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SUMMARY 
We derive modified matrix operators that minimize the numerical error of solutions of 
the discretized elastic equation of motion. The criterion for obtaining the modified 
matrix operators is that the net error of the discretized equation of motion must be 
approximately equal to zero whenever the operand is an eigenfunction and the 
frequency is equal to the corresponding eigenfrequency. As it is not necessary to know 
the explicit values of the eigensolutions, our approach can be applied to arbitrarily 
heterogeneous media. In this paper we primarily consider frequency domain solutions 
calculated using the direct solution method (DSM) (Geller et al. 1990; Hara, Tsuboi 
& Geller 1991; Geller & Ohminato 1994). We present explicit formulations of the 
modified operators and numerical examples for P-SV and SH wave propagation in 
laterally homogeneous, isotropic media. The numerical solutions obtained using the 
modified operators are about 30 times more accurate than those obtained using the 
unmodified operators for the same CPU time. Our methods are readily applicable to 
problems in spherical coordinates or involving laterally heterogeneous media, as well 
as to time-domain solutions. It should also be possible to apply the methods of this 
paper to numerical methods other than the DSM. 

Key words: direct solution method (DSM), numerical error, synthetic seismograms. 

1 INTRODUCTION 

Great progress in determining 3-D Earth structure was made in the 1970s and 1980s by analysing body-wave traveltimes and 
surface-wave phase velocities. It now seems to be the general consensus that such studies have reached the point of diminishing 
returns, and that further progress can only be made by inversion of seismic waveforms themselves, rather than secondary parameters 
such as traveltimes or phase velocities (e.g. Nolet, Grand & Kennett 1994). 

Techniques for inverting seismic waveform data for Earth structure (e.g. Tarantola 1984; Geller & Hara 1993) require highly 
accurate synthetic seismograms to obtain accurate earth models. Synthetics for use in waveform inversion studies must therefore 
meet a much stricter standard of accuracy than has heretofore been thought necessary for forward modelling. The purpose of this 
paper is to derive and implement numerical methods that optimize the accuracy of the synthetic seismograms for a given CPU 
time, i.e. for a given grid spacing and matrix bandwidth. This paper considers calculations for laterally homogeneous media with 
Cartesian or cylindrical coordinates. However, numerical methods of the type presented in this paper can also be readily applied 
to problems in spherical coordinates. Cummins et al. (1994a) have already presented modified operators for toroidal ( S H )  
synthetics, and the methods of Cummins, Geller & Takeuchi (1994b) for spheroidal (P-SV) synthetics for a laterally homogeneous 
spherical model can be readily adapted to use the modified operators presented in this paper. Our methods should also be 
applicable to the laterally heterogeneous spherical case considered by Cummins, Geller & Takeuchi ( 1994~). 

Hybrid approaches are also possible. Geller & Hatori (1995) presented a DSM formulation for a plane-layered medium using 
analytic trial functions. It is straightforward to use their analytical trial functions for the plane-layered part of the medium, and 
the numerical methods of this paper for the part of the medium with continuous velocity gradients. The two formulations can be 
joined by simply ‘overlapping’ the mass and stiffness matrices at the boundary. 

1.1 Preview 

We consider a homogeneous region in this subsection, although the derivations below consider inhomogeneous media. We assume 
that separation of variables has already been used to reduce the problem to a system of coupled ordinary differential equations 
with z as the independent variable. 
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As is well known, discretized operators have errors due to numerical dispersion. For example, the three-point finite-difference 
operator for a second derivative yields 

1 d2u Az2 d4u 
Az2 dz2 12 dz4 
- [U(Z - Az) - 2 4 ~ )  + U ( Z  + Az)] = - + - - + . ‘ ‘, 

rather than the desired value 

d2u 

dz2 . 
- 

The second term in eq. (1.1) is the error due to numerical dispersion. The Taylor series expansions used to derive eq. (1.1) and 
later results in this section are given below in eqs (3.20)-( 3.23). 

In the next section, we derive a general criterion for optimally accurate modified operators: the net error of the discretized 
equation of motion should be approximately equal to zero when the operand is an eigenfunction and the frequency is equal to the 
corresponding eigenfrequency. To satisfy this criterion, we define modified operators for the first- and zeroth-derivative operators 
whose leading error term matches that of the second-derivative operator in eq. (1.1). 

