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[1] High-resolution tomography of the lower mantle has revealed the existence of another chemically
distinct region with low-velocity and a sheet-like structure beneath the western Pacific. On the other hand,
Large Igneous Provinces (LIPs) sometimes have elongated shapes. If a sheet-like upwelling reaches the
Earth’s surface while maintaining its shape, an elongated LIP may form. In order to test this hypothesis, we
perform a series of experiments and investigate the stability of a buoyant sheet. The experimental results
show that the buoyant fluid accumulates at the top of the sheet to form a buoyant cylinder. The gravitational
instability divides the cylinder into several plume heads. We develop a model to explain the growth of the
buoyant cylinder and the time scale until instability begins. Our model shows that a thin sheet-like
upwelling with a width of 200 km, a small density difference from the ambient mantle, 10 kg m�3, and a
high supply rate of buoyant fluid, 0.1 m yr�1, can reach the Earth’s surface while maintaining its shape. We
thus infer that LIPs with an elongated shape can be generated by sheet-like upwellings. The width of the
observed sheet-like low-velocity region beneath the western Pacific is 500 km and is marginally sufficient
to form an elongated LIP.
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1. Introduction

[2] Seismological observations have revealed
Large Low-Shear-Velocity Provinces (LLSVPs)
in the deep mantle, likely representing chemi-
cally distinct materials [e.g., Garnero and
McNamara, 2008]. The LLSVP beneath southern
Africa elongates from north to south about 8000

km and is about 3500 km across [Ni and Helm-
berger, 2003; Wang and Wen, 2007]. This
region may be thermally buoyant and chemically
dense. Although chemical piles are usually
described as dome-like structures, part of the
LLSVP beneath the southern Africa is frequently
described as ridge-like because of its elongated
shape.
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[3] Takeuchi [2012] provides a high-resolution
image of whole-mantle SH velocity structures by
waveform tomography and finds another low-
velocity region beneath the western Pacific, which
also has an elongated ridge-like structure. Figures
1a and 1b show the SH velocity structures in a hor-
izontal cross section at a depth of 2100 km and in
a vertical cross section, respectively. The low-
velocity region is denoted by a reddish color.
The elevation of the low-velocity region reaches
700 km with a width of 800 km and a length of
2000 km. These dimensions are consistent with
those measured by He and Wen [2009].

[4] Above this ridge-like structure, a thin (500 km)
sheet-like low-velocity region extends (marked by

a green rectangle in Figures 1b and 6 in Takeuchi
[2012]). A narrow plume above a dome-like chem-
ical pile is expected on the basis of thermochemical
convection experiments [e.g., Davaille, 1999], and
has been observed [Sun et al., 2010]. If a pile has a
two-dimensional ridge-like structure rather than a
three-dimensional dome, an upwelling above it
may have a two-dimensional sheet-like structure
rather than a pipe-like plume. We thus infer that a
sheet-like upwelling can exist above a ridge-like
structure as shown by schematic diagrams in
Figure 1. Here we call this structure the Sheet-like-
Low-Velocity Region in the Pacific (SLVRP).

[5] If this SLVRP is chemically distinct from the
ambient mantle, a sharp boundary separates the

Figure 1. Shear wave anomaly map of SH18CEX model obtained from waveform inversion [Takeuchi, 2012]. (a) Horizontal
cross section at a depth of 2100 km. Green and red dots in Japan show the loci of stations, and green and white
dots in the Pacific are the respective bottoming points of the rays. (b) Vertical cross section at the locations
indicated by the black curve in Figure1a. Schematic diagrams show approximate dimensions of shear wave
anomaly. (c) Transverse component of waveforms for the event (Mw 6.5) on 21 February 2011 south of the
Fiji Islands (red star in Figure1a) recorded in Japan by F-net aligned with respect to the S arrival time pre-
dicted for PREM. The left and right parts in Figure 1c show the distance and azimuth dependence, respec-
tively. Waveforms are filtered between 3.3 and 100 s. The black curves in Figures 1a and 1b are an example
of ray paths. The waveforms shown by green and black curves are bottoming and observed at the points
denoted by green and white/red dots in Figure 1a, respectively. Only green curves traveling through the
SLVRP show a clear delay of arrivals.
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SLVRP from the ambient mantle similar to
LLSVPs [e.g., Ni et al., 2002; To et al., 2005].
Figure 1c shows the waveforms of an event south
of the Fiji Islands recorded in Japan. Only the
green curves traveling through the SLVRP show a
clear delay (about 5 s) of the S wave arrival. The
bottoming depths of the ray paths for the S waves
are between 2100 and 2200 km. We thus infer that
the SLVRP is also chemically distinct from other
parts of the mantle at least to a height of 700 km.

