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[1] Coseismic deformations observed on the Earth surface or modeled by conventional
dislocation theory cannot be compared directly with those observed by gravity satellite
missions because of the spatial resolution limit of the missions and the signal attenuation
of the gravity field. Coseismic deformations in the spectrum domain should be
considered instead. For this purpose the conventional dislocation theory [e.g., Sun and
Okubo, 1993] for a spherical Earth model can be used because it is expressed in the form
of a spherical harmonic. In this study, analytical expressions of degree variances of the
coseismic geoid and gravity changes for shear and tensile sources are derived and
calculated for three real earthquakes. Those results are compared with expected errors of
the Gravity Recovery and Climate Experiment (GRACE) to elucidate whether or not
coseismic geoid and gravity changes are detectable by gravity satellite missions.
Behaviors of the degree variances for four independent seismic sources are investigated.
Results indicate that both the gravity and geoid changes are near two orders of magnitude
larger than the precession of the gravity missions in low harmonic degrees. On the basis
of these results, we derived the minimum magnitudes of earthquakes detectable by
GRACE. We concluded that coseismic deformations for an earthquake with a seismic
magnitude above m = 7.5 are expected to be detected by GRACE. INDEX TERMS: 1242

Geodesy and Gravity: Seismic deformations (7205); 1243 Geodesy and Gravity: Space geodetic surveys; 1214

Geodesy and Gravity: Geopotential theory and determination; 1299 Geodesy and Gravity: General or

miscellaneous; 7260 Seismology: Theory and modeling; KEYWORDS: coseismic deformation, geoid, gravity,

gravity mission, dislocation, earthquake
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1. Introduction

[2] Several dedicated satellite missions will continue to
be available for gravity field determination from space.
The Gravity Recovery and Climate Experiment (GRACE)
[National Research Council (NRC), 1997] and the Gravity
Field and Steady state Ocean Circulation Explorer (GOCE)
[European Space Agency (ESA), 1999] are just two of them.
They offer fundamental advantages over previous satellite
missions: low-orbit altitude; uninterrupted tracking in three
spatial dimensions; and measurement or compensation of
nongravitational forces’ effects. Use of GRACE allows
measurement of temporal gravity variations caused by
various geophysical processes. The primary objective of
GRACE is to provide an unprecedented accurate, global,
and high-resolution estimate of constant and time-variable
components of the Earth’s gravity field every 30 days over a
5 year period [Wahr et al., 1998]. The main scientific
objective of GOCE is to provide both high accuracy and a
high spatial resolution gravity field and geoid model in a

static sense. Some simulations [ESA, 1999] indicate that
GOCE will dramatically improve the gravity model. The
geoid accuracy will reach 1 cm for a half-wavelength of
100 km; the accuracy of gravity will be about 1 mgal
[ESA, 1999]. The two missions are complementary. It is
anticipated that the gravity missions will yield extremely
wide geophysical applications in geosciences.
[3] Temporal gravity variations of global nature result

from atmospheric mass redistribution, ocean circulation,
polar ice melting or aggregation, the viscoelastic response
of the Earth’s lithosphere to past and present loads, etc. [Chao
et al., 2000; Chao, 2003]. In addition to these processes,
earthquakes can produce significant global gravity perturba-
tions that are detectable through analysis of gravity missions.
A case study of the 1964 Alaska earthquake [Sun and Okubo,
1998] indicated that a gravity change was detectable on the
Earth’s surface by a superconducting gravimeter, even at
epicentral distance of 5000 km. It also indicated that a geoid
height change caused by the earthquake could reach 1.5 cm.
However, it is questionable whether such gravity and geoid
height changes can be detected by modern space techniques
like altimetry and gravity missions. This question cannot be
answered simply by results of surface gravity changes be-

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B04405, doi:10.1029/2003JB002554, 2004

Copyright 2004 by the American Geophysical Union.
0148-0227/04/2003JB002554$09.00

