material inside the source, which include mass conservation, pressure balance, and the compressibility
of the fluid in the source. Although the obtained moment tensors are often interpreted by a linear combina-
tion of elementary point sources, such as the expansion of a sphere, a cylinder, a crack, or an ellipsoid, and
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CLVD (compensated linear vector dipole), which is thought to represent fluid movement [e.g., Chouet, 1996;
Kumagai, 2009], these interpretations do not necessarily take into account fluid mechanical constraints.

Recent studies have tried to bridge the gap between seismological source representation using a moment
tensor and fluid mechanical modeling of volcanic processes. Kumagai et al. [2014] demonstrated how the rela-
tion between the moment tensor and source volume change depends on the source medium, specifically for
a spherical source. The volume change obtained from the VLP (very long period) pulse has been compared
with SO2 emissions at Asama volcano, Japan [Kazahaya et al., 2011, 2015]. The above mentioned problems in
connecting the moment tensor to the source fluid mechanics were encountered when trying to interpret the
VLP moment tensors as the mass movement of gas, which were considered to be causes of the VLP events.
The simplest assumption for a source representation of fluid movement is that the volume gained by the
downstream cavity equals the volume lost by the upstream one so that the net volume change is zero. A CLVD
source is one such example. Amoruso and Crescentini [2013] considered the simultaneous expansion and con-
traction of two cavities where the total actual volume change is zero. They showed that the apparent volume
change obtained from the total moment tensor is not zero and that its sign can be positive or negative. In fact,
such an assumption of zero total volume change is invalid when one takes into account the effects of fluid
compressibility and phase transition [Rivalta, 2010; Rivalta and Segall, 2008; Nishimura, 2004]. It is important
to note that volume conservation and mass conservation are not equivalent, with the latter being an essential
constraint in fluid mechanics.

Here we discuss fluid mechanical constraints on ellipsoidal sources. First, we summarize the relation between
volume changes and the moment tensor representation of an ellipsoidal source, following Davis [1986]
and Amoruso and Crescentini [2009]. A convenient diagram of the moment tensor component ratio (MTCR)
proposed for a single ellipsoid [Trasatti et al., 2009, 2011; Amoruso and Crescentini, 2013] is employed and
extended for two-ellipsoidal expanding cavities with pressure balance. We then examine magma move-
ment processes where mass conservation and pressure balance are considered. We also examine the effect
of partial pressure recovery after magma movement, which is likely to occur in natural systems [Nishimura,
2004]. Through these investigations, we clarify the possibilities and limitations of source constraints obtained
from observed moment tensors.

2. A Brief Summary of Moment Tensor Representation of a Volume Source

This section is based mainly on classical studies [Eshelby, 1957; Aki and Richards, 1980; Davis, 1986], setting
the framework for the moment tensor study presented here. The theoretical results of these studies are sum-
marized with the notation conventionally used: superscript C and T represent the actual deformation and the
stress-free deformation, respectively.

A cavity embedded in an elastic medium has been considered as the volume source with a reference volume
V prior to volumetric deformation [Aki and Richards, 1980, 2002]. Here the cavity is assumed to be filled with
fluid, following Davis [1986]. When the cavity undergoes volumetric deformation due to fluid pressure change
ΔP, deformation of the cavity is characterized by two distinct strains: stress-free strain eT

ij and the actual strain
eC

ij [Eshelby, 1957]. The moment tensor of the volume source is represented by the stress-free strain as

Mij = cijkle
T
klV, (1)

where cijlk is the elastic constant tensor [Aki and Richards, 1980].

For this moment tensor representation and source modeling, eT
ij and eC

ij must be determined. These strains are
related by

eC
ij = Sijkle

T
kl, (2)

where Sijkl is a linear operator depending on the cavity geometry and cijkl . Another relationship is given by the
stress boundary condition at the inner cavity wall as

cijkl

(
eT

kl − eC
kl

)
= ΔP!ij, (3)

where ΔP!ij is the isotropic stress component due to fluid overpressure. We consider a symmetric case in
solving the coupled equations (equations (2) and (3)), where both eT

ij and eC
ij have only diagonal components.
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This is valid for a symmetric cavity geometry, such as a sphere, a cylinder, a penny-shaped crack, or an ellipsoid,
because of the invariance of the strain tensor components under the rotation of 180∘. For these symmetric
geometries, the exact form of Sijkl has been derived. The diagonal components and relevant elastic constants
are denoted by