[6] The mechanisms underlying the formation of a
locally elevated shape of LLSVPs have been
investigated extensively as a problem of thermo-
chemical convection [Olson and Kincaid, 1991;
Davaille, 1999; Gonnermann et al., 2002; Namiki,
2003; McNamara and Zhong, 2005; Tan and Gur-
nis, 2007; Jaupart et al., 2007; Deschamps et al.,
2011; Tackley, 2012]. Since LLSVPs are regarded
as chemically distinct regions, they may have a
positive density anomaly by the chemical effect
and a negative density anomaly by the thermal
effect. When the thermal effect overwhelms the
chemical effect, some parts of LLSVPs can ascend
[e.g., Olson and Kincaid, 1991; Davaille, 1999;
Tan and Gurnis, 2007].

[7] The manner in which a buoyant fluid ascends
has also been extensively investigated. A buoyant
fluid often ascends as plumes that are spherical
heads accompanied by tails [e.g., Whitehead and
Luther, 1975; Griffiths and Campbell, 1990; Ber-
covici and Kelly, 1997; Kumagai et al., 2008]. A
few studies have shown that an initially sheet-like
upwelling forms a buoyant cylinder at the top of
the sheet [Kerr and Lister, 1988]. The cylinder
eventually separates into several spherical heads
[Olson and Singer, 1985; Lister and Kerr, 1989;
Kerr et al., 2008; Lister et al., 2011]. It is not
obvious, however, how high the buoyant sheet can
reach before it separates into spherical heads.

[8] On the other hand, voluminous magma
emplacements, known as Large Igneous Provinces
(LIPs), have been observed on the Earth’s surface.
Although substantial debates about their origin
continue, collisions of plume heads with the litho-
sphere likely generate LIPs [e.g., Griffiths and
Campbell, 1990; Coffin and Eldholm, 1994; Ernst
et al., 2005]. The sources of LIPs are considered
to be different from the typical pyrolitic mantle
and may include the eclogite component [Cordery
et al., 1997]. LIPs may originate from the deeper
part of the mantle and entrain some portions of
chemically separated reservoirs [van Keken et al.,
2002]. Indeed, the spatial distribution of LIPs cor-

relates with LLSVP margins [Torsvik et al., 2006;
Tan et al., 2011; Steinberger and Torsvik, 2012].

[9] Reconstructed LIPs sometimes show elongated
shapes in specific directions [Elliot et al., 1999;
Taylor, 2006; Bryan and Ernst, 2008]. For exam-
ple, the Ferrar LIP, which was emplaced at
�180 Ma, extended more than 3000 km within a
narrow width [Elliot et al., 1999]. If a spherical
plume head forms a LIP, it is more likely to
become round or a triple junction. However, if the
observed SLVRP, which has a sheet-like shape,
ascends continuously and collides with the litho-
sphere, an elongated or ridge-like LIP may form.

[10] We infer that the observed sheet-like shape of
the SLVRP originates from the particular pattern of
mantle convection as is discussed in Takeuchi
[2012]. At the Rayleigh number of the mantle con-
vection, the convection pattern usually consists of
ascending plumes with spherical heads and sheet-
like downwellings [e.g., Bercovici et al., 1989]. In
mantle convection, however, there are many causes
of the elongation of convection cells laterally and of
two-dimensional sheet-like upwellings. The plate-
like behavior of mantle convection arises from the
plastic yielding combined with strongly temperature-
dependent viscosity [e.g., van Heck and Tackley,
2008; Nakagawa et al., 2009]. The subducted slab
pushes the chemically distinct region and forms a
ridge-like structure of the LLSVPs [McNamara and
Zhong, 2005]. Sheet-like upwellings form at the
edge of the chemical pile [Steinberger and Torsvik,
2012]. We thus infer that the sheet-like shape of an
upwelling is plausible in the mantle convection as an
initial condition of ascending.

[11] Accordingly, we here assume that there exists
a buoyant sheet similar to the SLVRP made by the
mantle convection as an initial condition. We con-
duct experiments using this initial condition.
Based on our experiments, we estimate the condi-
tions in which such a sheet-like upwelling can
reach the Earth’s surface before the gravitational
instability separates it into several spherical plume
heads. If a sheet-like upwelling satisfies this condi-
tion, it can form an elongated LIP.

2. Experimental Methods

[12] In order to simulate the shape evolution of a
buoyant sheet, we conduct a series of experiments
with a tank, shown in Figure 2, with inner dimen-
sions of 0.35 m width, 0.25 m depth, and 0.46 m
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height, featuring a slit at the bottom with a 2 mm
width. Buoyant fluid is injected through the slit from
a reservoir tank. The edge of the slit is polished so as
not to cause disturbances. Prior to the beginning of
the experiments, the slit is covered by a thin plate
(gate) to prevent the injection of buoyant fluids. We
start experiments by sliding the gate horizontally so
as not to affect the ascending manner of the buoyant
fluid. The reservoir tank is located higher than the
surface of the ambient fluid so that an upwelling
sheet forms. The reservoir tank is weighed by a load
cell to calculate the fluid flux q. The measured fluid
flux is constant during an experiment. The flux of
buoyant fluid is varied by changing the height of the
reservoir tank (0.4–1.2 m).