B04405 1 of 10



cause of their limited spatial resolution. On the other hand,
coseismic gravity and geoid changes differ from other high-
frequency variations such as Earth tides, which are expected
to be large and coherent in nature. Gross and Chao [2001]
investigated this problemusing normalmode technique based
on Chao and Gross [1987]. Comparing the degree
amplitude spectra of some earthquakes with expected
GRACE sensitivity, they concluded that coseismic effects
of great earthquakes such as the 1960 Chilean or 1964 Alaska
events can cause global gravitational field changes that are
sufficiently large as to be detectable by GRACE. Mass
redistribution in the Earth caused by an earthquake changes
not only the gravity field, but also global rotation or polar
motion. A related study can be found in Chao et al. [1996].
[4] In this study, we derive theoretical formulations of

coseismic geoid and gravity changes and their degree
variances, expressed by dislocation Love numbers. These
expressions are achieved using dislocation theory, e.g., by
Sun and Okubo [1993], for a spherical Earth as it is
expressed in the form of spherical harmonics. We investi-
gate coseismic geoid and gravity changes by observing the
distribution of their degree variances in comparison to the
expected sensitivity of satellite gravity missions. Results for
coseismic deformations for large earthquakes are discussed
with respect to their detectability. Note that this study offers
an identical conclusion to that of Gross and Chao [2001]
using the normal mode scheme.

2. Dislocation Theory and Dislocation Love
Numbers

[5] Assume that an inclined point dislocation located
on the polar axis in a compressible and self-gravitating
spherical Earth. Furthermore, assume the fault line is in the
direction of j = 0 (Greenwich meridian). According to the
quasi-static dislocation theory, coseismic geoid and gravity
changes at an observation point (a, q, j) (see Figure 1) can
be expressed as [Sun and Okubo, 1993]

zijða; q;jÞ ¼
X
n;m

kijnmY
m
n ðq;jÞ � ninj

UdS

a2
ð1Þ

dgijða; q;jÞ ¼
X
n;m

nþ 1ð Þkijnm � 2hijnm
� �

� Ym
n ðq;jÞninj

g0UdS

a3
;

ð2Þ

where hnm
ij (concerning the vertical displacement) and knm

ij

(related to the gravitational potential change) are the
dislocation Love numbers defined by Sun and Okubo
[1993], functions of the spherical harmonic degree, order,
source depth, and source type. Components of the slip
vector and its normal on the infinitesimal fault area dS are ni
and nj, with total dislocation U. Gravity on the Earth surface
is g0; a is the radius of the Earth and Yn

m (q, j) is the
spherical harmonic function of degree n and order m. The
two so-called dislocation factors, UdS/a2 and g0UdS/a

3,
define the earthquake magnitude and give the unit of geoid
and gravity changes.
[6] Notice that the gravity change in equation (2)

involves the dislocation Love number hnm
ij , which is related

to vertical displacement. It can be removed form the
formulation because satellites cannot detect this part of
deformation. On the other hand, the current dislocation
theory as given in equation (2) is derived based on the
inner potential change which gives the factor (n + 1) for
gravity change. The corresponding external potential should
be used because we are interested in the gravity anomaly
change (we still call it gravity change for convenience)
outside the Earth. Thereby, equation (2) ultimately becomes

dgijða; q;jÞ ¼
X
n;m

n� 1ð Þkijnm � Ym
n ðq;jÞninj

g0UdS

a3
: ð3Þ

A combination of the three slip and three normal components
means that there are nine total solutions for all possible
sources. However, only four independent solutions exist if
the Earth model is spherically symmetric and isotropic. A
deformation caused by an arbitrary source can be obtained by
a proper combination of the four types of independent
sources. In this study, we choose the following four
independent solutions: ij = 12, 32, 22, and 33. They represent
strike slip, dip slip, horizontal tensile and vertical tensile,
respectively. Note that components of ij = 22 include two
parts: m = 0 and 2; in this study, we calculate and discuss
only the deformations ofm = 0: the computation ofm = 2 can
be derived easily from the component of ij = 12. Details can
be found in Sun and Okubo [1993] or Sun et al. [1996].
[7] Dislocation Love numbers knm

ij can be obtained numer-
ically for a spherically symmetric Earth model [Sun and
Okubo, 1993] such as the 1066A [Gilbert and Dziewonski,
1975] or the preliminary reference Earth model (PREM)
[Dziewonski and Anderson, 1981]. Subsequently, gravity

Figure 1. Dislocation slip vector N, normal n, slip angle l, and dip angle d in the coordinate system
(e1, e2, e3).
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and geoid changes can be calculated by the above sum-
mations in equations (1) and (3). Figure 2 gives numerical
results of the dislocation Love numbers knm

ij of the four
types of seismic sources at a depth of 32 km with the
1066A model as a function of the spherical harmonic
degree n up to 2000. The dislocation Love numbers vary
rather smoothly as n increases. Once a dislocation source
or earthquake parameter is provided, coseismic deforma-
tions can be calculated easily using these Love numbers.