"i = eij|i=j, (4)

S′ik = Sijkl|i=j,k=l, (5)

c′ik = cijkl|i=j,k=l. (6)

Equations (2) and (3) can then be rewritten as

"C
i = S′ij"

T
j , (7)

c′ij("
T
j − "C

j ) = ΔPUi, (8)

where Ui represents a vector with all components being one. Equations (7) and (8) are then combined to give

c′ij
(
!jk − S′jk

)
"T

k = ΔPUi. (9)

With the following relationships
Kji = c′−1

ij , (10)

Dji = (!ij − S′ij)
−1, (11)

we finally obtain
"T

i = ΔPDijKjkUk, (12)

"C
i = ΔPS′ijDjkKklUl. (13)

The volume change of the cavity is given by the product of the trace of the strain tensor and the reference
volume V . The stress-free volume change ΔVT and the actual volume change ΔVC are

ΔVT = VUi"T
i = VΔPUiDijKjkUk, (14)

ΔVC = VUi"C
i = VΔPUiS

′
ijDjkKklUl, (15)

respectively. Finally, the moment tensor for the fluid cavity source is represented in terms of the stress-free
volume change as follows:

Mij|i=j = c′ik
DklKlmUm

UpDpqKqrUr
ΔVT . (16)

In the above equations cijkl is not limited to the isotropic medium. We hereafter consider an isotropic elastic
medium, where

cijkl = #!ij!kl + $(!ik!jl + !il!jk), (17)

and # and $ are the Lamé constants. The bulk modulus k and Poisson’s ratio % of the medium are
represented as

k = # + 2
3
$, (18)
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% = #
2(# + $) , (19)

respectively. KijUj = c−1
ji Uj is then reduced to

KijUj =
Ui

3# + 2$
=

Ui

3k
. (20)

With the use of the bulk modulus, equations (12)–(15) are rewritten as

"T
i = ΔP

3k
DijUj, (21)

"C
i = ΔP

3k
S′ijDjkUk, (22)

ΔVT = VΔP
3k

UiDijUj, (23)

ΔVC = VΔP
3k

UiS
′
ijDjkUk. (24)

To examine the geometric effect of this cavity source, we define two specific quantities: Ψ and K C . Ψ is the
ratio of the actual volume change to the stress-free volume change:

Ψ = ΔVC

ΔVT
=

UiS
′
ijDjkUk

UlDlmUm
, (25)

and KC is the effective bulk modulus of the cavity, which is the ratio of the actual pressure change to the
pressure change corresponding to the volumetric strain:

KC = ΔP

k ΔVC

V

= 3
UiS

′
ijDjkUk

. (26)

Defining these parameters makes the following expressions simpler, and similar parameters have been used
in the previous studies. Amoruso and Crescentini [2013] used Riso as the corresponding parameter for Ψ, while
Amoruso and Crescentini [2009] used RV for (KC)−1, both of which are normalized by the values for a sphere.

With reference to equations (25) and (26), equation (23) is reduced to

ΔVT = VΔP
kΨKC

, (27)

and equation (16) to

Mij|i=j =
(
#Ui + 2$

!ikDklUl

UmDmnUn

)
ΔVT . (28)

The trace of equation (28) has a simple form:

Mii = (3# + 2$)ΔVT = 3kΔVT , (29)

where the trace is proportional to ΔVT with a fixed coefficient 3k, irrespective of the source geometry.
Accordingly, Ψ in equation (25) is proportional to ΔVC∕Mii .

Each of the diagonal components Mij in equation (28) varies with the source geometry. For typical simple
sources, the components can be easily evaluated by using the geometric symmetry:
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1. Sphere
The isotropic geometry leads to D1jUj = D2jUj = D3jUj =

1
3

UiDijUj . The diagonal components of the moment
tensor are written as

M11 = M22 = M33 =
(
# + 2

3
$
)
ΔVT . (30)

Equation (30) corresponds to equation (3.35) in Aki and Richards [2002].
2. Cylinder

Consider a cylinder with its axis along the x3 direction. In the case of axis-symmetric plane strain, the
stress-free strain components are "1 = "2 and "3 = 0. Equation (21) gives the stress-free strain as D1jUj =
D2jUj =

1
2

UiDijUj and D3jUj = 0. The diagonal components are written as

M11 = M22 = (# + $)ΔVT , M33 = #ΔVT . (31)

