地震波形の時間周波数解析ツールの開発
—首都圏地震観測網（MeSO-net）構築におけるノイズ調査への適用—

宫川幸治*†, 酒井慎一**

Development of a Spectrogram Analysis Tool for Seismic Waveform Data and its Application to MeSO-net for Noise Survey

Koji MIYAKAWA*† and Shin’ichi SAKAI**

Abstract

We developed a spectrogram analysis tool working on Matlab to check on a seismic waveform data easily. This tool can display waveforms, power spectrum densities (PSD), and PSD spectrograms of ground motion recorded in WIN format. It can be used to evaluate a temporal variation of ground motion, and compare waveforms and spectrums for data from different channels. In this paper, we outline this tool and show its application to MeSO-net (Metropolitan Seismic Observation network) data recorded at Yayoi station (YYIM).

From the analysis of whole day waveform, it is found that the noise level from 6 AM to 6 PM is more than ten times larger than that in the midnight because of a higher human activity, and the noise caused by train is recorded from 5 AM to 0:30 AM, which are trains’ operation hours.

We then compare ground noise levels between YYIM, YYI and ASO. YYIM station is located in Tokyo University and its sensor is installed about 20 m beneath the ground. The sensor at YYI is installed at the surface just beside the YYIM borehole. ASO is a permanent seismic station operated by Tokyo University, and one of the quietest sites in Kanto plain. From the analysis using this tool, YYIM (20 m deep) is 10 to 20 dB quiet than YYI in the range more than 5 Hz, and ASO is more than 20 dB quiet than YYIM in the range lower than 20 Hz.

Key words : Spectrogram, Ground noise, Matlab, WIN format, MeSO-net

はじめに

地震活動や地下構造の解析などにおいて、その基礎となるのは地震観測で得られるデータである。そのデータには地震波などの目的とする信号の他にノイズも含まれる。ノイズには様々なものがあり、地動に起因するものとしては、波浪、大気圧変動、降雨、雪、地火といった自然現象によるものや、人間の通行、車や電車の運行、エアコンやモーターといった機械の稼働、採掘所での発破といった人工的なものが挙げられる。また観測システムに起因するものとしては、地震計や記録装置の回路から発生するノイズ（自己ノイズ）や、気温変動による特性変化、ハムや電気機器などの電磁放射ノイズによるものなどが挙げられる。

このような様々なノイズが実際に観測されるデータにどの程度含まれているかを評価し、ノイズに対する理解を深めると共にその極端に劣ることを目的として、簡易的な時間周波数解析ツールを開発した。このツールは地震観測データから、予め設定された軸スケールなどのパラメーターに基づいて、時系列波形・パワースペクトラル密度（Power Spectrum Density; PSD）・スペクトログラムなどのグラフを簡易に出力するものである。日々蓄積されていくデータに対して同じ処理を施してグラフ化することでその時間変化を調べたり、同時間帯の複数観測点のデータのノイズレベルを比較したりすることが可能である。またノイズの中から観測システムに起因するものを見つけ出すことに
解釈ツールの概要

本解釈ツールは WIN フォーマット (卜部・東田, 1992, 卜部, 1994) の地震波形 (WIN 波形) を入力として、数値解析ソフトウェア Matlab で解析するプログラムである。Matlab は数値計算を簡潔に記述・実行できるプログラミング言語であり、グラフ表示機能が優れている。またコマンドインタプリタ形式であるためにデバッガが容易という特徴を持っている。動作環境はマルチプラットフォーム (Windows, Linux, Solaris, Mac) に対応しており、同じプログラムファイル (M ファイル) をそのまま利用することができる。なお必要な動作環境や動作確認した環境については表 1 にまとめる。

本解釈ツールの機能及び主な特徴は以下の通りである。

1) main.m コマンドを実行するだけで時系列波形・スペクトル・スペクトログラムなどのグラフが Figure と呼ばれる描画ウィンドウ上に表示される。

2) 複数チャンネルデータの読み込みが可能で、異なるサンプリング周波数のチャンネルデータにも対応している。但し各チャンネルデータは同じ時間帯のものでなければならない。