3. Coseismic Geoid and Gravity Changes and
Their Degree Amplitude Spectra

[8] A dislocation vector N and its normal n can be
expressed in terms of dip angle d and slip angle l of the
fault (Figure 1) as

n ¼ e3 cos d� e2 sin d ð4Þ

N ¼ e3 sin d sinlþ e1 coslþ e2 cos d sinl: ð5Þ

We face a shear dislocation problem if the dislocation vector
N runs parallel to the fault plan. Similarly, for a tensile
opening, the dislocation vector N and its normal n become
equal:

N ¼ n ¼ e3 cos d� e2 sin d: ð6Þ

Then for an arbitrary shear fault on the polar axis, according
to equations (1) and (3) the coseismic geoid and gravity
changes can be written as the following:

zShearða; q;jÞ ¼
X3
i¼1

X3
j¼1

zijða; q;jÞ

¼
X1
n¼2

�
cosl �k12n2 sin dY

2
n ðq;jÞ þ k13n1 cos dY

1
n ðq;jÞ

� �

þ sinl
1

2
k33n0 � k22n0
� �

sin 2dY 0
n ðq;jÞ

�

þ k32n1 cos 2dY
1
n ðq;jÞ

�	
� UdS
a2

ð7Þ

Figure 2. Normalized dislocation Love numbers knm
ij of four types of seismic sources at a depth of 32 km.
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dgShearða; q;jÞ ¼
X3
i¼1

X3
j¼1

dgijða; q;jÞ

¼
X1
n¼2

�
cosl

�
�ðn� 1Þk12n2 sin dY 2

n ðq;jÞ

þ ðn� 1Þk13n1 cos dY 1
n ðq;jÞ

�
þ sinl

1

2
ðn� 1Þ k33n0 � k22n0

� �
sin 2dY 0

n ðq;jÞ
�

þ ðn� 1Þk32n1 cos 2dY 1
n ðq;jÞ

�	
� g0UdS

a3
: ð8Þ

[9] Similarly, for a tensile source, the coseismic geoid and
gravity changes become the following:

zTensileða; q;jÞ ¼
X3
i¼1

X3
j¼1

zijða; q;jÞ

¼
X1
n¼2

�
k33n0 cos

2 dþ k22n0 sin
2 d

� �
Y 0
n ðq;jÞ

� k32n1 sin 2dY
1
n ðq;jÞ

�
� UdS
a2

ð9Þ

dgTensileða; q;jÞ ¼
X3
i¼1

X3
j¼1

dgijða; q;jÞ

¼
X1
n¼2

�
k33n0 cos

2 dþ k22n0 sin
2 d

� �
ðn� 1ÞY 0

n ðq;jÞ

� k32n1 sin 2dðn� 1ÞY 1
n ðq;jÞ

�
� g0UdS

a3
: ð10Þ

We study coseismic deformations for each individual
harmonic degree because the satellite gravity missions
provide geoid and gravity measurements in the form of
spherical harmonic coefficients, as pointed out by Chao and
Gross [1987]. Consequently, it is straightforward to
investigate whether coseismic deformations are detectable
by the satellite gravity missions, e.g., GRACE. For this
purpose, amplitude spectra of the above coseismic geoid
and gravity changes in equations (7)–(10) will be computed
for degrees n = 2 � 100. From equations (7)–(10) it can be
seen that the terms of degrees n = 0 and n = 1 vanish
because the total mass of the Earth is constant and the origin
of the reference frame is located at the center of mass of the
Earth model.
[10] On the other hand, it is known that, for a potential

anomaly presented by a spherical harmonic series [Heiskanen
and Moritz, 1967],

V ðr; q;jÞ ¼ GM

a

X1
n¼0

a

r


 �nþ1 Xn
m¼�n

KnmY
m
n ðq;jÞ

¼ GM

a

X1
n¼0

a

r


 �nþ1 Xn
m¼�n

Cnm cosmjþ Snm sinmjð ÞPm
n ðsin qÞ:

ð11Þ

The degree variance cn
2 (i.e., the power spectral density) of

the gravitational potential anomaly, which gives the

contribution of the degree n terms to the total variance, is
defined as [ESA, 1999]

c2n ¼
Xn
m¼0

C2
nm þ S2nm

� �
¼

Xn
m¼�n

Knmj j2: ð12Þ

That is also known as the root-mean-square value per
degree. Comparing equations (7)–(10) to equation (11)
indicates that the coefficients (the dislocation love numbers
and the geographical parameters of the fault) of Yn

m (q, j) in
equations (7)–(10) are nothing but the Stokes coefficients.
The angular order m vanishes except m = 0, 1 and 2 because
the source is chosen at the polar axis and also because of the
symmetric property of the source functions. Therefore the
computation of the degree variance is slightly easier than
the full spectrum-distributed coefficients. The degree
variances for shear and tensile sources can be written
straightforwardly as the following equations:

cShearn

� �2
V ¼ k12n2 sin d cosl

� �2 þ k13n1 cos d cosl
� �2h

þ 1

2
k22n0 sin 2d sinl


 �2

þ 1

2
k33n0 sin 2d sinl


 �2

þ k32n1 cos 2d sinl
� �2i � UdS

a2


 �2

; ð13Þ

cShearn

� �2
dg ¼ k12n2 sin d cosl

� �2 þ k13n1 cos d cosl
� �2h

þ 1

2
k22n0 sin 2d sinl


 �2

þ 1

2
k33n0 sin 2d sinl


 �2

þ k32n1 cos 2d sinl
� �2i � ðn� 1Þ2 g0UdS

a3


 �2

; ð14Þ

cTensilen

� �2
V ¼ k33n0 cos

2 d
� �2 þ k22n0 sin

2 d
� �2h

þ k32n1 sin 2d
� �2i � UdS

a2


 �2

; ð15Þ

cTensilen

� �2
dg ¼ k33n0 cos

2 d
� �2þ k22n0 sin

2 d
� �2h

þ k32n1 sin 2d
� �2i

� ðn� 1Þ2 g0UdS

a3


 �2

: ð16Þ

It is seen that the degree variances involve not only the
dislocation Love numbers, but also the geometrical position
of the fault described by the dip angle z and slip angle l,
and the dislocation factors. It is also found that the degree
variances for a shear fault movement include both the shear
and tensile components; whereas the degree variances for a
tensile fault also include the two components, but are
unconnected with the dip angle.
[11] In practical calculation, parameters such as source

type ij and harmonic order m are determined according to
the selected source types. For example, for a vertical strike-
slip fault, ij = 12, m = 2, d = 90� and l = 90�. Then for the
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four independent sources, the degree variances can be
simplified as the following formulas:

c12n
� �

V ¼ k12n2
�� ��UdS

a2
; ð17Þ

c32n
� �

V ¼ k32n1
�� ��UdS

a2
; ð18Þ

c22n
� �

V ¼ k22n0
�� ��UdS

a2
; ð19Þ

c33n
� �

V ¼ k33n0
�� ��UdS

a2
; ð20Þ

c12n
� �

dg ¼ ðn� 1Þ k12n2
�� �� g0UdS

a3
; ð21Þ

c32n
� �

dg ¼ ðn� 1Þ k32n1
�� �� g0UdS

a3
; ð22Þ

c22n
� �

dg ¼ ðn� 1Þ k22n0
�� �� g0UdS

a3
; ð23Þ

c33n
� �

dg ¼ ðn� 1Þ k33n0
�� �� g0UdS

a3
: ð24Þ

Equations (17)–(24) show that the degree variances are
proportional to the absolute values of the dislocation Love
numbers because they are functions of one of the three
angular orders 0, 1, or 2. For each harmonic degree n, the
only variable is the dislocation Love number, so that the
root-square of the dislocation number is its absolute value.
Therefore the dislocation Love numbers themselves give
their degree variances, multiplied by the dislocation factors
that are determined by a selected earthquake. These degree
variances can be obtained easily from the above dislocation
Love numbers in Figure 2.

4. Degree Amplitude of the Four Independent
Sources

[12] We first consider a great fault equivalent to that of
the Alaska earthquake (1964, mw = 9.2) with parameters of
[Savage and Hastie, 1966] 600 km length, 200 km width,
20 km depth, and 10 m dislocation. The degree variances
are computed for the above four independent types of
sources. Thereby, we can observe behaviors of respective
sources. The dislocation factors in equations (7)–(10) yield
UdS/a2 = 29.56 mm for geoid change and g0UdS/a

