Publications

[48] Morioka, H., H. Kumagai, and T. Maeda (2017), Theoretical basis of the amplitude source location method for volcano-seismic signals, J. Geophys. Res., 122, 6538-6551, doi:10.1002/2017JB013997.
(article link)

[47] Maeda, T., S. Takemura, and T. Furumura (2017), OpenSWPC: An open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media, Earth Planets Space, 69, 102, doi:10.1186/s40623-017-0687-2.
(article link)

[46] Wang, D., H. Kawakatsu, J. Zhuang, J. Mori, T. Maeda, H. Tsuruoka, and X. Zhao (2017), Automated determination of magnitude and source length of large earthquakes using back-projection and P wave amplitudes, Geophys. Res. Lett., 44, 5447-5456, doi:10.1002/2017GL073801.
(article link)

[45] Toya, M., A. Kato, T. Maeda, K. Obara, T. Takeda, and K. Yamaoka (2017), Down-dip variations in a subducting low-velocity zone linked to episodic tremor and slip: a new constraint from ScSp waves, Scientific Reports, 7, 2868, doi:10.1038/s41598-017-03048-6.
(article link)

[44] Todoriki, M., T. Furumura, and T. Maeda (2017), Effects of seawater on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes, Geophys. J. Int., 208(1), 226-233, doi:10.1093/gji/ggw388.
(article link)

[43] Maeda, T., K. Nishida, R. Takagi, and K. Obara (2016), Reconstruction of a 2D seismic wavefield by seismic gradiometry, Prog. Earth Planet. Sci., 3, 31, doi:10.1186/s40645-016-0107-4.
(article link) (Japanese Abstract)

Key Movie

Key Movie

Wavefield and propagation direction analyzed by seismic gradiometry. Each panel shows the observed vertical-component displacement amplitude (color scale) at stations in the 25–50 s period band (left), the continuous displacement wavefield reconstructed by seismic gradiometry (center), and propagation direction and its slowness estimated from the gradiometry parameters (right). The absolute value of slowness is shown by the color scale. Arrow length is proportional to the absolute value of the slowness. The star in the right panel shows the epicenter location.


[42] Yoshimitsu, N., T. Furumura, and T. Maeda (2016), Geometric effect on a laboratory-scale wavefield inferred from a three-dimensional numerical simulation, J. Appl. Geophys., 132, 184-192, doi:10.1016/j.jappgeo.2016.07.002.
(article link)

[41] Takemura, S., T. Maeda, T. Furumura, and K. Obara (2016), Constraining the source location of the 30 May 2015 (Mw 7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms: occurrence of deep-focus earthquake at the bottom of a subducting slab, Geophys. Res. Lett., 43(9), 4297-4302, doi:10.1002/2016GL068437.
(article link)

[40] Gusman, A. R., A. F. Sheehan, K. Stake, M. Heidarzadeh, I. E. Mulia, and T. Maeda (2016), Tsunami data assimilation of high-density offshore pressure gauges off Cascade from the 2012 Haida Gwaii earthquake, Geophys. Res. Lett., 43(9), 4189-4196, doi:10.1002/2016GL068368.
(article link) (highlight in EOS) (accompanying code)

[39] Maeda, T., H. Tsushima, and T. Furumura (2016), An effective absorbing boundary condition for linear long-wave and linear dispersive-wave tsunami simulations, Earth Planets Space, 68, 63, doi:10.1186/s40623-016-0436-y.
(article link) (accompanying code)

Key Movie

Key Movie

A simulation of tsunami propagation for the linear long wave (LLW) model using (a) one-way, (b) sponge, and © PML boundary conditions. In each time step, top panels a–c show tsunami height for each simulation. The bottom panels (d)–(f) show the residual tsunami heights obtained by subtracting from the tsunami heights the heights of the reference numerical simulation over a wider region.