3. Penny-shaped crack
Consider a penny-shaped crack on the x2 − x3 plane, having nonzero strain only in the x1 direction.
Equation (21) gives the stress-free strain as D1jUj = UiDijUj , D2jUj = D3jUj = 0. The diagonal components
are written as

M11 = (# + 2$)ΔVT , M22 = M33 = #ΔVT . (32)

2.1. Ellipsoidal Volume Sources
To evaluate the moment tensor components for an elliptical source, we must calculate Dij . The calcula-
tion procedure is briefly given in Appendix A. We summarize the characteristics of an ellipsoidal volume
source, which have been presented previously [Davis, 1986; Amoruso and Crescentini, 2009, 2013; Trasatti et al.,
2009, 2011].

Figure 1 shows how Ψ and KC change with geometry. The curve of the effective bulk modulus K C is compa-
rable to Figure 2 of Amoruso and Crescentini [2009] for RV (RV ∝ (KC)−1). KC becomes smaller as the geometry
approaches a penny shape, suggesting that the pressure change for a fixed volume change can vary by many
orders of magnitude, depending on the geometry. On the other hand, Ψ varies with the geometry by a sim-
ple factor: the maximum being 1 for a crack and the minimum being

(
# + 2

3
$
)
∕(#+2$) for a sphere [Aki and

Richards, 2002].

Figure 2 shows how the moment tensor diagonal components (eigenvalues) change with geometry as a func-
tion of the two moment tensor component ratios (MTCR) [Trasatti et al., 2009, 2011; Amoruso and Crescentini,
2013]. The maximum, medium, and minimum diagonal components are indicated by M11, M22, and M33,
respectively. S, B, and P indicate the MTCR values for a sphere, a prolate ellipsoid, and a penny-shaped crack,
respectively. For the area bounded by SBX, the directions of M11, M22, and M33 are in the directions of the
shortest, medium, and longest axes of the ellipsoid, respectively, where a1 ≤ a2 ≤ a3. However, in the range
where M22∕M11 is smaller than X, M22 and M33 are in the directions of the longest and medium axes, respec-
tively, and a1 ≤ a3 ≤ a2. The MTCR is insensitive to geometry near X, which also results in large uncertainties
in estimates of the effective bulk modulus and the corresponding pressure change.

We add the following remarks in addition to the above mentioned summary of the previous studies:

1. B is associated with a prolate ellipsoid, a1 = a2 ≪ a3, where the moment tensor approaches

M11 = M22 =
(
# + 7

8
$
)
ΔVT , M33 =

(
# + 1

4
$
)
ΔVT . (33)

The expression is different from the conventional expression for a cylindrical source in equation (31), which
is shown in Figure 2 by C. The cylindrical source model does not consider the strain component along the
cylinder axis, which is unrealistic.

2. By varying the relative angles of their axes and the relative sizes of the cavities, a linear combination of two
ellipsoidal expanding sources can generate the MTCR in the area bounded by SCP in Figure 2. For example,
C is generated by two perpendicular cracks that expand equally. S is generated by (M11,M22,M33) = (1, 1, 3),
representative of a crack and (6, 6, 4), representative of a prolate spheroid. Many other combinations of

MIZUNO ET AL. MOMENT TENSORS OF EXPANSION AND FLUID MOVEMENT 5
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Figure 1. Geometrical dependencies of the volume ratio Ψ and the effective bulk modulus KC : (a) as a function of a3
where a1 = a2, where the geometry changes from a penny-shaped crack to a sphere and a cylinder, and (b) as a
function of a2 where a1 ≫ a3, where the geometry changes from a penny-shaped crack to a cylinder. All of Figures 1–3
are plotted under the assumptions that # = $ and Poisson’s ratio % = 1∕4.

two or more ellipsoids are also possible. This is in contrast to the result that an expanding source of a sin-
gle ellipsoid can generate the MTCR only in the area SXPXBS. The range of the MTCR related to the 1970
deformation at Kilauea volcano, Hawaii, (solid triangle in Figure 2) lies outside of the permitted range of the
MTCR generated by a single expanding ellipsoid [Amoruso and Crescentini, 2009]. However, it is in the area
SCP, suggesting that a combination of two expanding ellipsoids can explain the moment tensor.