3 =
4.556 mgal for gravity change. Consequently, the degree
variances of the four source types can be written easily from
equations (17)–(24) as the following relationships:

c12n
� �

z¼ 29:56 k12n2
�� ��ðmmÞ;

c32n
� �

z ¼ 29:56 k32n1
�� ��ðmmÞ;

c22n
� �

z ¼ 29:56 k22n0
�� ��ðmmÞ;

c33n
� �

z ¼ 29:56 k33n0
�� ��ðmmÞ;

c12n
� �

dg ¼ 4:556ðn� 1Þ k12n2
�� ��ðmgalÞ;

c32n
� �

dg ¼ 4:556ðn� 1Þ k32n1
�� ��ðmgalÞ;

c22n
� �

dg ¼ 4:556ðn� 1Þ k22n0
�� ��ðmgalÞ;

c33n
� �

dg ¼ 4:556ðn� 1Þ k33n0
�� ��ðmgalÞ:

Correspondingly, degree variances of the geoid and gravity
components for the four sources are calculated and plotted
in Figures 3 and 4, respectively. Those figures also show the
expected instrument errors of the GRACE measurements
[Gross and Chao, 2001] of these quantities.
[13] The relative contribution to each component of the

geoid and gravity changes can be seen clearly from
Figures 3 and 4 by observing the magnitude distribution
of these degree variances. An important property shown
in Figures 3 and 4 is that the two tensile sources have
stronger power than the two shear sources. This property
means that coseismic deformations of the tensile sources
are expected to be larger than those of the shear sources.
It implies that even for the same geographical fault size
(or moment) of an earthquake, their contributions to geoid
and gravity changes may be different. Comparing the
degree variances with the GRACE error indicates that
GRACE can detect the coseismic geoid and gravity
changes for the two tensile sources because they are
almost two orders larger in magnitude until the first
70 degrees. The geoid and gravity changes for the two
shear sources are all equal to or less than the GRACE
error; also, they are difficult to detect. Figures 3 and 4
also show that the degree strength has a different contri-
bution at different harmonic degree n. The degree
variance of vertical strike-slip source decreases rapidly
as degree n increases.
[14] Table 1 shows that we may easily derive the mini-

mum magnitudes of earthquakes which are expected to be
detected by the gravity missions according to the above
results and discussions. It indicates that if an earthquake is
as large as the magnitude of m = 9.0 (for source types 12
and 32) or m = 7.5 (for source types 22 and 33), the
corresponding coseismic deformations are expected to be
detected by GRACE. Note that the coseismic geoid and
gravity changes are expected to be easily detected by the
future GRACE follow-on. If it offers about two orders better
accuracy than GRACE [Watkins et al., 2000; NRC, 1997],
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Figure 3. Degree amplitude spectra for the coseismic geoid height changes caused by four types of
sources at 20 km depth in the 1066A Earth model: vertical strike slip, dip slip, horizontal opening
(tensile), and vertical opening. The parameters of the Alaska earthquake (1964, mw = 9.2) are 600 km
length, 200 km width, 20 km depth, and 10 m dislocation. The dislocation factor of geoid change is
UdS/a2 = 29.56 mm. Expected instrument errors of the Gravity Recovery and Climate Experiment
(GRACE) are also plotted.

Figure 4. Same as Figure 3, but for gravity.
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the minimum magnitude of earthquakes expected to be
detected by GRACE follow-on is m = 7.5 for source types
12 and 32 or m = 6.0 for source types 22 and 33.

5. Case Study: Alaska Earthquakes (1964, 2002)
and the Hokkaido (2003) Earthquake

[15] In this section, as a case study, let us consider three
actual earthquakes: the Alaska earthquakes occurred in
1964 (mw = 9.2) and in 2002 (m = 7.9), and the Hokkaido
(Japan) earthquake happened in 2003 (m = 8.0). Table 2
lists fault parameters of these three earthquakes. We can
learn whether the coseismic geoid and gravity can be
detected by observing their degree variances in compari-
son to the GRACE error. For this purpose, we derive
formulas describing the degree variances of the three
earthquakes.