3) 地震波形に対して、ハイパス・ローバス・バンドパスフィルターや微分・積分を適用することができる。

4) チャンネルテープルファイルに記載されているセンサーの固定周波数とダンピング定数の情報を使って、センサー特性の補正を行うことができる。

5) スペクトルを表示する際に、世界の代表的な地震観測点の地動ノイズレベルの開発を含む上限・下限を示した USGS New High Noise Model (NHNM) と New Low Noise Model (NLNM) (Peterson, 1993) を重ねて表示させることができる。

6) 入力された WIN フォーマットのデータを Matlab 形式のファイル（MAT ファイル）で保存することができます。また保存時のデータ量を抑えるために、原データに対してデータを二段階に分割することができる。

7) 切り出すチャンネルや時間範囲、表示するグラフの単位や軸範囲の設定は main.m 上で予め指定することができる。

8) 入力ファイルは 1 つのみであるので、複数に分かれていているが時間的に連続した WIN 波形を解析したい場合には、事前に cp や cat コマンドなどでそれらを 1 つの WIN 波形にしておく必要があります。また解析したいチャンネルの WIN 波形が別々になっている場合は、WIN パッケージに含まれている wadd コマンドで統合させる必要がある。

本解釈ツールのプログラム処理の流れを図 1 に、各プログラム M ファイルの役割を表 2 に示す。ユーザーはプログラムを実行する前に、main.m ファイルをテキストエディタで開いて、解析する WIN 波形へのパスと WIN チャンネルテーブルへのパスをそれぞれ WINfn 名と ChTBLfn 名数の値として指定する (表 3)。その後 Matlab コマンドウィンドウ上で main と入力して実行すると、WIN ファイルとチャンネルテーブルファイアレットが読み込まれて各種情報が表示される。

元チャネルのみを含む WIN 波形が読み込まれた場合、Figure が 2 つ開き、図 2・図 3 に示されるようなグラフが表示される。図 2 は、上から順に: a) 時系列波形、b) PSD の大きさで色付けしたスペクトログラム、c) 全時間データを用いた PSD となっている。2 段目のスペクトログラムは、細かく区切った時刻ごとに PSD を計算して

表 1. 解析ツールを実行する上で必要な動作環境、及び動作確認済み環境

<table>
<thead>
<tr>
<th>必要な動作環境</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab 製品</td>
</tr>
<tr>
<td>対応 OS</td>
</tr>
<tr>
<td>解析ツール</td>
</tr>
<tr>
<td>http://www.eri.u-tokyo.ac.jp/miyakawa/NoiseTool.tgz</td>
</tr>
</tbody>
</table>

表 2. 効果確認済み環境

<table>
<thead>
<tr>
<th>必要な動作環境</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
</tr>
</tbody>
</table>
図1. Matlab上における解析ツールの処理の流れ。まずmain.mファイル内の変数名WINfnとChTBLfnの部分にWINファイルとチャンネルテーブルファイルへのパスを記入する。その後main.mを実行すると、単チャンネルのスペクトログラムと時系列波形のFigureがそれぞれ表示される。複数チャンネルのデータが読み込まれた場合には更に、個別時系列、個別PSD、重ね書きPSDのFigureがそれぞれ表示される。

表2. 解析ツールのプログラムMファイル一覧

<table>
<thead>
<tr>
<th>ファイル名称</th>
<th>効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>main.m</td>
<td>メインプログラム、以下全ての関数を呼び出す</td>
</tr>
<tr>
<td>ReadWIN.m</td>
<td>WINファイルとチャンネルテーブルの読み込み</td>
</tr>
<tr>
<td>Filter.m</td>
<td>バンドパスフィルターとデータを数値化</td>
</tr>
<tr>
<td>PSD_SPGRM.m</td>
<td>微積分やセンサ特性の適用や，PSD・スペクトログラムを計算する</td>
</tr>
<tr>
<td>Plot_SPGRM.m</td>
<td>スペクトログラムをFigureに描画する</td>
</tr>
<tr>
<td>Plot_Drum.m</td>
<td>ドラム記録のような時系列波形をFigureに描画する</td>
</tr>
<tr>
<td>Plot_WVs.m</td>
<td>複数チャンネルの時系列データを，Figure内の別々の棒に描画する</td>
</tr>
<tr>
<td>Plot_PSDs.m</td>
<td>複数チャンネルのPSDを，Figure内の別々の棒に描画する</td>
</tr>
<tr>
<td>Plot_PSD.m</td>
<td>複数チャンネルのPSDを，Figure内の別々の棒に重ねて描画する</td>
</tr>
</tbody>
</table>
その大きさの時間変化を色付けしている。3段目のPSDは、細かく区切った時間窓ごとのPSDを全時間帯にわたって平均化したものである。図3は、データを1日単位でドラム記録のように表示させた時系列波形である。複数チャンネルを含むWINファイルが読み込まれた場合には、各チャンネルの時系列波形やPSDを個別にプロットしたFigureや、全チャンネルのPSDを1つの枠に重ねてプロットしたFigureが表示される。