The commonly used three-point operator for the first derivative is 

1 du Az2 d3u 
2Az dz 6 dz3 
- [U(Z + Az) - U(Z - Az)] = - + - - + . ’. . 

However, to match the leading error term in eq. ( l . l ) ,  the coefficient of the leading error term of the discretized operator for the 
first derivative must be Az2/12 rather than the factor of Az2/6 in eq. (1.3). We define four-point modified first-derivative operators 
below that have the desired numerical error. 

For the laterally homogeneous cases considered in this paper, the numerical operators for the first derivative occur in the P-SV 
problem, but not in the SH problem. The sites occupied by the unmodified first-derivative operators in the matrix of coefficients 
for the discretized equation of motion are shown by the solid circles and triangles in Fig. 4 (p. 463). However, as shown in Fig. 4, 
we can also use the sites indicated by the plus signs (odd-numbered rows) or crosses (even-numbered rows) to formulate four-point 
operators for the first derivative that do not increase the bandwidth of the coefficient matrix. The four-point first-derivative 
operators for the odd-numbered rows use one extra point to the left, 

1 du Az2 d3u 
- [ ~ U ( Z  + Az) + 3 4 ~ )  - ~ U ( Z  - Az) + U ( Z  - ~ A z ) ]  = - + - - + . . . , 1262 dz 12 dz3 

while the four-point operators for the even-numbered rows use one extra point to the right, 

du Az2 d3u 
~ [-u(z  + ~ A z )  + ~ U ( Z  + Az) - ~ u ( z )  - ~ U ( Z  - Az)] = - + - - + .... 12Az dz 12 dz3 (1.5) 

1 

The following ‘zeroth-derivative’ operator matches the error in eq. ( 1.1): 

Az2 d2u 
12 dz2 

&U(Z - Az) + ~ u ( z )  + &U(Z + Az) = u + - - + . . . 

The combined use of operators of the form of eqs ( l . l ) ,  (1.4), (1.5) and (1.6) leads to discretized equations that satisfy the 
criterion for optimally accurate operators. We have 

Az2 
12  

[Discretized equation(w, u)] = [exact equation(w, u)] + - [exact equation@, u)]“ + ..., 

where the prime denotes differentiation with respect to z. Now suppose u, is the eigenfunction of a mode and 0, is the 
corresponding eigenfrequency. In this case, 

[exact equation(w,, u,)] = 0, (1.8) 

and therefore 

[exact equation(w,, urn)]” = [O]” = 0 .  (1.9) 

Substituting eqs (1.8) and (1.9) into eq. (1.7), we obtain 

[Discretized equation(w,, u,)] % 0. (1.10) 

As shown in Fig. 4, the full bandwidth for the various operators is not available at the boundaries. Discretized operators with 
less than the full bandwidth have relatively large ‘point-source’ errors at the boundaries. However, as we show rigorously in the 
next section, such point-source operator errors have only a small effect on the error of the solution of the discretized equation. 
This result is extremely important in designing modified operators. Fig. 8 (p. 469) shows a numerical example confirming this result. 
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1.2 Relation to previous work 

Many papers have studied the numerical dispersion associated with various discretized operators. Marfurt ( 1984) made 
phenomenological attempts to improve the accuracy of finite-element solutions of the acoustic and elastic wave equation by 
replacing the 'consistent mass matrix' by linear combinations of the 'consistent' and 'lumped' mass matrices. Korn (1987) rigorously 
dented a modified operator for the SH (toroidal) problem by finding a form that eliminates numerical dispersion, but could not 
extend his derivations to other cases. The modified operators derived by Korn for the SH case are essentially the same as those 
derived for the SH case in the present paper. 

In contrast to these studies, we use the first-order Born approximation to obtain formal expressions for the relative error of the 
numerical solutions; we then derive operators that minimize the relative error. There are several significant advantages to this 
approach. First, it is easier to obtain modified operators, especially for the P-SV case. Second, we can design operators that 
correctly handle external and internal boundaries. Third, we can derive modified operators that accurately handle media with 
velocity gradients. Fourth, we obtain error estimates that allow the grid spacing to be chosen to yield a desired level of accuracy. 