[13] We use syrup solutions as analogues for man-
tle materials. The ambient and buoyant fluids are
miscible. The density � and viscosity � of the sy-
rup are varied by changing the water content and
adding salt. Since the viscosity of the mantle mate-
rials depends on temperature and the viscosity
inside the upwellings is lower than that of the sur-
rounding mantle, we use a less viscous buoyant
fluid. The parameters in which the experiments are
conducted are summarized in Table 1.

[14] Front and side views of the experiments are
recorded by two digital video cameras with resolu-
tions of 1920 � 1080 at 30 frames/s. The time
evolutions of the height and shape of the buoyant
fluid are analyzed using MATLAB. Image analysis
is conducted for the front view.

[15] In order to apply the phenomena observed in
our experimental results to the Earth’s mantle, the
calculated Reynolds number, Re, should be Re � 1.
In our experiments, the maximum plume head veloc-
ity is less than 0.01 m s�1, and the possible maxi-
mum plume radius is 0.15 m, thus, Re � 1.

[16] In the thermochemically convecting mantle,
the upwelling region is formed by the thermal
buoyancy and is chemically heavier than the sur-
rounding mantle. On the other hand, in our experi-
ments, we use chemically buoyant fluid to form a
buoyant sheet. A thermochemical plume some-
times cools as it ascends, loses thermal buoyancy,
and then shows complex behaviors [e.g., Farne-
tani and Samuel, 2005; Lin and van Keken, 2006;
Kumagai et al., 2008]. For simplification, we con-
duct our experiments with a chemically buoyant
fluid that does not lose buoyancy during its ascent.
Our simple experiments help us to make an

Figure 2. A schematic diagram of the experimental
apparatus.

Table 1. List of Experiments and Their Parametersa

�a (Pa s) �i (Pa s) �a (kg/m3) �i (kg/m3) q (� 10�6) (m2/s)
Measured

ti (s)
Height
at ti (m)

Equation
(7) (s)

Equation
(8) (s)

Equation
(10) (s)

10 0.5 1415 1342 13.7 45 0.065 19 2 4
10 0.6 1415 1342 10.8 31 0.055 19 3 5
10 0.4 1415 1342 9.7 38 0.056 18 3 5
10 0.3 1415 1342 1.3 39 0.025 16 7 9
16 2.3 1414 1380 4.1 72 0.039 83 10 17
16 2.3 1414 1380 2.2 243 0.098 83 14 21
16 2.3 1414 1380 1.9 175 0.065 83 15 23 Figure 3
16 2.3 1414 1380 1.2 186 0.081 83 19 26
16 2.3 1414 1380 0.8 203 0.039 83 24 30
78 2.2 1430 1340 2.6 293 0.096 102 12 23
78 2.2 1430 1340 1.1 518 0.089 102 18 31

a� : viscosity, � : density, and q : flux of the buoyant fluid per unit length. Subscripts a and i indicate ambient and buoyant fluids, respectively.
ti is the measured time scale until undulations develop at the top of a buoyant sheet after an experiment begins. The measured height at ti and time
scales estimated by equations (7), (8), and (10) are also listed. See text for details. The corresponding figure number in which the experimental
result is shown is denoted.
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analytical model and to understand the behavior of
sheet-like upwellings qualitatively.

3. Experimental Results

[17] Figure 3a and Animation 1 (supporting infor-
mation)1 show the time evolution of the buoyant
fluid. At 0 s, the buoyant fluid is located between
the slit at the bottom of the tank, observed as the
blue line in the side view. At 80 s, the front view
shows that the buoyant fluid has a sheet-like shape.
The side view, however, shows that the top of the
buoyant sheet is wider than that of the slit (2 mm),
indicating that the buoyant fluid is accumulating at
the top of the sheet. There exist some nodes at the
top of the buoyant sheet, suggesting that instability
is occurring. At 160 s, a darker-blue region appears
at the top of the buoyant sheet from the front view,
as shown by the red rectangle, which is round from
the side view, suggesting that the accumulating
buoyant fluid at the top of the sheet has a cylindri-
cal shape. However, the side view also shows that
the radius of the cylinder is not unique, as shown
by the red and pink arrows. We thus interpret the
snapshots at 160 s to mean that some plume heads
are developing in the cylindrical fluid. There are
fewer nodes at 160 s than at 80 s. At 240 s, the cy-
lindrical region separates into several spherical
heads even in the front view. The heads ascend
with tails faster than the sheet (400 s).

[18] Other experiments show similar characteris-
tics. Buoyant fluid accumulates into a cylinder and
separates into several plume heads. In experiments
with a less-viscous ambient fluid, instability begins
sooner. In a comparison of experiments using the
same ambient fluid, a faster fluid supply makes the
plume heads larger.