Matlab上に取り込まれたWINファイルとチャンネルテーブルファイルの情報は、File, ChTbl, DATA, PSD, SPGRMという変数に格納される。表4に各変数の構造を示す。これらの構造を理解しておけば、個別にプログラムをカスタマイズして好みの描画をすることも可能である。

MATファイルにデータを保存する場合、これら5つの変数のみが「WINファイル名+.mat」という名称で保存される。MATファイルは圧縮形式のファイルであるが、実数データを倍精度（64bit）で保存するため、データを4~32bitで保存するWINファイルに比べてファイルサイズは大きくなる。その増加率は常時記録される振動レベルの大きさやAD変換器の分解能に依存するが、24bitのAD変換器で自然地震観測を行ったデータの場合、約4~6倍のファイルサイズとなる。
図 2. 弥生観測点 (YYIM) で 2008 年 3 月 9 日 (日) に観測された 24 時間データのスペクトログラム、a）時系列波形、b）PSD の大きさで色分けしたスペクトログラム、c）全時間データを用いた PSD、常時振動が存在している周波数帯として (1) 2 ～ 5 Hz、(2) 10 ～ 15 Hz、(3) 48 ～ 50 Hz が認められる。PSD （図 c）からは狭帯域の大きな線スペクトルとして、36.2 Hz、36.9 Hz、45.4 Hz、49 Hz、52.1 Hz が認められる。6 時 13 分には M_{mu} 4.3 の茨城県南部の地震が記録されている。

図 3. 弥生観測点 (YYIM) で 2008 年 3 月 9 日 (日) に観測された 24 時間データをドライプ記録のように表示させた時系列波形。横軸は各時の 0 分～60 分を示し、縦軸は上から下に向かって 0 時～23 時の順で並んでいるので、左上から右下に向かって時間が進んでいる。6 時 13 分には M_{mu} 4.3 の茨城県南部の地震が記録されている。
表 4. MAT ファイルに保存される変数

<table>
<thead>
<tr>
<th>变数</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>WIN ファイル情報などを持つ構造体（以下 3 つは代表的なフィールドであり他にもある）</td>
</tr>
<tr>
<td>File.name</td>
<td>WIN ファイルへのパス</td>
</tr>
<tr>
<td>File.StVec</td>
<td>取り込んだデータの開始时刻（年 月 日 時 分 秒）</td>
</tr>
<tr>
<td>File.SmpFreq</td>
<td>サンプリング周波数</td>
</tr>
<tr>
<td>ChTbl</td>
<td>チャンネルテーブル情報を持つ構造体（以下 3 つは代表的なフィールドであり秋にもある）</td>
</tr>
<tr>
<td>ChTbl.ChIDLN</td>
<td>各チャンネル ID</td>
</tr>
<tr>
<td>ChTbl.StdNm</td>
<td>各チャンネルの観測点コード</td>
</tr>
<tr>
<td>ChTbl.ComplID</td>
<td>各チャンネルの成分</td>
</tr>
<tr>
<td>DATA1(M,X,L)</td>
<td>時系列データを持つセル配列、異なるサンプリング周波数毎にグループ化されたセル配列</td>
</tr>
<tr>
<td>PSD(M,Y,L)</td>
<td>PSD データを持つセル配列、異なるサンプリング周波数毎にグループ化されたセル配列</td>
</tr>
</tbody>
</table>