2 THEORY 

The DSM is a Galerkin weak form method (Strang & Fix 1973) for solving the elastic equation of motion. Detailed derivations 
are given by Geller & Ohminato (1994) and will not be repeated here. The DSM equation of motion for a medium with free 
surface boundary conditions is 

( d ~  - H ) ~  = -g, 

where w is the frequency, T is the mass (kinetic energy) matrix, H is the stiffness (potential energy) matrix, c is the vector of 
expansion coefficients for the trial functions, and g is the force vector. In the basis of trial functions, the matrix and vector elements 
are as follows: 

where #I"') is the i-component of the rnth trial function, ', j' denotes spatial differentiation with respect to the j-coordinate, p is the 
density, Cijkl is the elastic modulus, fi is the external body force, and '*' denotes complex conjugation. The summation convention 
applies to subscripts corresponding to physical (x, y or z) coordinates, but not to indices corresponding to abstract vector spaces, 
such as those denoting trial functions. The displacement is represented as a linear combination of the trial functions, 

ui = c cn41"'. (2.5) " 
The operators defined in eqs (2.2) and (2.3) will not in general be exact. We formally denote the exact operators by T(O) and 

H"', the exact solution by do), the error of the numerical operators by 6T and 6H, and the error of the numerical solution by 6c, 
where 

T = T(') + 6T, 

H = H(') + 6H, 

c = c(0) + 6 c ,  

(2.6) 

(2.7) 

(2.8) 
We represent the exact solution, the numerical solution and the error of the numerical solution by eigenfunction expressions from 
here through to eq. (2.21). It is not necessary to know the actual numerical values of the eigenvalues and eigenvectors. 

The normal modes satisfy 

[wiT'" - H'"]c, = 0 ,  (2.9) 
where w, is the eigenfrequency of the rnth mode, and c ,  is the eigenvector. We assume that the modes are orthonormalized, so 
that 

c~H'"c, = CO~C:T'''C, = w;6,,, , (2.10) 

where a,, is a Kronecker delta. 

We assume that anelastic attenuation is included in the elastic moduli. In some cases the eigenvectors for the anelastic case are 
not orthogonal and c: must be replaced by the dual space (left) eigenvector (e.g. Park & Gilbert 1986). If necessary, the following 
derivation can be modified in a straightforward way to takes this into account. 

The exact equation of motion can be formally written as follows: 

(2.11) 
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The error of the solutions, 6c, can be estimated using the first-order Born approximation: 

[wZT‘”- H‘”]~c  = -(w26T-6H)d0). (2.12) 

We represent the solution of eq. (2.11) in terms of an eigenfunction expansion, 

do) = 1 dc’c,. 
m 

(2.13) 

The expansion coefficient of the rnth mode is given by 

dl? = -gm/(02 - m i ) ,  (2.14) 

where 

The denominator of the right-hand side (rhs) of eq. (2.14) will be small, and thus d!,? will be large, when w is close to w,. d:) will 
be negligible except when w is in the vicinity of 0,. 

We also represent the solution of eq. (2.12) in terms of an eigenfunction expansion, 

6~ = 1 6dmcm. 

The expansion coefficient for the rnth mode is given by 
m 

1. (w26Tm, - 6Hm,)dio) 
adm= - 

(w2 - w i )  

(2.16) 

(2.17) 

By the same argument used above for eq. (2.14), the m-component of the error (i.e. ad,) will be large only when w is close to 
0,. However, in the vicinity of w = om, only a!,? will be large; the expansion coefficients of all the other modes will be negligible. 
Therefore in the vicinity of w = om, the n # m terms in the summation in eq. (2.17) can be neglected. The expansion coefficient of 
the rnth mode for the numerical error is therefore approximately given by 

(w26Tmm - 6Hmm)dE) 
6 d m =  - 

(w2 - m i )  
(2.18) 

We thus see from eq. (2.18) that the relative error of the numerical solution in the vicinity of o = 0, can be approximated by 

6dm (w26Tmm - 6Hmm) ~ T , , ( O ~  - 6Hm,/6Tmm) 
= -  _ -  

dc) - - (w‘ - w;) (w2 - w;) 
(2.19) 

Note that in the cases of interest w will be real, but om will include a small imaginary part due to anelastic attenuation. Therefore, 
the denominators in eqs (2.14), (2.17), (2.18) and (2.19) will become small as w-+wm, but will never exactly equal zero. 