5.1. Case 1: The 1964 Alaska Earthquake

[16] According to the parameters in Table 1, it is known
that d = 9� and l = 90�, UdS/a2 = 29.56 mm and g0UdS/a

3 =
4.556 mgal. The degree variances of geoid and gravity
changes can be written as equation (25) because it is a
dip-slip source with a low dip angle. From equations (13)
and (14),

cShearn

� �2
V ¼

1

2
k22n0 sin 18

	

 �2

"
þ 1

2
k33n0 sin 18

	

 �2

þ k32n1 cos 18
	� �2#

� 29:56 mmð Þ2 ð25Þ

cShearn

� �2
dg ¼ 1

2
k22n0 sin 18

	

 �2

"
þ 1

2
k33n0 sin 18

	

 �2

þ k32n1 cos 18
	� �2#

� ðn� 1Þ2 4:556 mgalð Þ2: ð26Þ

5.2. Case 2: The 2002 Alaska Earthquake

[17] According to parameters in Table 1, we have d = 90�
and l = 0�, UdS/a2 = 0.6356 mm and g0UdS/a3 =
0.0980 mgal. The degree variances of geoid and gravity

changes can be simplified as equation (27) because it is a
vertical strike-slip source. From equations (13) and (14),

cShearn

� �2
V¼ k12n2

� �2 � 0:6356 mmð Þ2 ð27Þ

cShearn

� �2
dg ¼ k12n2

� �2ðn� 1Þ2 0:0980 mgalð Þ2: ð28Þ

5.3. Case 3: The 2003 Hokkaido Earthquake

[18] In this case, UdS/a2 = 0.4100 mm and g0UdS/a
3 =

0.0630 mgal from equations (13) and (14), d = 20� and l =
90�. Degree variances of geoid and gravity changes are

cShearn

� �2
V ¼ 1

2
k22n0 sin 40

	

 �2

"
þ 1

2
k33n0 sin 40

	

 �2

þ k32n1 cos 40
	� �2#

� 0:4100 mmð Þ2 ð29Þ

cShearn

� �2
dg ¼ 1

2
k22n0 sin 40

	

 �2

"
þ 1

2
k33n0 sin 40

	

 �2

þ k32n1 cos 40
	� �2#

� ðn� 1Þ2 0:0630 mgalð Þ2: ð30Þ

Subsequently, the degree variances from equations (25) to
(30) are calculated using the dislocation numbers given in
Figure 1 and plotted in Figures 5 and 6for the geoid and
gravity changes, respectively. The GRACE errors are also
plotted in the figures for comparison.
[19] Figures 5 and 6 show that the 1964 Alaska earth-

quake causes the coseismic geoid and gravity changes in
low degree part with near two orders in magnitude larger
than the GRACE error. This fact indicates that the global
geoid and gravity changes are sufficiently large to be
detected by GRACE. The figures also show that the geoid
and gravity changes caused by the 2002 Alaska earthquake
and the 2003 Hokkaido earthquake are smaller than the
GRACE error: apparently, they are too small to be detected
by GRACE. Although the geoid and gravity effects at
degree 3 show the same level with the GRACE error,
considering other physical effects and the rather long
measurement period (one month), they are less likely to
be detected in actual practice. Note that results of the 1964
Alaska earthquake show the same property as that given by
Gross and Chao [2001].
[20] Comparison of the degree variances of the 2002

Alaska and the 2003 Hokkaido earthquakes showed that
geoid and gravity effects for the 2003 Hokkaido earth-
quakes are much larger than those of the 2002 Alaska
earthquake at almost all the harmonic degrees, but that their
fault sizes are almost identical. This fact further confirms
that the geographical position, especially the dip angle,

Table 1. Minimum Magnitude of Earthquakes Expected to be

Detected by the Gravity Recovery and Climate Experiment

(GRACE)

Source Type ij Minimum Seismic Magnitude (m)

12 9.0
32 9.0
22 7.5
33 7.5

Table 2. Parameters of Three Earthquakes

Location Length, km Width, km Dislocation, m Depth, km Slip Angle, deg Dip Angle, deg

Alaska (1964) 600 200 10 20 90 9
Alaska (2002) 200 30 4.3 15 0 90
Hokkaido (2003) 80 80 2.6 15 90 20
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Figure 5. Degree amplitude spectra for the coseismic geoid height changes caused by three
earthquakes: the 1964 Alaska (9.2), the 2002 Alaska (7.9), and the 2003 Hokkaido (8.0). Table 1 lists
parameters of the three earthquakes. Expected instrument errors of GRACE are also plotted.