[38] Annoura, S., K. Obara, and T. Maeda (2016), Total energy of deep low-frequency tremor in the Nankai subduction zone, southwest Japan, Geophys. Res. Lett., 43(6), 2562-2567, doi:10.1002/2016GL067780.
(article link)

[37] Noguchi, S, T. Maeda, and T. Furumura (2016), Ocean-influenced Rayleigh waves from outer-rise earthquakes and their effects on durations of long-period ground motion, Geophys. J. Int., 205(2), 1099-1107, doi:10.1093/gji/ggw074.
(article link)

[36] Takagi, R., K. Obara, and T. Maeda, Slow slip event within a gap between tremor and locked zones in the Nankai subduction zone, Geophys. Res. Lett., 43, 1066-1074, doi:10.1002/2015GL066987, 2016.
(article link)

[35] Sandanbata, O., K. Obara, T. Maeda, R. Takagi, and K. Satake (2015), Sudden changes in the amplitude-frequency distribution of long-period tremors at Aso volcano, southwest Japan, Geophys. Res. Lett., 42, 10256-10262, doi:10.1002/2015GL0066443.
(article link)

[34] Maeda, T., K. Obara, M. Shinohara, T. Kanazawa, K. Uehira (2015), Successive estimation of a tsunami wavefield without earthquake source data: A data assimilation approach toward real-time tsunami forecasting, Geophys. Res. Lett., 42, 7923-7932, doi:10.1002/2015GL065588.
(author's postprint) (article link) (highlight) (accompanying code)

Key Movie

Key Movie

Simulation of data assimilation for a tsunami from a far-field source, modeled as a long-wavelength plane wave. (a) Assumed wavefield and (b) Data-assimilated wavefield. Bathymetry contour interval is 500 m. S-net hypothetical stations used for the data assimilation are shown as black dots. Color scale of tsunami height is shown at right.


[33] Takagi, R., K. Nishida, Y. Aoki, T. Maeda, K. Masuda, M. Takeo, K. Obara, K. Shiomi, M. Sato, and K. Saito (2015), A single bit matters: Coherent noise of seismic data loggers, Seism. Res. Lett., 86(3), 901-907, doi:10.1785/0220150030.
(article link)

[32] Takemura S., T. Furumura, and T. Maeda (2015), Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity, Geophys. J. Int., 201(1), 459-474, doi:10.1093/gji/ggv038.
(article link)

[31] Padhy, S., T. Furumura, and T. Maeda (2014), Decoupling of Pacific subduction zone guided waves beneath central Japan: Evidence for thin slab, J. Geophys. Res., 119(11), 8478-8501, doi:10.1002/2014JB011562.
(article link)

[30] Maeda, T., T. Furumura, and K. Obara (2014), Scattering of teleseismic P-waves by the Japan Trench: A significant effect of reverberation in the seawater column, Earth Planet. Sci. Lett., 397(1), 101-110, doi:10.1016/j.epsl.2014.04.037,.
(article link)

Key Movie

Key Movie

Snapshots of simulated vertical-component amplitudes on ground surface or seafloor with seawater column included in model.


[29] Zhang, L., H. Utada, H. Shimizu, K. Baba, and T. Maeda (2014), Three-dimensional simulation of the electromagnetic fields induced by the 2011 Tohoku tsunami, J. Geophys. Res., 119, 150-168, doi:10.1002/2013JB010264.
(article link)

[28] Oishi, Y., M. Piggott, T. Maeda, S. Kramer, G. Collins, H. Tsushima, T. Furumura (2013), Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model, J. Geophys. Res., 118(6), 2998-3018, doi:10.1002/jgrb.50225.
(article link)

[27] Maeda, T., T. Furumura, S. Noguchi, S. Takemura, S. Sakai, M. Shinohara, K. Iwai, S. J. Lee (2013), Seismic and tsunami wave propagation of the 2011 Off the Pacific Coast of Tohoku Earthquake as inferred from the tsunami-coupled finite difference simulation, Bull. Seism. Soc. Am., 103(2B), 1456-1472, doi:10.1785/0120120118.
(article link)

Key Movie

Key Movie

Visualization of displacement seismic and tsunami wave field simulated by the tsunami-coupled equation of motion on the ground and sea surfaces and sea bottom. Red and green colors show normalized upheaval and subsidence of the sea surface, whereas the displacement of sea bottom and ground surface is represented by topography and height color, respectively.


[26] Padhy, S., S. Takemura, T. Takemoto, T. Maeda, and T. Furumura (2013), Spatial and temporal variations in coda attenuation associated with the 2011 Off the Pacific Coast of Tohoku, Japan (Mw 9) Earthquake, Bull. Seism. Soc. Am., 103(2B), 1411-1428, doi:10.1785/0120120026.
(article link)

[25] Maeda, T., and T. Furumura, FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion (2013), Pure Appl. Geophys., 170(1-2), 109-127, doi:10.1007/s00024-011-0430-z.
(article link)

Key Movie

Key Movie

A movie showing the vertical displacement of the sea bottom and sea surface. Red (orange, yellow) and blue colors denote upheaval and subsidence of surface, respectively. A scheme proposed in this study enabled us to simulate seismic ground motion, tsunami generation and its propagation in a unified sense using the elastodynamic equation of motion with taking gravity effect into account.