Eq.(2.19) shows that in general the relative error will greatly increase as w approaches w,. However, if the numerator of 
eq. (2.19) is also proportional to (w2 - w;), the relative error will not worsen appreciably as w-w,. Such proportionality can be 
achieved if and only if the errors of the numerical operators approximately satisfy 

w;6Tmm - 6Hmm = 0 (2.20) 

for every mode. Eq. (2.20) implies that the matrix elements for coupling between modes, 6Tm, and 6Hm,, m # n, do not significantly 
affect the error of the numerical solution. 

Eq. (2.19) shows that the relative error of the numerical solution obtained using modified operators that approximately satisfy 
eq. (2.20) is approximately given by 

(2.21) 

even as w-+wm. On the other hand, if the operators do not approximately satisfy eq. (2.20), then eq. (2.19) shows that the relative 
error will worsen drastically as w -+ 0,. 

The original DSM operators will not in general satisfy eq. (2.20). In this paper we derive modified operators T and H’ which 
have the same bandwidth as T and H but which approximately satisfy eq. (2.20) to the lowest relevant order of Az, where Az is 
the grid spacing. 

The matrix elements in eq. (2.20) are given in any basis by 

T,, = c:Tc,, Tm. = cZTc,, 

H,, = C: Hc, , 
~T,,=c:~Tc,, 6 T m , = ~ : S T ~ , ,  

6Hm,=c:SHc,, 6HL,=c:GH‘c,. 

HL, = C: H’c, , 

Using eqs (2.20) and (2.22), we see that in any basis the error of the modified operators must approximately satisfy 

(2.22) 

c:(&GT - ~ H ’ ) c ,  = 0 .  (2.23) 
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Using eqs (2.6), (2.7), and (2.9), we see that eq. (2.23) is equivalent to 

c ~ ( u ~ T ’  - H’)c, = 0 .  (2.24) 

2.1 Physical interpretation 

In this subsection only, we use o$‘) and c:) to denote the eigenfrequencies and eigenvectors of the exact operators. The 
eigenfrequencies, 

( w ~ T  - H)c, = 0. (2.25) 

By comparing eq. (2.25) with eq. (2.9), and using eqs (2.6) and (2.7), we can find the relation between the exact eigenfrequencies, 
WE’, and the eigenfrequencies of the numerical operators w,. If we define So,=o,-w$‘), then, using standard results from 
first-order perturbation theory, the error of the eigenfrequencies of the original operators is found to be 

20g’60, = SH,, - W$‘)~BT,, . (2.26) 

and eigenvectors, c,, of the original numerical operators T and H are solutions of 

Similarly, the eigenfrequencies, a;, and eigenvectors, ca, of the modified operators, T and H’, are solutions of 

( u ~ T  - H’)& = 0. (2.27) 

The errors of the eigenfrequencies of the modified operators Sw‘ = o; - o!,? can be found as shown above, but we also use 
eq. (2.20) to obtain 

20g’Sr& = 6HL, - o ~ ) ~ ~ T ~ ~  x 0. (2.28) 

Thus eq. (2.20), which we derived by minimizing the error of the numerical solution, is equivalent to requiring the error of the 
eigenfrequencies of the modified operators to be approximately equal to zero. Since the modes are a complete set, the sum of all 
the modes yields a complete synthetic seismogram. If the eigenfrequencies are all accurate to some given order, the velocity of P 
and S waves in the numerical solutions will be accurate to the same order. Thus we suppress numerical dispersion as a consequence 
of reducing the error of the numerical solutions. 

It might seem intuitively reasonable to think that the errors of the numerical solutions will be largest where the errors of the 
numerical operators are largest. However, this is not the case. As shown by eqs (2.16) and (2.18), the spatial pattern of the error 
of the numerical solution in the vicinity of o = w, is given by the eigenfunction of the rnth mode. A large numerical error of the 
operators near a free surface or internal discontinuity does not mean that the error of the numerical solution will be unusually 
large there; it simply means that the scalar quantity 

o’~T,, - SH,, 
w2-o; ’ 

which, as shown by eq. (2.20), is the factor controlling the relative error of the expansion coefficient of the rnth mode in the vicinity 
of o = om, will be somewhat larger. This means that the relative error of the numerical solution will be uniformly larger everywhere 
in the medium, rather than that the error will be especially large at some particular points. Thus we do not have to be especially 
concerned with reducing the error of the operators at particular points, even points where we particularly desire accurate solutions. 