4. Model

4.1. Time Evolution of the Shape of the
Buoyant Fluid

[19] In our experiments, we find that the buoyant
fluid ascending from a line source forms a sheet-
like upwelling and then accumulates at the top of
the upwelling sheet into a cylindrical shape. We
here develop a model to explain the growth rate of
the fluid cylinder. We assume that the growth of
the fluid cylinder is determined by the upwelling
velocity of the cylinder, U, and the flux of the

buoyant fluid, q. When the cylinder ascends, the
fluid sheet that connects the source and the cylin-
der elongates. Some part of the buoyant fluid sup-
plied from the source is consumed to build the
newly created sheet. The remainder of the fluid
supply flows into the cylinder and increases its ra-
dius. This phenomenon is described as follows

2�r
dr

dt
¼ q� Uw; ð1Þ

where r is the radius of the fluid cylinder, t is the
elapsed time after the fluid supply begins, q is the
flux of the buoyant fluid per unit length, and w is the
width of the fluid sheet. Visual observations indicate
that the width of the sheet does not change signifi-
cantly during the ascent. We thus use the initial
width of w � 2� 10�3 m for the ascending sheet.

[20] It is reasonable to consider that the ascending
velocity of the buoyant cylinder is scaled as

U ¼ C��gr2

�a

; ð2Þ

where ��¼ �a� �i is the density difference
between the ambient �a and buoyant �i fluids,
g¼ 9.8 m s�2 is the gravitational acceleration, �a

is the viscosity of the ambient fluid, and C is a
constant.

[21] We solve equations (1) and (2) with the initial
condition r¼w/2 for t¼ 0 and obtain

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�a

C��gw
1� 1� C��gw3

4q�a

� �
e�

C��gw
��a

t

� �s
: ð3Þ

[22] This equation indicates that the cylinder ra-
dius asymptotically approaches

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q�a

C��gw

r
: ð4Þ

[23] In equation (3), the term inside the parenthe-
ses should be positive; otherwise, the radius of the
cylinder decreases as time elapses. The required
condition is written as

q

w
>

C��gw2

4�a

: ð5Þ

[24] When a condition does not meet equation (5),
it means that a buoyant cylinder with a radius w/2
ascends faster than the supply of the buoyant fluid.

1Additional supporting information may be found in the
online version of this article.

NAMIKI ET AL. : A SHEET-LIKE UPWELLING 10.1002/ggge.20182

3057



Figure 3. (a) Images of the time evolution of the buoyant fluid. The blue region indicates the buoyant fluid. The numbers indi-
cate the time elapsed after the ascent begins. The left hand and right hand figures show front and side views,
respectively. The yellow arrow indicates the spatial range in which the time scale of instability ti is measured.
Animation of this figure is provided as Animation 1. (b) Measured and calculated heights of the buoyant fluid
as a function of time. Red, blue, and black curves are measured heights and show the maximum, minimum,
and averaged heights within the spatial range denoted by the yellow arrow, respectively. The green curve
shows the calculated height by the time integration of equation (2) with equation (3). We use the same colors
for the curves in Figure 3c and 3d. The purple circle and the arrow indicate the measured time scale ti until
instability is observed after the experiment begins. (c) Measured and calculated velocities for the ascending
buoyant fluid. The green curve is calculated by equation (2). (d) Estimated cylinder radius of the buoyant fluid
from the observation and our model denoted in equation (3). (e) The estimated prefactor C in equation (2) by
the averaged ascending velocity of the buoyant fluid in Figure 3c. In Figures 3b–3d, we use C¼ 0.38 esti-
mated in Figure 3e.
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[25] This model includes an unknown prefactor C.
In order to estimate C, we here calculate the
ascending velocity of the buoyant cylinder from
the experiment and compare it with our model.
The red, blue, and black curves in Figure 3b show
the maximum, minimum, and averaged heights of
the buoyant fluid, respectively, within the spatial
range denoted by the yellow arrow in Figure 3a.
We calculate the ascending velocity of the buoyant
fluid as shown in Figure 3c from the time deriva-
tive of heights. Since we know the flux of buoyant
fluid q and ascending velocity U, we can calculate
the cylinder radius for each time step by using
equation (1) with the initial condition r¼w/2. The
estimated cylinder radius is denoted in Figure 3d.
We now know both the ascending velocity U and
the cylinder radius r, and can calculate the prefac-
tor C in equation (2). The black curve in Figure 3e
shows that the estimated C converges to an asymp-
totic value around 0.4.

[26] Since the prefactor C should be calculated for
the duration in which the buoyant fluid maintains a
cylindrical shape, and since there may be initial
perturbations in experiments, we calculate the
mean value for the time duration denoted by a
green line in Figure 3e and obtain 0.38. We esti-
mate the prefactor C for other experiments with
the same method denoted by the black curve in
Figure 3e and obtain similar characteristics and
values. In other experiments, however, the buoy-
ant fluid remains cylindrical for only short periods
of time, and it is difficult to define the time dura-
tion for averaging. We thus use C¼ 0.38 as a rep-
resentative value for the cylinder-shaped fluid with
nodes. This value is close to that for a viscosity-
free sphere, 1/3.