[24] Noguchi, S., T. Maeda, and T. Furumura, FDM simulation of an anomalous later phase from the Japan Trench subduction zone earthquakes (2013), Pure Appl. Geophys., 170(1-2), 95-108, doi:10.1007/s00024-011-0412-1.
(article link)

[23] Matsuzawa, T., K. Obara, T. Maeda, Y. Asano, and T. Saito (2012), Love and Rayleigh wave microseisms excited by migrating ocean swells in the North Atlantic detected in Japan and Germany, Bull. Seism. Soc. Am., 102(4), 1864-1871, doi:10.1785/0120110269.
(article link)

[22] Takemoto, T., T. Furumura, T. Saito, T. Maeda, and S. Noguchi (2012), Spatial- and frequency-dependent properties of site amplification factors in Japan derived by the coda normalization method, Bull. Seism. Soc. Am., 102(4), 1462-1476, doi:10.1785/0120110188.
(article link)

[21] Obara, K., T. Matsuzawa, S. Tanaka, and T. Maeda (2012), Depth-dependent mode of tremor migration beneath Kii Peninsula, Nankai subduction zone, Geophys. Res. Lett., 39, L10308, doi:10.1029/2012GL051420.
(article link)

[20] Utada, H., H. Shimizu, T. Ogawa, T. Maeda, T. Furumura, T. Yamamoto, N. Yamazaki, Y. Yoshitake, and S. Nagamachi (2011), Geomagnetic field changes in association with the 2011 Off the Pacific Coast of Tohoku Earthquake and Tsunami, Earth Planet. Science Lett., 311(1-2), 11-27, doi:10.1016/j.epsl.2011.09.036.
(article link)

[19] Maeda, T., K. Obara, T. Furumura, and T. Saito (2011), Interference of long-period seismic wavefield observed by dense Hi-net array in Japan, J. Geophys. Res., 116, B10303, doi:10.1029/2011JB008464.
(article link) (accompanying code)

[18] Maeda, T., T. Furumura, S. Sakai, and M. Shinohara (2011), Significant tsunami observed at the ocean-bottom pressure gauges during the 2011 Off the Pacific Coast of Tohoku Earthquake, Earth Planets Space, 63(7), 803-808, doi:10.5047/eps.2011.06.005.
(2013 EPS Award) (article link)

[17] Furumura, T., S. Takemura, S. Noguchi, T. Takemoto, T. Maeda, K. Iwai, and S. Padhy (2011), Strong ground motions from the 2011 Off the Pacific Coast of Tohoku, Japan (Mw=9.0) earthquake obtained from a dense nation-wide seismic network, Landslides, 8(3), 333-338, doi:10.1007/s10346-011-0279-3.
(article link)

[16] Obara, K., T. Matsuzawa, S. Tanaka, T. Kimura, and T. Maeda (2011), Migration properties of non-volcanic tremor in Shikoku, southwest Japan, Geophys. Res. Lett., 38, L09311, doi:10.1029/2011GL047110.
(article link)

[15] Kato, A., S. Sakai, T. Iidaka, T. Iwasaki, E. Kurashimo, T. Igarashi, N. Hirata, T. Kanazawa, K. Katsumata, H. Takahashi, R. Honda, T. Maeda, M. Ichiyanagi, T. Yamaguchi, M Kosuga, T. Okada, J. Nakajima, S. Hori, T. Nakayama, A. Hasegawa, T. Kono, S. Suzuki, N. Tsumura, Y. Hiramatsu, K. Sugaya, A. Hayashi, T. Hirose, A. Sawada, K. Tanaka, Y. Yamanaka, H. Nakamichi. T. Okuda, Y. Iio, K. Nishigami, M. Miyazawa, H. Wada, N. Hirano, H. Katao, S. Ohmi, K. Ito, I. Doi, S. Noda, S. Matsumoto, T. Matsushima, A. Saiga, H. Miyamachi, K. Imanishi, T. Takeda, Y. Asano, Y. Yukutake, T. Ueno, T. Maeda, T. Matsuzawa, S. Sekine, M. Matsubara, and K. Obara (2011), Anomalous depth dependency of the stress field in the 2007 Noto Hanto, Japan, earthquake: Potential involvement of a deep fluid reservoir, Geophys. Res. Lett., 38, L06306, doi:10.1029/2010GL046413.
(article link)