3 SWPROBLEM 

As the methods used to reduce the laterally homogeneous SH problem to a 1-D problem are standard, we do not discuss them 
here. The strong form of the equation of motion for the laterally homogeneous SH problem (Fig. la) in the (a, k,, z) domain is as 
follows: 

Free surface Free surface 

P (2). A (z), p (2 )  

Arbitrary vertically 
heterogeneous medium 

Free surface 

2 Z (a) (b) 
Figure 1. (a) The medium for the laterally homogeneous problem. The density, p, and Lame constants, I and p, are functions of depth only. 
(b) Two-layered model for the laterally homogeneous problem. p1 and pz are the densities in region 1 and region 2, respectively, I , ,  Az,  jil and j i z  

are the Lamb constants in each region. 
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where u and f are the depth-dependent parts of the y-component of the displacement and the body force, respectively, p is the 
density, p is the rigidity, which includes the effect of anelastic attenuation (e.g. Liu, Anderson & Kanamori 1976), and k ,  is the 
x-component of the wavenumber vector. The following discussion is also applicable to problems in cylindrical coordinates, since 
the vertically dependent part of the equation of motion is the same as for the Cartesian case. The weak form of the equation of 
motion for a medium with free surface natural boundary conditions is 

ZN 6:” [Xm(pwz - k:p)u - Xkpu‘] dz = - lo X J d z  (m = 0, . , . , N ) ,  (3.2) 

,where X ,  is a real trial function, and the prime denotes differentiation with respect to z. 
We represent u as a linear combination of the trial functions, 

N 
u =  c c m x m .  

m=O 

We use linear spline trial functions in the remainder of this paper (Fig. 2):  

(3.3) 

( z  - zm-l)/(Zm - z m -  1) 

(zm+ 1 - z)/(zm+ 1 - zm) 

z m -  1 < I zm 9 

zm I z < zm + 1 > Xm(z) = 

[o otherwise. 

We neglect the first line of eq. (3.4) for m = 0 and the second line for m = N .  
The unmodified matrix and vector elements for the SH problem are as follows: 

Tmn = 6:“ Xm p x n  dz 7 

(3.4) 

(3.5) 

where 

Hgk = XmpXn dz,  (3.7) 

HgA = X k  pXL dz , (3.8) h:” 
g m =  6:” x m f d z .  (3.9) 

For trial functions of the form of eq. (3.4), the integrands of eqs (3.5), (3.7) and (3.8) will be non-zero only when Irn - nl< 1. Thus 
T and H are tridiagonal. 

We define the following three bilinear integral operators based on the left-hand side of eq. (3.2): 

T(Xm, U) = X ~ P U  dz > (3.10) 

H(’)(Xm, u) = s:,” Xmpu d z ,  (3.11) 

H‘”(Xm, u) = ( X m ) , z ~ , z  d z .  (3.12) 

We analyse the error of the operators in eqs (3.5)-(3.8) using a strong form treatment. We formally integrate eq. (3.12) by parts 

s:,” 

- 7  

XN-1 
XN-2 XN 

A21 

Figure 2. The linear spline functions XJz) .  Note that the grid interval Azp is not necessarily constant. 
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to obtain either the operator ‘to the right’: 

WXm, U) = X ~ L I U , ~ I D I S C O N  - 
F 

or ‘to the left’: 

(3.13) 

I H”’IXm, U) = (Xm),ziuu/,,s,,, - [ A X r n ) , z I , z ~  d z .  (3.14) r 
The integrations in eqs (3.13) and (3.14) are performed piecewise. For example, if there is a discontinuity in p at z = z b ,  the 
boundary terms in eqs (3.13) and (3.14) are 1% and I:;, and the integrals I:,” are evaluated as the sum of Jz: and 1:;. 

3.1 Homogeneous SH 

The unmodified operators are obtained using eqs (3.5) and (3.6). We consider the case for which the grid interval Az is constant. 
The explicit form of the unmodified operators is as follows: 

116 213 116 
H:I)]= ” 

- 1  2 -1 

-1 

H@) has the form of a finite-difference operator (e.g. Isaacson & Keller 1966, p. 293) for 

(3.15) 

(3.16) 

Each of the expansion coefficients is equal to the displacement at the corresponding node. For convenience we set zo = 0 in this 
subsection. We can therefore write 

(3.17) 

We approximate the integrand in eq. (3.13) by its value at each node. The integral for the first node is taken from z = 0 to 
z = 842, the integral for the second node from z = Az/2 to z = 3Az/2, . . . , and the integral for the last node from z = ( 2 N  - 1)Az/2 
to z = NAz. We obtain from eq. (3.13) 