3. Volume Source Due To Fluid Movement Between Two Ellipsoidal Cavities

We have shown the possible range of the MTCR associated with ellipsoidal volume sources in section 2; the
range is limited, and observed moment tensors do not always fall within the range. For example, the observed
moment tensors for Asama volcano [Maeda, 2009; Maeda and Takeo, 2011] are shown by triangles in Figure 2,
some of which are out of the range of SCP.

MIZUNO ET AL. MOMENT TENSORS OF EXPANSION AND FLUID MOVEMENT 6
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Figure 2. The possible range of the MTCR for an ellipsoidal volume
source. The ratio a1∕a3 is varied as indicated by bold labels along the
solid contour lines for a constant a2∕a3, while a2∕a3 is varied as
indicated by italic labels along the dashed contour lines for a constant
a1∕a3. S, B, and P indicate the MTCR values for a sphere, a prolate
ellipsoid, and a penny-shaped crack, respectively, and C corresponds to
the conventional cylinder model. The contour lines collapse at X, which
marks where a2 = a3. The observed moment tensor for the 1970
deformation at Kilauea, Hawaii [Davis, 1986], and that for VLP observed
at Asama, Japan [Maeda, 2009; Maeda and Takeo, 2011], are shown by a
solid triangle and open triangles, respectively.

Various models involving magma move-
ment have been proposed to allow a
larger variation in the MTCR (e.g., move-
ment between two spheres [Nishimura
et al., 2000], among multiple ellipsoidal
cavities [Amoruso and Crescentini, 2009],
and from a sphere to a thin dyke [Rivalta,
2010]). We consider magma movement
between two ellipsoidal cavities under
consideration of total mass conservation,
pressure balance and pressure recovery,
and we then systematically investigate
the effect of cavity geometry on the
total MTCR.

3.1. Simple Magma Movement
We consider simple magma movement
between two ellipsoidal cavities with
arbitrary semiprincipal axes, where mass
conservation and pressure balance are
preserved. Here “simple” means that it
does not include any nonelastic processes
causing changes in pressure or volume,
such as the generation of gas. We then
theoretically derive the resultant moment
tensor and examine the possible range of
the MTCR.

Magma moves from the high-pressure
cavity to the low-pressure cavity to bal-
ance the pressure in the system. Hereafter

we add a prime to cavity values with the higher initial pressure. We define the initial pressures P0 and
P′

0(P0 < P′
0), the initial volumes V and V ′, and the initial densities (0 and (′0. We assume the two cavities are

filled with the same magma material, and its bulk modulus is denoted by km.

The pressure balance after movement is expressed as

P0 + ΔP = P′
0 + ΔP′. (34)

Mass conservation requires
Δ((0V) + Δ((′0V ′) = 0. (35)

The changes in magma density are

Δ(0 = (0
ΔP
km

, Δ(′0 = (′0
ΔP′

km
. (36)

Neglecting the small quantities, equation (35) reduces to

VΔP) = −V ′ΔP′)′, (37)
where ) and )′ are defined as

) = 1
km

+ 1
kKC

, )′ = 1
km

+ 1
kKC′ . (38)

From equations (27) and (37), we obtain

|||||
ΔVT ′

ΔVT

|||||
= )ΨKC

)′Ψ′KC′ = A, (39)

MIZUNO ET AL. MOMENT TENSORS OF EXPANSION AND FLUID MOVEMENT 7
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where A is defined as the absolute value of the ratio of moment tensor traces (M′
ii∕Mii) from equation (29). In

addition, we use the definition of ) to obtain

A =
kKC

km
+ 1

kKC′

km
+ 1

Ψ
Ψ′ . (40)

This highlights that A depends on the ratios of the effective bulk modulus of the cavity (kK C) to the bulk
modulus of magma (km) and the parameter Ψ. It is noted that A depends on the property of the fluid only
through k∕km, and the coefficient of Ψ∕Ψ′ in equation (40) monotonically increases or decreases from 1 for
km ≫ k to KC∕KC′ for km ≪ k.

Let us assume that the high-pressure cavity is a sphere and# = $. The values associated with the high-pressure
cavity then reduce to

Ψ′ = 5
9
, KC′ = 4

5
, M′

ij|i=j = kiΔVT ′ . (41)

In addition, we assume km ≪ k, which is valid for magma containing bubbles. Then, equation (40) is
reduced to

A = 9
4

KCΨ. (42)

The assumption is used in the following calculations.