[14] Furumura, T., K. Imai, and T. Maeda (2011), A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan, J. Geophys. Res., 116, B02308, doi:10.1029/2010JB007918.
(article link)

[13] Maeda, T., K. Obara, and Y. Yukutake (2010), Seismic velocity decrease and recovery related to earthquake swarms in a geothermal area, Earth Planets Space, 62(9), 685-691, doi:10.5047/eps.2010.08.006.
(The 2011 Research Paper Award of the Seismological Society of Japan) (article link)

[12] Hirose, H., Y. Asano, K. Obara, T. Kimura, T. Matsuzawa, S. Tanaka, and T. Maeda (2010), Slow earthquakes linked along dip in the Nankai subduction zone, Science, 330(6010), 1502, doi:10.1126/science.1197102.
(article link)

[11] Ueno, T., T. Maeda, K. Obara, Y. Asano, and T. Takeda (2010), Migration of low frequency tremor revealed from multiple array analyses in western Shikoku, Japan, J. Geophys. Res., 115, B00A26, doi:10.1029/2008JB006051.
(article link)

[10] Kumagai, H., M. Nakano, T. Maeda, H. Yepes, P. Palacios, M. Ruiz, S. Arraiz, M. Vaca, I. Molina, T. Yamashina (2010), Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches,
J. Geophys. Res., 115, B08302, doi:10.1029/2009JB006889.
(article link)

[09] Obara, K., S. Tanaka, T. Maeda, T. Matsuzawa (2010), Depth-dependent activity of non-volcanic tremor in southwest Japan, Geophys. Res. Lett., 37, L13306, doi:10.1029/2010GL043679.
(article link)

[08] Ito, Y., K. Obara, T. Matsuzawa, and T. Maeda (2009), Very-low-frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition, J. Geophys. Res., 114, B00A13, doi:10.1029/2008JB006036.
(article link)

[07] Matsuzawa, T., K. Obara, and T. Maeda (2009), Source duration of deep very-low-frequency earthquakes in western Shikoku, Japan, J. Geophys. Res., 114, B00A11, doi:10.1029/2008JB006044.
(article link)

[06] Maeda, T., and K. Obara (2009), Spatio-temporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan, J. Geophys. Res., 114, B00A09, doi:10.1029/2008JB006043.
(article link)

[05] Kumagai, H., P. Palacios, T. Maeda (2009), D. B. Castillo, and M. Nakano, Seismic tracking of lahars using tremor signals, J. Volcanol. Geoth. Res., 183(1-2), 112-121, doi:10.1016/j.jvolgeores.2009.03.010.
(article link)

[04] Obara, K., and T. Maeda, Reverse propagation of T waves from the Emperor Seamount Chain (2009), Geophys. Res. Lett., 36, L08304, doi:10.1029/2009GL037454.
(article link)

[03] Maeda, T., H. Sato, and T. Nishimura (2008), Synthesis of coda wave envelopes in randomly inhomogeneous elastic media in a half space: Single scattering model including Rayleigh waves, Geophys. J. Int., 172(1), 130-154, doi:10.1111/j.1365-246X.2007.03603.x.
(article link)

[02] Maeda, T., H. Sato, and M. Ohtake (2006), Constituents of vertical-component coda waves at long periods, Pure and Appl. Geophys., 163(2-3), 549-566, doi:10.1007/s00024-005-0031-9.
(article link)

[01] Maeda, T., H. Sato, and M. Ohtake (2003), Synthesis of Rayleigh-wave envelope on the spherical Earth: Analytic solution of the single isotropic-scattering model for a circular source radiation, Geophys. Res. Lett., 30(6), 1286, doi:10.1029/2002GL016629.
(article link)


Sato, H., M. C. Fehler, and T. Maeda (2012), Seismic wave propagation and scattering in the heterogeneous earth, second edition, Springer.
(publisher link)


井上俊介・堤重信・前田拓人・南一生 (2013), スーパーコンピュータ「京」における地震動シミュレーションコードの高性能化, 情報処理学会論文誌 コンピューティングシステム, 6(3), 22-30.
(article link)

南一生・井上俊介・堤重信・前田拓人・長谷川幸弘・黒田明義・寺井優晃・横川三津夫 (2012), 「京」コンピュータにおける疎行列とベクトル積の性能チューニングと性能評価, ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集, 2012, 23-31.
(article link)


Kato, A., S. Sakai, T. Iidaka, T. Iwasaki, E. Kurashimo, T. Igarashi, N. Hirata, T. Kanazawa, and Group for the aftershock observations of the 2007 Noto Hanto Earthquake (2008), Three-dimensional velocity structure in the source region of the Noto Hanto Earthquake in 2007 imaged by a dense seismic observation, Earth Planets Space, 60, 105-110.