MeSO-net 弥生観測点で観測された振動波形

MeSO-net は、文部科学省の委託研究「首都直下地震防災・減災特別プロジェクト」の一環として東京大学地震研究所が中心となって構築を進めている、約 400 点からなる地震観測網である（図 4）。首都圏での地震観測网のうち、首都圏直下の震源分布や地震波速度構造・Q 値構造を高精度に決定することで、首圏直下に存在するプレート構造を明確することが主な目的である。首都圏には高密度の観測網を構築するために、観測点は主に公立学校などの敷地内に設置されている。また人工ノイズの影響を極力避けるために、地震計のデジタイザと地下約 20 m のポアホール内に設置されている（図 5）。地下でデジタル化されたデータは、リアルタイムデータの１つである CAN バスによって地上筐体に格納されているコントロールユニットに送られ、更にインターネット回線などを経由して地震研究所に常時伝送されている。観測装置の主な仕様は表 5 にまとめた。

図 6 は、2008 年 1 月に東京大学地震研究所 1 号館の北東隅に設置された弥生観測点（YYIM）の写真である。この YYIM で観測されたデータに対して今回開発した解析ツールを適用し、その結果出力された Figure を用いて以下にその振動の特徴について述べる。

図 2 と図 3 は、2008 年 3 月 9 日（日）に YYIM で記録された上下動成分の 24 時間データを示しており、以下の現象が確認される。

1）2008 年 3 月 9 日（日）6 時 13 分に茨城県南西部の深さ 47 km で発生した自然地震（気象庁マグニチュード Mjma 4.4）が時系列波形（図 2 上段と図 3）ではっきりと確認できる。またスペクトログラム（図 2 下段）、1～45 Hz にかけてピークが認められる。全期間データを使った PSD（図 2 下段）においても、1～8 Hz の部分のパワーが高いまっているのはこの地震波形データに含まられているためである。

2）朝 6 時～夕方 18 時にかけて、時系列波形では全体的に振幅が増大すると共にスペクトルのものが多く見受けられ、スペクトログラム（図 2 中段）でもこの時間帯は全体的に赤くなっていることからパワーが強まっていることが分かり、また時系列波形で確認されるスペクトルのある時刻には、全周波数帯域に渡って強
図 4. MeSO-net 観測点配置図（黒点）。白丸は既存の定常観測点（気象庁・防災科学技術研究所・温泉地学研究所・地震研究所）を示す。

図 5. MeSO-net 観測点の構成図。地震計とデジタイザは地下約20mのボアホール内に設置され、また地上筐体の中には気温計と気圧計も設置されている。これらの観測データは電話回線を通じて連続的に地震研究所に送信されている。

図 6. MeSO-net 引生観測点（YYIM）。東京大学地震研究所1号館の北東端に設置されている。
表 5. MeSO-net 観測装置の主な仕様

<table>
<thead>
<tr>
<th>地震計</th>
<th>日本航空電子製 JA-40GA-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイプ</td>
<td>サーボ型加速度計</td>
</tr>
<tr>
<td>最大計測範囲</td>
<td>±2G</td>
</tr>
<tr>
<td>電圧感度</td>
<td>0.510±5% V/(m/s/s)</td>
</tr>
<tr>
<td>測定周波数</td>
<td>DC～200Hz</td>
</tr>
</tbody>
</table>

収録装置	自山工業製 TS13850
测定データ	地帯加速, 気温, 気圧
サンプリング	上記それぞれ 200Hz, 1 分, 1 分
AD分解能	32bit（実効 24bit）
ダイナミックレンジ	135dB
記録フォーマット	WIN
装置間通信方式	CAN シリアルバスシステム
データ伝送方式	自律協調型データ伝送システム
電力バックアップ	70Ah バッテリにより約 2 日間

いパワープー持つピークが確認できる。スペクトログラムのこの時間帯の強まりは, 深夜と比較して約 10～数 10 倍である。なおスペクトログラムの色の単位は振幅の 2 液に比例するパワースペクトル密度であるので振幅比では数倍ということになり, 時系列波形で見られる振幅の高まりと調和的である。

3) スペクトログラム（図 2 中段）のア）2～5 Hz, イ）10～15 Hz, ウ）48～50 Hz には、ある程度の周波数帯にわたる振動が時刻存在していることがかかる。前者 2 つの帯域は気象事項に応じた変化を示す。この地点の地盤構造に対応した時刻側面の帯域と考えられる。