Figure 6. Same as Figure 5, but for gravity.
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plays an important role in these geophysical effects. This
importance is understandable: the dip slip source involves
tensile components, which are shown to be much larger than
the shear sources.
[21] Note that the above results represent coseismic

deformations of a point source (dislocation). In practice, if
the fault size is extremely large or compatible with the
distance between the source and satellite, the geometrical
shape of the fault should be considered. A point source is
sufficient if the fault size is sufficiently small in comparison
to the distance from satellite to the Earth surface. The source
depth is another factor affecting the magnitude of deforma-
tions. Nevertheless, the effect of source depth is considered
to be relatively small compared to the fault size because
coseismic deformation, especially the geoid change, is
relatively less sensitive to depth [Sun and Okubo, 1998].
Note that the finite size of the fault might be important for
the GRACE follow-on mission. To reduce contamination
from hydrology, oceanography, and other factors, we
address extremely small regions because relatively small
follow-on errors will permit us to examine such small
regions. Those regions should be sufficiently small that
the fault size plane extent for a large event could be
important. An integration of a point source over the fault
plane is required to compute accurate coseismic deforma-
tions by a limited fault size. However, this study is intended
to observe the magnitude of coseismic deformations. For
that reason, a rough approximation is acceptable.
[22] We emphasize that coseismic gravity changes are

difficult to distinguish in practice because of complications
of the gravity field. Ideally, to distinguish coseismic geoid
and gravity changes, the gravity field should be observed
just before and after the seismic event. In this case, all other
long temporal effects on gravity change should be relative
small and can therefore be neglected. In practice, however,
GRACE provides us with a complete gravity observation in
a one month time interval. During that one month, the Earth
undergoes many geophysical changes that engender tempo-
ral gravity changes. In other words, the temporal gravity
variations are expected to comprise many physical effects
such as tidal changes, atmospheric changes, rain or snow
fall, and so on. On the other hand, in some timescale, other
temporal gravity variations are equal in size, or even larger
than, the coseismic deformations. Therefore all of these
gravity changes should be well modeled or observed before
the coseismic gravity changes can be detected.
[23] The above results and discussions imply that coseis-

mic geoid and gravity changes are almost impossible to
detect by GRACE. However, for an earthquake with a
magnitude greater than m = 7.9, such as m > 8.0, as
shown in Table 1, coseismic geoid and gravity changes are
anticipated to be detectable by GRACE. On a hopeful note,
geoid and gravity changes caused by the equivalent of the
2002 Alaska earthquake may be detectable from space by
projects like the GRACE follow-on mission because the
forthcoming GRACE follow-on gravity mission is
expected to have better accuracy, by more than two orders,
than GRACE.

6. Summary

[24] Coseismic deformations observed on the Earth sur-
face or modeled by conventional dislocation theory cannot

be compared directly with those observed by satellite
gravity missions because of the spatial resolution limit of
the gravity satellites and the signal attenuation of the gravity
field. Instead, coseismic deformations in the spectral do-
main should be considered so that the deformations can be
investigated by individual spherical harmonic degrees. This
method demands theoretical investigation of dislocation
theory. For this purpose, the conventional dislocation theory
for a spherical Earth model, e.g., the theory of Sun and
Okubo [1993] can be used as it is expressed in the form of a
spherical harmonic. Coseismic deformations can be esti-
mated using the theory with a spherical harmonic form.
Degree variances of the coseismic geoid and gravity
changes for shear and tensile sources are derived analyti-
cally. Numerical investigation was carried out to observe
whether coseismic geoid and gravity changes are detectable
by satellite gravity missions. Numerical results of the degree
variances were used for comparison with the expected
sensitivity of the gravity missions. A seismic source equiv-
alent to the fault size of the great Alaska earthquake (1964,
mw = 9.2) was adopted for practical calculation. Then,
we undertook case studies of Alaska (1964, 2002) and
Hokkaido earthquakes [2003]. The corresponding modeled
coseismic deformations indicated that both gravity and
geoid changes are near two orders larger than the GRACE
precession. This study derived minimum earthquakes to be
detected by GRACE mission. The results engender the
conclusion that coseismic deformations for an earthquake
with a seismic magnitude of m = 7.5 are expected to be
detectable by GRACE. Of course, these conclusions depend
upon and vary according to source depth and type. Finally,
it is notable that this study addresses only part of the
broader question of whether gravity satellite missions can
detect coseismic geoid and gravity variations. The question
remains whether the seismic signal will rise above
other time-variable gravity signals from hydrology, ocean-
ography, and so on. The observed gravity signal is an
integrated one. For that reason, we must examine all
possible physical sources and carefully model each of them
to distinguish individual contributions and thereby correctly
interpret time-variable gravity.
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