The parameter A has a graphical meaning in the MTCR diagram as follows. The MTCR of the total moment
tensor is an external dividing point of the individual MTCR for the high- and low-pressure cavities, and the
dividing point is determined by the parameter A as follows:

Mtot
N

Mtot
11

= (1 − x)
MN

M11
+ x

M′
N

M′
11

, x =
A
F

1 + A
F

, (N = 22, 33), (43)

and F can then be defined as

F = −
1 + M′

22

M′
11
+ M′

33

M′
11

1 + M22
M11

+ M33

M11

. (44)

F is determined when the MTCR points of the two source cavities are given and F < −1 in the present case
with a spherical high-pressure cavity. Considering that A < 1 due to the geometry dependence of K C and Ψ,
we find x < 0.

The blue lines in Figure 3 show the possible range of the MTCR that is covered by the total moment tensor
(Mtot

ij = Mij + M′
ij) related to magma movement, with the assumption of a spherical high-pressure cavity. In

comparison with Figure 2, this range extends to the lower part of the MTCR diagram (M33∕M11 < 1∕3). The
lines collapse at a point Xmov, which is the case where the MTCR of the low-pressure cavity is at X.

The red dots in Figure 3a show generalized situations where the high-pressure cavity is not limited to a
sphere. The lengths of the semiprincipal axes of the two ellipsoids and their relative orientation are chosen
randomly. The calculation procedure is as follows: (i) the diagonalized moment tensors of the two ellipsoids
are individually determined in the same way as mentioned above, (ii) one is rotated randomly and added
to the other, and (iii) the combined moment tensor is then rediagonalized to obtain the MTCR for the total
moment tensor. The density of the red dots can be regarded as the probability of the MTCR for arbitrary sets
of ellipsoidal cavities. Figure 3b shows how the total MTCR varies with the relative angles of two cavities for
the cases of two crack-like cavities (green dots) and two prolate spheroids (purple dots). The former generates
points on PD, while the latter generates a trend along LD, where D and L correspond to a double-couple source
and a CLVD source, respectively.

It is important to note that no red dots or blue lines in Figure 3a fall in the area of the MTCR for expanding ellip-
soidal cavities (SCP). Therefore, the two mechanisms (expansion and movement) can be clearly distinguished
by the MTCR. The two regions merge at P. In the expansion model, P means a penny-shaped crack. In the sim-
ple movement model, P means magma movement to a penny-shaped crack from a cavity having K C larger

MIZUNO ET AL. MOMENT TENSORS OF EXPANSION AND FLUID MOVEMENT 8
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Figure 3. The possible range of total MTCR for simple magma movement. The blue contours are for movements from a
spherical high-pressure cavity to an ellipsoid. They are added to Figure 2 with the same definition. D at (0, −1) and L at
(−0.5, −0.5) indicate the MTCR values for a double-couple source and a CLVD, respectively. (a) The red dots show the
general cases for magma movement between two ellipsoidal cavities. They are produced by calculating the random
choices of ellipsoidal geometries and their relative angles. (b) The variation generated by varying relative angles of two
penny-shaped cracks and two prolate spheroids are green and purple dots, respectively.

than that of a penny-shaped crack, suggesting that the total moment tensor is dominated by the expansion
of the penny-shaped crack.

3.2. Magma Movement With Pressure Recovery
Simple magma movement with increasing degrees of freedom is not yet likely to explain the observations
at Asama volcano. The pressure in the cavities after magma movement is higher than the value predicted by
the simple model in the presence of pressure recovery processes such as reequilibration [Nishimura, 2004;
Ichihara and Nishimura, 2009]; this section considers magma movement with pressure recovery (Figure 4).

For simplicity, we assume that the expanding cavity is thin (i.e., a1 ≪ a3) and that the high-pressure cavity
is a sphere. Then the MTCR of the thin low-pressure cavity moves along the line PB in Figure 3 as a2 changes
between a1 and a3. Under these constraints, we estimate the two remaining variables, a2 and A, for a specific
MTCR. We try to explain the representative value of the MTCR observed at Asama volcano [Maeda and Takeo,
2011]. The average MTCR is

(
Mobs

22 ∕Mobs
11 ,Mobs

33 ∕Mobs
11

)
= (0.6, 0.4), where the superscript “obs” indicates the

observed moment tensor.

First, we calculate a2 using the relation that the MTCR of the expanding cavity is at the intersection between
the line PB and the straight line passing through S and the observed MTCR point. The source geometry is then
numerically determined as a2∕a3 = 0.70. Once the MTCR of the cavities and the total MTCR are fixed, we can
obtain Aobs = 0.35 by using the above mentioned graphical meaning of A.