[27] We calculate the cylinder radius, ascending
velocity, and height of the buoyant fluid by using
equations (2) and (3), as denoted by the green
curves in Figures 3b–3d. Since our model does not
include the phenomena after instability grows, we
can compare the green curves with the measure-
ments only until instability begins, which is recog-
nizable by increasing differences between the red
and blue curves. Except for the very beginning of
the experiments (<20 s), the model shows good
agreement with the measurements until instability
begins. At the beginning of the experiments, the
flux of the buoyant fluid suddenly changes which
may cause unexpected perturbations. In addition,
at very low heights, it is difficult to measure the
height of the buoyant fluid accurately. We thus
conclude that our model reasonably explains the
experimental results.

4.2. Time Scale Until Instability Begins

[28] We here consider the time scale ti that elapses
before the fluid sheet turns into separated plume
heads after the sheet begins to ascend. We first
consider the time scale observed in our
experiments.

[29] When gravitational instability occurs, the local
variation in the height of the buoyant fluid should
increase. After instability fully develops, the veloc-
ity of the plume head is not likely accelerated sig-
nificantly. If the size of the plume head is fixed, the
ascending velocity becomes constant. We thus
calculate the time at which the time derivative of
the height variation in the logarithmic scale,
dlog hmax � hminð Þ=dt, becomes its maximum,
where hmax and hmin are red and blue curves in Fig-
ure 3b, respectively. In other experiments, we chose
the loci to calculate hmax�hmin as follows. Its length
scale includes 1 � 2 undulations at the top of the
sheet. The loci exclude the edge of the cylinder and
regions disturbed by bubbles. We plot the calcu-
lated time with a purple circle in Figure 3b and find
that it explains the time when the fluid sheet has
undulations, that is, when the instability grows. We
thus use the time duration denoted by the purple
arrow in Figure 3b, until the time denoted by the
purple circle after the experiment starts, as the time
scale for the instability to begin ti. The measured
time scale ti is summarized in Table 1.

[30] Next, we consider two models for the time
scales until the gravitational instability begins.
Using linear stability analysis, Lister and Kerr
[1989] formulate the required time scale � for
instability to grow in a buoyant cylinder with a
constant radius of a,

� ¼ Cg
�a

��ga
: ð6Þ

[31] The prefactor Cg in the above equation is
described in Appendix A. The important charac-
teristic of equation (6) is that the time scale for the
growth of instability depends inversely on the ra-
dius of the buoyant cylinder.

[32] In our experiments, the cylinder radius r
increases as time elapses so that the time scale �
becomes shorter. The cylinder radius r grows from
half the width of the fluid sheet w/2 to the asymp-
totic radius written in equation (4). Substituting
these two radii into equation (6), we can estimate
the longest �1 and shortest � s time scales to grow
instabilities
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� l ¼ Cg
�a

��gw
ð7Þ

� s ¼ Cg

ffiffiffiffiffiffiffiffiffiffiffiffi
C�aw

��gq

s
: ð8Þ

[33] In Table 1, we compare these time scales with
the measured time scale until the gravitational
instability begins ti. The estimated time scales in
equations (7) and (8) are shorter than the measured
time scale ti. We thus infer that the time scale until
instability begins ti depends on the time scale for
the growth of the cylinder rather than that for the
growth of instability.

[34] In equation (3), the time scale until the cylin-
der radius r approaches the asymptotic value is
described as

t1 ¼
��a

C��gw
: ð9Þ

[35] We plot t1 by circles in Figure 4 as a function
of the measured time scale ti, showing good corre-
lation. In the experiment denoted by the open blue
circle, bubbles are observed in considerable num-
bers, unlike the case in other experiments. We
infer from this that bubbles excite perturbations
and cause instabilities on a shorter time scale.

[36] Another possible time scale t2 may be the
time when the growth rate of the instability
r/� becomes faster than that of the cylinder radius

dr/dt. In other words, if the height difference
induced by gravitational instability grows faster
than the change in the cylinder radius, that undula-
tion continues to grow. We here calculate dr/dt
and � using equations (1) and (6), respectively.
Here � is the time scale required to grow the insta-
bility for a buoyant cylinder with a constant radius
a. In our experiments, the cylinder radius r is time
dependent. We thus calculate radius r using equa-
tion (3) and substitute it for a in equation (6). Pre-
factors Cg in equation (6) are calculated according
to Lister et al. [2011] as written in Appendix A.
We then calculate the time t2 where dr/dt¼ r/�
and plot it as a cross in Figure 4. Figure 4 shows
that t1 and t2 indicate similar trends, but t2 is sys-
tematically shorter than the measured ti.

[37] If we can neglect the newly created sheet
Uw in equation (1), the time scale t2 can be writ-
ten in a simple analytical form. Neglecting Uw,
the growth rate of the cylinder radius becomes
dr=dt ¼ q=2�r. Integration of this equation gen-
erates time-dependent cylinder radius
r ¼

ffiffiffiffiffiffiffiffiffi
qt=�

p
. The time derivative of r generates

the growth rate of the cylinder radius
dr=dt ¼

ffiffiffiffiffiffiffiffiffi
q=�t

p
=2. Again, comparing dr/dt and

r/� , we can calculate the analytical form of t2a

for the case with small Uw.

t2a ¼
�C2

g�
2
a

4��2g2q

 !1=3

: ð10Þ

[38] We calculate t2a and denote them in Table 1.
The calculated t2a shows similar time scales of
those plotted in Figure 4 and shorter than the
measured time scales ti.