Research group for deep structure of Nagamachi-Rifu Fault (2002), Seismic reflection survey in Nagamachi-Rifu Fault, Sendai, Northeastern Japan, Tohoku Geophys. J. (Sci. Rep. Tohoku Univ. Ser. 5), 36(3), 311-356.


今井健太郎・前田拓人・飯沼卓史・蝦名裕一・菅原大介・今村文彦・平川新 (2015), 組み合わせ最適化手法を利用した歴史津波の波源推定法—1611年慶長奥州地震の事例—, 東北地域災害科学研究, 51, 139-144.
(article link)

前田拓人 (2013), 「京」が描き出す地震波と津波, 地震学会広報誌なゐふる, 92, 2-3.
(article link)

小原一成・前田拓人 (2009), T波, 地震学会広報誌なゐふる, 75, 2-3.
(article link)

Maeda, T., and K. Obara (2009), Hypocenter distribution of deep low-frequency tremors in Nankai subduction zone, Japan, Rep. Natl. Res. Inst. Earth Sci. Disast. Prev., 74, 12-20.
(article link)

前田拓人 (2007), 偏極方向と非等方多重散乱を考慮した3成分S波コーダエンベロープの数値合成, 月刊地球, 29(4), 232-236.

酒井慎一・加藤愛太郎・蔵下英司・飯高隆・五十嵐俊博・平田直・岩崎貴哉・金沢敏彦・渡辺茂・羽田敏夫・小林勝・三浦勝美・三浦禮子・田上貴代子・荻野泉・坂守・渡邉篤志・宮川幸治・勝俣啓・高橋浩晃・笠原稔・本多亮・前田宜浩・一柳昌義・山口照寛・小菅正裕・岡田知己・中島淳一・堀修一郎・中山貴史・新居恭平・長谷川昭・河野俊夫・鈴木秀市・津村紀子・小林里紗・野崎謙治・平松良浩・菅谷勝則・林亜以子・広瀬哲也・澤田明宏・田中敬介・山中佳子・中道治久・奥田隆・飯尾能久・西上欽也・宮澤理稔・和田博夫・平野憲雄・中尾節郎・片尾浩・大見士朗・伊藤潔・澁谷拓郎・加納靖之・土井一生・野田俊太・片木武・西辻陽平・松本聡・松島健・雑賀敦・宮町宏樹・今西和俊・桑原保人・長郁夫・干野真・武田哲也・浅野陽一・行竹洋平・上野友岳・前田拓人・松澤孝紀・関根秀太郎・松原誠・小原一成 (2007), 平成19年(2007年)能登半島地震合同余震観測, 地震研究所彙報, 82(3), 225-233.
(article link)

田中聡・浜口博之・山脇輝夫・西村太志・植木貞人・中道治久・宮町宏樹・筒井智樹・松尾のり道・及川純・大湊隆雄・宮岡一樹・鬼澤真也・森健彦・相澤幸司・中原恒・堀修一郎・佐藤俊也・河野俊夫・仁田交市・立花憲司・鍵山恒臣・萩原道徳・長田昇・井本良子・辻浩・岡田弘・前川徳光・鈴木敦生・小菅正裕・山本英和・佐野剛・奥田隆・山本圭吾・吉川慎・外輝明・松本聡・八木原寛・平野舟一郎・金尾正紀・巻和夫,小林徹,神出裕一郎,高橋透,鶴我佳代子,佐藤峰司,橋野弘憲,諏訪謡子,武田嘉人,山下哲央, Ulrich Wegler,内田直希,池田雅也・高橋努・前田拓人・馬渕弘靖・千田良道・相澤信吾・久野智晴・大谷佳子・山下幹也・小林勝幸・長濱庸介・平山繁幸・岩切誠一郎・伊藤壮介・吉川美由紀・中村めぐみ・大島光貴・森脇健 (2002), 岩手山における人工地震探査-観測および初動の読み取り-, 東京大学地震研究所彙報, 77(1), 1-25.
(article link)