Due to the dependence of KC and Ψ on the geometry and the monotonic dependence of A on k∕km,
equation (40) in the simple movement model with a1 ≪ a3 and a2∕a3 = 0.70 suggests Amov > 0.80 for
arbitrary km, where the superscript “mov” represents the simple magma movement model.

MIZUNO ET AL. MOMENT TENSORS OF EXPANSION AND FLUID MOVEMENT 9
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Figure 4. Schematic illustration of magma movement and pressure recovery processes. (a) The initial state. The
low-pressure thin ellipsoid with P0 and the high-pressure sphere with P′0. (b) After simple magma movement without
recovery. Each cavity has a pressure of P0 + ΔPmov and P′0 + ΔPmov′ . (c) The final state. After pressure recovery, the final
pressures are P0 + ΔPfin and P′0 + ΔPfin′

, respectively.

We show that the discrepancy between Amov and Aobs can be resolved by considering pressure recovery. We
define ΔPrec as the pressure recovery, which is equal for the two cavities. Then, the final pressure changes in
the individual cavities are

ΔPfin = ΔPmov + ΔPrec, (45)

ΔPfin′ = ΔPmov′ + ΔPrec, (46)

where the superscript “fin” indicates the final values. Dividing equation (46) by ΔPmov′ and replacing
ΔPfin′ ∕ΔPmov′ with ΔVTfin′ ∕ΔVTmov′ , according to equation (27), yields

ΔVTfin′

ΔVTmov′
= 1 + ΔPrec

ΔPmov′
. (47)

Recalling the definition of A and using the relation in equation (27),

Aobs

Amov
ΔVTfin

ΔVTmov
= Aobs

Amov
ΔPfin

ΔPmov
= 1 + ΔPrec

ΔPmov′
. (48)

Substituting equation (45) into the above equation, we obtain

ΔPrec

ΔPmov′
= Aobs

Amov

(
1 + ΔPrec

ΔPmov

)
− 1> Aobs

Amov
− 1. (49)

The inequality relation holds because we assume that both ΔPmov and ΔPrec are positive. For Asama volcano,
we obtained Amov > 0.80 and Aobs = 0.35. It is thus required that more than half of the pressure drop is
recovered in the high-pressure cavity after magma movement.

In the above derivation, we assumed that the pressure change due to magma movement and pressure recov-
ery occur at the same time, though the latter process may have a time delay in reality. Shimomura et al. [2006]
investigated characteristic timescales of the pressure recovery due to reequilibration, demonstrating that the
timescale depends mainly on KC and the volatile diffusivity of magma, and in some conditions it can occur
within a short time.
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4. Possibilities and Limitations in Constraining Volume Source Processes
From Moment Tensors

In volcanology, it is important to interpret the volumetric moment tensor to the mass change of magma
and/or gas [Kazahaya et al., 2011, 2015]. To estimate the mass change, both ΔVC and VΔP need to be
constrained in addition to the magmatic elastic properties.

The MTCR is insensitive to the geometry near a penny-shaped crack [Amoruso and Crescentini, 2009]; the
magma movement model exhibits similar uncertainties. The total MTCR for the movement appears where
M33∕M11 < 1∕3 in Figure 3a, and the uncertainty occurs in the vicinity of PXmov. The dense distribution of the
red dots implies that variable sets of geometries and orientations result in similar MTCR values. The results
reveal a fundamental difficulty in constraining mass change in cases where the observed MTCR is around PX
or PXmov, because of the uncertainties in the source cavity geometry. Mass changes are better constrained
when the observed MTCR is far from these values.

As shown in the previous sections, the trace of a moment tensor for the expansion source is Mii = 3kΔVT ,
whereas that of the magma movement model is Mii = 3k(ΔVT+ΔVT ′ ) = 3kΔVT (1−A). For magma movement,
the apparent volume change isΔVT (1−A), which is generally nonzero but would be significantly smaller than
the real exchange of mass. Amoruso and Crescentini [2013] provided a similar statement under the assumption
of volume conservation, suggesting that the moving fluid is incompressible. As the parameter A depends
on km in the form of equation (40), the apparent volume change can be either larger or smaller than their
estimates depending on the geometry of the two cavities.