4) 多くの線スペクトルの存在が PSD（図 2 下段）から確認できる。PSD のフロアレベルは約 5 倍直上突き出ているピークとして 36.2 Hz, 36.9 Hz, 41.2 Hz, 45.4 Hz, 49 Hz, 52.1 Hz が挙げられ、49 Hz は約 2 Hz の幅を持つブロードなピークとなっている。これらの振動をスペクトログラム（図 2 中段）で見ると、必ずしも時刻側面していないことが分かれる。例えば 36.2 Hz は朝 8 時頃まで 1 時間周期程度で間欠的に ON-OFF を繰り返しているように見え、また 36.9 Hz, 45.4 Hz, 52.1 Hz のピークは 20 時間後に消えている。またこれらのピークの発生形態は日によっても異なることが分かっ

ており、週末より平日に多く見られる傾向がある。このような事象から、これらの振動源は主に、空調機や商用電器装置で稼働しているモーター、インバータなどが原因と考えられ、それらが ON-OFF することによりスペクトルピークが時間的に行在しているのだと考えられる。

5) 80 Hz 後半より高周波帯域においてスペクトログラム（図 2 中段）と PSD（図 2 下段）のパワーが大きく落ちているの、データ収録装置のアンテナアイリースフィルター（カットオフ周波数 80 Hz）の作用によるものである。

6) 電車起動と思われる振動も確認できる。図 7 に 2008 年 3 月 8 日（土）23 時～翌 9 日（日）1 時までの大規模 2 時間のスペクトログラムを示した。図 2 では 24 時間分表示されているために分かり難いが、図 7 からは震中に矢印で示したように、深夜 0 時半から 5 時間 30 分まで、周波数 80 Hz を越える高周波にまで伸びるピークが不規則な間隔で何本も確認できる。これらのピークの継続時間は 30 秒～数分程度まで、深夜 5 時半頃～早朝 5 時頃以外の時間帯には数分間隔で存在する。そしてこれらのピークの存在しない時間帯が電車の就営時間から始発時間までの間に重なることから、電車の起動の振動であると考えられる。
MeSO-net 弥生観測点のノイズレベルの比較

次に YYIM と他の地点とのノイズレベルの違いについて示す。図 8 は 2008 年 3 月 9 日（日）の深夜 2 時 15 分～25 分の 10 分間のデータを使って計算した。YYIM の UD 成分，YYIM 観測井戸の地表に設置した加速度計の UD 成分（YY10），及び足尾観測点（ASO）の UD 成分の PSD を重ね書きしたものである。ASO は地震研究所地震地陥変動観測センターが栃木県足尾町に設置した常設観測点であり，関東平野の中で最も静かに観測点の 1 つである。使用した 10 分間は，これら 3 つの観測点において 1 日の中で最も静かな時間帯に該当し，また地震や大きな人工ノイズなどが入っていないことを確認している。観測点のハードウェア構成は表 6 に記した。なお ASO は固定周期 1 秒の速度計なので，センサー特性の補正を行った後に微分をした加速度値に近い PSD を表示している。

ほぼ同じ地点だがセンサーの設置深度が異なる YYIM（深さ約 20 m）と YY10（地表）を比較すると，周波数数秒の脈動帯域と 2～3 Hz 周辺ではほぼ同じ振幅であるが，それより高い周波数数帯では YYIM の方が 10～100 倍静かであることが分かる。YYIM では日中と夜間のノイズレベルの差が 10～10 数 10 倍であることを，YYIM（深さ約 20 m）でも日中はノイズレベルが高くなるが，それでも YY10（地表）の夜間の静かな時間帯のノイズレベルよりも低いと言える。

図 7. 弥生観測点（YYIM）で記録された，2008年3月8日（土）23時～翌9日（日）1時までの深夜2時間のスペクトログラム，矢印で示したように，深夜0時半までの間に余震時間30秒～1分程度で90 Hzを越える高周波まで伸びるピークが何本も確認できる。これらは電車起動のノイズと考えられる。

図 8. 弥生観測点（YYIM：深さ約 20 m）と YY10（YYIM の脇に地表設置）と ASO（栃木県足尾町）で 2008年3月11日（火）2時15分～25分の10分間に記録されたノイズレベルの比較。YYIM は YY10 に対して，脈動帯域と 2～3 Hz 周辺ではほぼ同じ振幅であるが，それより高い周波数数帯では 10～100 倍静かである。それに対して YYIM を ASO と比較すると，20 Hz 以下では 100 倍以上，2～4 Hz においては 10,000 倍もノイズレベルが高いことが分かる。なお USGS ノイズレベルとは，世界の代表的な地震観測点の地動ノイズレベルのおおよその上限・下限を示したものである。
表 6. 図8に描画されている各記録のハードウェア構成