[39] In Figure 4, t1 and t2 show similar trends, and
Lister et al. [2011] report that the observed time
scale of the instability is 5 times � . Figure 4 sug-
gests that a product of a constant factor and t2 can
explain the observed ti. However, the observed ti
in our experiments is longer than 5t2.

[40] We observed a reduction in the number of
nodes during 80–160 s in the side view of Figure
3a. This reduction in nodes suggests that the most
unstable wavelength can change even after insta-
bility begins to grow. It is well known that the
most unstable wavelength is scaled with the cylin-
der radius [Kerr and Lister, 1988]. We thus infer
that, even when the instability is halfway to grow-
ing, the number of nodes can decrease according
to the increase in the cylinder radius. We thus con-
sider that the time scale until the cylinder radius

Figure 4. Comparison between the measured ti and esti-
mated time scales t1 and t2 until instability occurs. Circles and
crosses indicate t1 and t2, respectively. See text for details.
The marker colors (red, blue, and green) show the difference
in the ambient fluid used in the experiments in the order
shown in Table 1. In the experiment denoted by an open blue
circle, a substantial amount of bubbles is observed. They may
affect the time scale until instability begins.

NAMIKI ET AL. : A SHEET-LIKE UPWELLING 10.1002/ggge.20182

3060



reaches the asymptotic value t1 explains the time
scale ti after which gravitational instability is
observed. Here there is a limitation on the parame-
ter range in our experiments. Experiments with
wider ranges of parameters will help distinguish
the difference between t1 and t2.

5. Discussion

[41] In this section, we apply our model describing
the evolution of sheet-like upwellings to the
Earth’s mantle.

5.1. A Regime for the Growth of a
Buoyant Cylinder

[42] In order to apply our model described in equa-
tions (1)–(3) to the Earth’s mantle, the conditions
surrounding the sheet-like structure should satisfy
equation (5). In Figure 5, we estimate the parame-
ter range that satisfies equation (5).

[43] Here the density inside the sheet is less than
that for the ambient mantle. Thus, the larger den-
sity difference �� indicates a more buoyant force.
We assume the following other parameters: the
viscosity of the ambient mantle is 1021 to 1023

Pa�s [Mitrovica and Forte, 2004], gravitational
acceleration is g¼ 9.8 m s�2, and the prefactor
C¼ 0.38 in equation (2) is the same as that for our
experiments. Since there are no quantitative meas-
urements of the rate at which the buoyant fluid in
the mantle is supplied, we assume that the supply
rate is on the same order of magnitude as the sub-
duction velocity of slabs, 0.01� 0.1 m yr�1. This
is because the supply of buoyant fluid should be a
part of the mantle convection. The subduction ve-
locity of slabs is a typical velocity of the mantle
convection. In another aspect, subducting slabs
may push a hot thermal boundary to supply buoy-
ant fluid into the sheet-like structure [Steinberger
and Torsvik, 2012].

[44] The important feature of Figure 5 is that a
buoyant sheet having a thinner width and a smaller
density difference from the ambient mantle can
satisfy equation (5). Here the horizontal green bar
indicates the observed width of the SLVRP,
500 km. The pink region indicates the possible
density difference attributable to thermal expan-
sion, in which we assume the temperature differ-
ence between the inside and outside of a sheet as
�T> 500 and >1000�C, the thermal expansion as
�¼ 10�5 K�1 [Oganov et al., 2001], and the den-
sity of the mantle rock as �¼ 5000 kg m�3.

[45] When the density difference between the
inside and outside of the buoyant sheet is less than
<10 kg m�3, most of the lines, except for the
thin red line, exceeds the horizontal green bar. If
the sheet-like structure is compositionally the
same as the surrounding mantle, a temperature
anomaly of >500C

�
generates a density difference

>25 kg m�3. Our model is not applicable to the
SLVRP for a low-viscosity mantle �a� 1021 Pa�s
and a low supply rate of buoyant fluid. A seismo-
logical observation [Takeuchi, 2012] suggested
that the SLVRP is chemically distinct from the
surrounding mantle. If the SLVRP is chemically
denser than the surrounding mantle such that the
total density difference from the surrounding
mantle is lower than that estimated solely by the
thermal effect, we can apply our experimental
results to the SLVRP in a wider range of
parameters.

[46] If the viscosity of the surrounding mantle is
large enough >1023 Pa�s, even with a larger den-
sity difference between inside and outside the
sheet-like structure >25 kg m�3, we can apply our
experimental results to the SLVRP.

