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Abstract

We analyze dynamic slip transfer from the Denali to Totschunda faults
during the M, 7.9, November 3, 2002, Denali, Alaska, earthquake. This adopts
the theory and methodology of Poliakov et al. [2002] and Kame et al. [2003], in
which it was shown that the propensity of the rupture path to follow a fault
branch is determined by the preexisting stress state, branch angle and
incoming rupture velocity at the branch location. Here we check that theory on
the Denali-Totschunda rupture process using 2D numerical simulations of
processes in the vicinity of the branch junction.

We simulate slip transfer by a 2D elastodynamic boundary integral equation
model of mode II slip-weakening rupture with self-chosen path along the
branched fault system. All our simulations except for 70° and 0.9c, predict that
the rupture path branches off along Totschunda without continuation along
Denali. In that exceptional case there is also continuation of rupture along
Denali at a speed slower than that along Totschunda and with smaller slip.




Figure 1. Rupture path, solid line, of the Mw 7.9 Denali earthquake. A star to towards
the left of center of the figure marks the epicenter of the 3 November 2002 event
[Figure courtesy: Alaska Division of Geological and Geophysical Surveys].




Figure 2. Aftershocks of the M 7.9 event, from Eberhart-Phillips ez al. [2003], also
showing three sub events during the rupture.




Three key parameters influence branching

(1) The pre-stress state. More specifically the orientation of
the principal maximum stress with the main fault, ¥.

(2) Rupture velocity near the branching region, v, .
(3) Orientation of branch with respect to the main fault, @.
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* Complete 2D elastodynamic analysis of the branching phenomenon using
numerical methodology, the Boundary Integral Equation Method, based on

Kame et. al. [2003].

* Aim of current study not to simulate the entire event but just the branching
phenomenon.
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The influence of rupture velocity
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Branching parameters for Denali

- Orientation of the principal maximum stress with the main fault, ¥

* Inversion from focal mechanisms, volcanic, geologic fault and bore-hole breakout
data

Nakamura et. al. [1980] and Estabrook et. al. [1988] : ¥ = 75

e Inversion from focal mechanisms

Ratchkovski and Hansen [2002]: ¥ = 73
Ratchkovski [2003]: ¥ =~ 80°

- Branching angle, @

» Savage and Lisowski [1991]: ¢ = -15° to the extensional side;

- Rupture velocity near the branching region, v,: not well constrained

* Kikuchi and Yamanaka [2002]: Average v.= 0.8c,
s [tlisworthiet. alo 20045y, > ¢ near PS10. v, =().8¢; beyond PSii)




Figure 6. Maximum principal stress orientations prior to the 2002 Denali earthquake
sequence (black baxs) and for the 2002 Denali earthquake sequence aftershocks (white bars),
from Ratchkovskil [2003]. Dashed polygons outline inversion blocks tox: events prior: to
October 20025 Solid polygsonsiare theunyersion regions usimg the aitershocks: Solidines axe
the mapped fault traces. Subevent locationsiiiberhart=PhillipsieralssZ0i

of the magnitude 7.9 earthquake are shown as' hexagons.
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Variation of rupture velocity
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Figure 12.
Variation of rupture velocity along the Denali and the Totschunda fault segments for
W=70° v, = 0.6c, and W = 70°; v, = 0.9¢, cases. Rupture velocity is determined as the

time taken to advance three spatial cells and thus the possible values of rupture
velocity axe quantized.




Summary and Conclusions

- 2D elastodynamic analysis of the branching phenomenon using

theoretical and numerical methodologies outlined by Poliakov et al.
[2002] and Kame et al. [2003].

- Strength of the fault assumed to follow slip-weakening behavior.

- Performed numerical investigations for various parameters that
influence branching as outlined by Kame et al. [2003].

- Except for the case when ¥ = 70’ and v_= 0.9¢_ all simulations
show that the rupture continues exclusively on the Totschunda fault
beyond the branching point, in agreement with observations.