There is another interesting aspect to constraining the source model. We have shown that the total MTCR
values resulted from magma movement (Figure 3a). We can see a distinct linear trend along PD in the distribu-
tion of the red dots in the figure. The MTCR for magma movement between two penny-shaped cracks falls on
D when the cracks are perpendicular to each other and along PD for varying angles (green dots in Figure 3b).
On the other hand, Trasatti et al. [2011] noted that the MTCR along PD can be expressed by a crack with both
tensile and shear dislocations, which is completely different from the magma movement model. Alternatively,
this implies that a source apparently dominated by a double couple can be explained by fluid movement
rather than a shear dislocation. Further constraints are necessary to distinguish the two mechanisms.

If dense observation in the near field is available, spatial separation of two ellipsoids allows to determine the
individual MTCRs with their magnitudes [Yang et al. 1992; Nishimura et al. 2000; Maeda and Takeo, 2011]. In
such cases pressure balance and mass conservation, as considered in this work, would give better constraints
on the mass of magma involved in the process.

5. Conclusion

A convenient diagram MTCR for a single ellipsoid is extended for two ellipsoidal cavities. We investigated
moment tensors associated with the expansion and movement of fluid in ellipsoidal cavities and clarified the
possibilities and limitations of source constraints obtained from the observed moment tensors.

It has been shown that the MTCR generated by an expanding ellipsoid is permitted in the area bounded by
three geometrical end-members: a sphere, a penny-shaped crack, and a prolate spheroid. The conventional
MTCR for a cylindrical source is different from that for a thin spheroid because the strains at both ends of a
cylinder have been ignored in the former. The range of the MTCR for an expanding ellipsoid is smaller than
that generated by linear combinations of a sphere, a crack, and the conventional cylindrical source. The latter
range is still possible when considering two or more expanding ellipsoids.

Next, we examined the MTCR for magma movement between two ellipsoids, where mass conservation and
pressure balance are preserved. The MTCR range for magma movement is clearly distinguished from that gen-
erated by expanding ellipsoids. The MTCR is calculated by randomly varying the geometry and the relative
orientation, and the resultant MTCR is concentrated on the line in the diagram connecting the MTCR for a
double-couple source and that for an opening crack. The MTCR in the concentrated range is generated by
two thin ellipsoids with various aspect ratios and relative angles. Although such an MTCR is generally inter-
preted as a crack with both tensile and shear dislocations, it can be generated by fluid movement between two
thin ellipsoids.
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However, this produces a range of the MTCR that cannot be explained by either fluid expansion or movement.
We then considered partial pressure recovery after movement, which likely occurs in volcanic systems. The
resultant total moment tensor covered almost all ranges of the MTCR diagram.

There are great uncertainties in the source processes that can be linked to a particular MTCR, which may
be determined by observed data. Our method would be useful in interpreting the observed MTCR with a
comprehensive view of possible source processes.

Appendix A: Analytical Expression of Ellipsoidal Volume Source
The equation of an ellipsoidal body is

(
x1

a1

)2

+
(

x2

a2

)2

+
(

x3

a3

)2 ≤ 1, (A1)

where a1, a2, and a3 are the three semiprincipal axes. Following Eshelby [1957], the symmetry of the tensor
Sijkl is

Sijkl = Sjikl = Sijlk, (A2)
and Sijkl is expressed as

S1111 = Qa2
1I11 + RI1, (A3)

S1122 = Qa2
2I12 − RI1, (A4)

S1212 = Q
2

(
a2

1 + a2
2

)
I12 +

R
2
(I1 + I2), (A5)

where Q and R are
Q = 3

8*(1 − %) , (A6)

R = 1 − 2%
8*(1 − %) . (A7)

I1, I11, and I12 are

I1 = 2*a1a2a3 ∫
∞

0

ds
(a2

1 + s)Δ(s)
, (A8)

I11 = 2*a1a2a3 ∫
∞

0

ds
(a2

1 + s)2Δ(s)
, (A9)

I12 = 2
3
*a1a2a3 ∫

∞

0

ds
(a2

1 + s)(a2
2 + s)Δ(s)

, (A10)

where
Δ(s) =

(
a2

1 + s
) 1

2
(

a2
2 + s

) 1
2
(

a2
3 + s

) 1
2 . (A11)

These are known as the Carlson elliptic integrals of the second kind, which can be numerically calculated with
arbitrary precision [Carlson, 1979; Press et al., 1992]. These equations are employed to calculate Dij , from which
Ψ (equation (25)) and KC (equation (26)) are evaluated.
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