Figure 5. Each line shows the maximum width of a sheet
satisfying equation (5). Red solid, blue dotted, and green
dashed-dotted lines indicate that the viscosities of the ambient
mantle are 1021,1022, and 1023 Pa�s, respectively. Thinner and
thicker lines indicate that the areal supply rates of buoyant flu-
ids q/w are 0.01 and 0.1 m yr�1, respectively. The green hori-
zontal bar indicates 500 km and corresponds to the observed
width of the SLVRP. Pink regions indicate the possible den-
sity differences attributed to thermal expansions for tempera-
ture differences between the inside and outside of the buoyant
sheet of �T> 500�C and �T> 1000�C, thermal expansion of
�¼ 10�5 K�1 [Oganov et al., 2001], and density of the mantle
rock of �¼ 5000 kg m�3.
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5.2. Possible Conditions for the Formation
of an Elongated LIP

[47] We here consider the time evolution of a
buoyant sheet in the Earth’s mantle. We use the
conditions satisfying equation (5) estimated in Fig-
ure 5. Figure 6a shows the time evolution of sheet
heights with variable conditions. The estimated
timings of instabilities t1 are also denoted by
crosses. We can find crosses on most curves, sug-
gesting that most buoyant sheets do not reach the
surface of the Earth (3000 km) before gravitational
instability separates the buoyant cylinder into sev-
eral plume heads. Only in the case denoted by the
thick blue solid curve, the buoyant sheet can reach
the surface of the Earth before t1. In this case, we
adopt the following conditions: the width of
the sheet is w¼ 200 km, the density difference is

�� ¼10 kg m�3, and the areal supply rate of the
buoyant fluid is q/w¼ 0.1 m yr�1.

[48] Since the time scale until gravitational insta-
bility occurs, denoted in equation (9), inversely
depends on w and ��, a thinner sheet with a
smaller density difference can maintain its shape
longer. On the other hand, the time evolution of
the sheet height obtained by the integration of
equation (2) with equation (3) is written as

h ¼ q

w
t þ q

w
t1 �

�w

4

� �
e�t=t1 � 1
� �

: ð11Þ

[49] For a large t, equation (11) approaches
asymptotically to h¼ qt/w. Accordingly, a higher
supply rate of the buoyant fluid can accelerate the
ascent of the buoyant sheet.

Figure 6. (a) Height evolution of buoyant sheet estimated by integrating equation (2) with equation (3). The adopted conditions
are listed in the legends, which are the width of the sheet, w, the density difference between the inside and outside of the sheet,
��, and the areal supply rate of buoyant fluids q/w. The viscosity of the ambient mantle is assumed as 1022 Pa�s. Crosses indicate
the timing of t1. In the case denoted by a thick blue curve whose legend is highlighted, the sheet can reach the surface before the
gravitational instability separates the buoyant cylinder into spherical plume heads. (b) Corresponding radius of the buoyant cylin-
der for cases shown in Figure 6a. Circles show the time when the plume reaches the surface.
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[50] These characteristics are confirmed by Fig-
ures 7a and 7b which shows the maximum
heights that buoyant sheets can reach before the
time scale for instability t1 elapses. Figure 7a
shows that buoyant sheets with smaller density
differences and higher supply rates of buoyant
fluid can ascend higher before gravitational insta-
bility changes its shape. The curve labeled as
3000 km shows the conditions under which the
buoyant sheet can reach the surface of the Earth
before gravitational instability occurs. Hence,
when the buoyant sheet has conditions plotted in
the upper left region of this curve, the sheet can
reach the Earth’s surface while maintaining its
shape, as denoted by the inset cartoon. On the
other hand, Figure 7b shows that thinner buoyant
sheets can ascend higher before gravitational
instability changes their shapes. These features
are summarized in Figure 7c. Figure 7c is plotted
by substituting t¼ t1 and h¼ 3000 km in equation
(11). The figure shows the conditions under which
instabilities occur around the surface of the Earth.
Again, within a reasonable supply rate of the
buoyant fluid q/w< 0.1 m yr�1, a thinner buoyant
sheet with a smaller density difference can reach
the surface of the Earth before instability occurs.
This threshold becomes larger as the supply rate
increases.

[51] We thus conclude that a thinner sheet with a
smaller density difference from the surrounding

mantle and a higher supply rate of buoyant fluid
can reach the surface of the Earth while maintain-
ing its sheet-like shape. If such a sheet with a
buoyant cylinder reaches the surface, it could form
an elongated LIP similar to the Ferrar LIP [Elliot
et al., 1999].

[52] The small density difference from the ambient
mantle suggests that such a plume includes chemi-
cally heavy components and affects the composi-
tion of LIPs. This hypothesis is consistent with
petrological observations [Coffin and Eldholm,
1994; Ernst et al., 2005]. The anomalous compo-
sition in LIPs has also been suggested by seismic
observations [Korenaga, 2011]. The estimated ra-
dius of the buoyant cylinder at the top of the sheet
is approximately 600 km, as shown in Figure 6b.
Although it has been recognized that a large plume
head is required to generate LIPs [Coffin and Eld-
holm, 1994], 600 km as a cylinder radius is quite
large. This discrepancy may originate from mech-
anisms that are not included in our experiments,
such as background mantle convection and ther-
mal diffusion. We will discuss the effect of ther-
mal diffusion later.