<table>
<thead>
<tr>
<th>観測点コード</th>
<th>YYIM</th>
<th>YYI0</th>
<th>ASO</th>
</tr>
</thead>
<tbody>
<tr>
<td>設置場所</td>
<td>地震研1号館</td>
<td>YYIM観測井の施設</td>
<td>櫟木県足尾町</td>
</tr>
<tr>
<td>設置深さ</td>
<td>地表下19.6m</td>
<td>地表（0m）</td>
<td>地表のコンクリート堰堤上</td>
</tr>
<tr>
<td>地震計</td>
<td>JA-40GA-02</td>
<td>JA-40GA-04</td>
<td>L-4C-3D</td>
</tr>
<tr>
<td>地震計の出力物理量</td>
<td>加速度</td>
<td>加速度</td>
<td>速度</td>
</tr>
<tr>
<td>収録機器</td>
<td>TS13850</td>
<td>LS-7000XT</td>
<td>GTA45</td>
</tr>
<tr>
<td>サンプリング周波数</td>
<td>200Hz</td>
<td>200Hz</td>
<td>100Hz</td>
</tr>
</tbody>
</table>

次に、YYIM（東京都文京区）をASO（栃木県足尾町）と比較すると、20Hz以下では100倍以上、2〜4Hzにおいては10,000倍もノイズレベルが高いことが分かる。YYIMには周辺の人工ノイズ源が多いことが、ノイズレベルの違いに大きく影響していると考えられる。

ま と め

地震波形に含まれるノイズの性質や大きさについて理解を深めることを目的として、地震波形を時間周波数領域のグラフとして容易に出力する解析ツールをMatlab上で開発した。またMeSO-netのデータに本解析ツールを適用して、データに含まれるノイズの評価や、他の観測点でのノイズレベルの比較に有用に利用できることを示した。その他にも、本解析ツールを観測点構築前のノイズ調査に適用することによって、地点選定の判断材料として利用することができる。実際にMeSO-netの地点選定において、1成分地震計と1成分ロガーからなる地震観測装置LS-8200 SD（慈栄ほか、2006）と本解析ツールを用いてノイズ測定とその評価を行っている。

今後も引き続き、他の観測点のデータやノイズ調査のデータに対して本解析ツールを適用して観測点毎の特性やその時間変化の調査に利用して行く予定である。そしてその結果をもって観測データの品質向上に繋げていきたい。

謝 謝：本研究は、文部科学省の研究委託事業「首都直下地震防災・減災特別プロジェクト①首都圏でのプレート構造調査、震源断層モデル等の構築等」の一環として行われました。Matlabは地震予知情報センターのEIC計算機システム上で運用されていることを利用し、鶴岡・弘氏からは利用に際して様々なサポートをして頂きました。本稿をまとめるにあたり、査読者の森田裕一准教授・新谷昌人准教授からは有益なアドバイスを頂きました。記して感謝いたします。

文 献

笠原敬司・酒井慎一・森田裕一・平田豊・卜部幸・鷹野澄・鶴岡弘・中川茂樹・小原一成・棚田俊秋、2007、首都圏地震観測網（MeSO-net）の構築、地震学会講演予稿集、122。

笠原敬司・平田豊・酒井慎一・佐々木俊二・中川茂樹・鶴岡弘・森田裕一・小原一成・棚田俊秋、2008、首都圏地震観測網（MeSO-net：Metropolitan Seismic Observation network）の構築、地球惑星科学連合予稿集、S144-008。

蔵下英司・平田豊・森田裕一・結城昇、2006、高機能小型オフラインデータロガーを用いた高密度地震観測システム、地震、2、59、107-116。

Matlab、http://www.cybernet.co.jp/matlab/、2008。

文部科学省：地震研究所、2008、首都直下地震防災・減災特別プロジェクト平成19年度成果報告書（1）首都圏でのプレート構造調査、震源断層モデル等の構築等、397頁。

卜部卓・末田進也、1992、win-微小地震観測網波形検測支援のためのワークステーション・プログラム（強化版）、地震学会講演予稿集、2、331。

卜部卓、1994、多チャンネル地震波形データのための共通フォーマットの提案、地震学会講演予稿集、2、384。