[53] On the other hand, it is difficult for a wider
buoyant sheet with a larger density difference and
a lower supply rate of buoyant fluid to ascend
while maintaining its shape without gravitational
instability. Such a sheet must make several plume

Figure 7. (a) Maximum heights that a buoyant sheet having a width of w¼ 500 km can reach before instability occurs as a
function of density difference, ��, and areal fluid supply rate, q/w, estimated from equations (9) and (11).
The green region does not satisfy equation (5), as discussed in Figure 5, where our experimental results are
not applicable. (b) Same as Figure 7a but as a function of the width of the buoyant sheet, and the areal supply
rate of the buoyant fluid is q/w¼ 0.05 m yr�1. The blue line is denoted only for the condition in which the
width of the sheet is less than its height. (c) The conditions under which instability occurs at the surface of the
Earth (3000 km). Contours indicate the areal fluid supply rate as a function of the density difference and the
width of buoyant sheet. In Figures 7a–7c, the viscosity of the ambient mantle is assumed as 1022 Pa�s. The
conditions assumed for the pink region are the same for Figure 5.
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heads and may be observed as individual LIPs that
are aligned. It is known that some LIPs erupt at
similar ages [Storey, 1995], but there are not
enough LIPs to allow us to discuss their linearity.

[54] The observed width of the SLVRP is about
500 km. The thick blue dotted curve in Figure 6
indicates that the time scale for the instability t1
is shorter than the time scale for the buoyant
sheet to reach the surface of the Earth, and that
the difference between the two time scales is
quite small. We here note that the time scale used
to estimate the timing of instability, t1, represents
the time at which the top of the buoyant sheet
undulates. At this stage, individual plume heads
have not yet formed. In addition, thermal diffu-
sion increases the time scale for instability in the
mantle, as we will discuss later [Kerr et al.,
2008]. We thus infer that the SLVRP might erupt
into an elongated LIP.

[55] The LLSVP beneath Africa is wider than
1200 km [Ni and Helmberger, 2003]. Such a wide
ridge-like structure may have difficulty reaching
the surface while maintaining its shape.

[56] In our experiments, we use a compositionally
buoyant fluid, whereas in the Earth’s mantle the
buoyancy of the sheet-like upwelling originates
from a hot thermal anomaly. If the sheet cools by
thermal diffusion before it reaches the Earth’s sur-
face, its ascent may stop. The cooling time of the
sheet by thermal diffusion is estimated using ther-
mal diffusivity � ¼ 10�6m2s�1; t ¼ w=2ð Þ2=�. In
Figure 6, we assume the sheets are 	200 km wide.
For a width of 200 km, the cooling time becomes
approximately �3�108 years. The time scale for
the buoyant sheet to reach the surface is 108 years.
We thus infer that the sheet discussed in Figure 6
can reach the surface before losing its buoyancy
by thermal diffusion.

[57] Thermal diffusion also may affect the time
scale of instability [Kerr et al., 2008]. If thermal
diffusion occurs before instability begins, thermal
buoyancy decreases and gravitational instability is
suppressed. For an isolated buoyant cylinder with
a radius a, when the ratio of time scales for ther-
mal diffusion and gravitational instability, equa-
tion (6), is smaller than ��ga3=��a < 300,
thermal diffusion delays the gravitational instabil-
ity [Kerr et al., 2008]. Figure 8 shows the calcu-
lated ratio ��g w=2ð Þ3=��a for buoyant sheets.
The ratio becomes smaller for a thinner sheet hav-
ing smaller density differences. Although it is not
obvious whether the threshold of 300 obtained for
an isolated cylinder [Kerr et al., 2008] is also ap-

plicable to a sheet, the time scale for instability
must be delayed for thinner sheets having smaller
density differences. This is the same trend we find
in Figure 7; that is, a sheet-like upwelling likely
has a small density difference from the ambient
mantle.

6. Conclusion

[58] We performed a series of experiments to esti-
mate the parameter space in which the potentially
buoyant SLVRP could reach the Earth’s surface
with maintaining its sheet-like structure. The
buoyant fluid ascending from a line source accu-
mulates at the top of the sheet in the shape of a
cylinder. The cylinder eventually separates into
spherical plume heads by gravitational instability.
We formulate the time evolution of the buoyant
sheet and the time scale until instability begins
based on our experiments. Applying our model to
the SLVRP, we find that a thinner and slightly
buoyant sheet with sufficient supply of a buoyant
fluid can reach the Earth’s surface while maintain-
ing its shape.

Appendix A: Prefactors in the Growth Time

[59] Figure A1a plots the calculated nondimensional
growth rate as a function of wave number k using the
long-wave asymptotic model written as equation (3.11)
in Lister et al. [2011] with a variable viscosity ratio

Figure 8. The contours show time scale ratios of thermal
diffusion and instability, ��g w=2ð Þ3=��a, as a function of the
density difference, ��, and the width of the buoyant sheet w,
[Kerr et al., 2008]. The conditions assumed for the pink
region are the same as those for Figure 5.
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�¼�i/�a. Figure A1b is the prefactor of the growth
time Cg in equation (6) to maximize the growth rate in
Figure A1a.
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