(3.18) 

The first column vector in eq. (3.18) corresponds to the integral in eq. (3.13); the second column vector, which corresponds to 
the boundary term in eq. (3.13), does not depend on Az. 
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We evaluate the exact operators T and H(‘) using the same approach as in eq. (3.18): 

(3.19) 

To evaluate the errors of the numerical operators in eqs (3.15) and (3.16) we use the standard approach of expanding the terms 
of the right-hand column vector in a Taylor series: 

u, - = u(z, - Az) = u - U‘AZ + $d’(Az)’ - ;U(~)(AZ)~ + &U‘”(AZ)~ - . . . , (3.20) 

U, + = U ( z i  + A ~ )  = + u ’ ~ z  + ~U”(AZ)~  + 6 u ( 3 ) ( ~ 4 3  + &u(4)(~z)4  + . . . , (3.21) 

where prime denotes differentiation, and all of the derivatives are evaluated at z = zi. We also introduce two other expansions used 
below, in Section 4: 

~ u ” ( A z ) ~  ~ U ‘ ~ ) ( A Z ) ~  
2 6 u i + 2  = ui + ~ u ’ A z  + ~ + ~ + ’.‘ 

Using eqs (3.20) and (3.21), we obtain the following from eq. (3.16): 

H@)u = [HLtL,, + 6 H ‘ 2 ’ ] ~ .  

The lowest-order terms of the error are 

Az2 +/Jy 
d4)((N - 1)Az) I 0 

d3)( N Az) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

3.2 ‘Basic error’ and ‘boundary error’ 

Hereafter we denote error terms like the first column vector in eq. (3.25), which are present throughout the medium, as the ‘basic 
error’. In contrast we denote terms like the second column vector in eq. (3.25), which contains error terms that arise only at 
external or internal boundaries, as the ‘boundary error’. Using eqs (3.20) and (3.21), we obtain from eq. (3.15) 

Az3 
6 

fu“(0) 
~ “ ( A z )  

u“(2Az) 

u”((N - 1)Az: 
~ U ‘ ‘ ( N A ~ )  

Az2 
f -  6 

(3.26) 

(3.27) 

(3.28) 

0 1995 RAS, GJI 123,449-470 



Highly accurate DSM synthetic seismograms 457 

Using eqs (3.25) and (3.28), we obtain the following expression for the error: 

Az2 +- 12 

fw26T - 

(pw2 - k : p ) u f y ~ )  + ipU(4)(0) 

2(po2 - k:p)u”(Az) + pd4)(Az) 

2(pwz - k:p)u”( 2Az) + pd4)( 262) 
SH)u= - 

12 

2(pw2 - kZ,p}d’((N - l)Az) + pd4)((N - 1)Az) 

(PO’ - k;p)u”(NAz) + $pd4)(NAz) 

Az’ +- 6 

(PO’ - k:p)u’(O) + p d 3 ) ( 0 )  

0 

0 

- (pw2 - k:p)u’(NAz) - pu”)(NA 

(3.29) 

When u is an eigenfunction an o is the corresponding eigenfrequency, the basic error at each node (except for the factor of 112 at 
the boundary nodes) in eq. (3.29) has the form 

82’ Az3 Az3 
- [2(pwz - k:p)u” + pd4)] = - {(pw’- k:p)u” + [ (pa2  - k2p)u + pu”]”} =- (pw’ - k$p)u” # 0,  
12 12 12 

where we used eq. (3.1) to show that the bracketed term in the second line of eq. (3.30) is zero to O(Az’). 

3.3 Modified operators 

We define the following modified matrix operators: 

1 
1/12 516 1/12 

1/12 516 1/12 

1 1/12 5/12] 

The errors of the modified operators S T  = T - T,,,,, and SH‘’)’ = H“)‘ - H(l) e x n o  are 

$ U “ ( O )  

u”(Az) 
u”(2Az) 

u”[(N - l)Az] 

$u”(NAz) 

The operator H’) is not modified. Thus the modified stiffness matrix is 

H’ = kiH(1)’ + H(Z). 

We combine eqs (3.25) and (3.23) to obtain 

Az2 +- 
12 

f [ (pwZ - k:p)U”(O) + pu‘4’(0)] 

(PO’ - kZp)~”(Az) + pd4’(Az) 
Az3 1 

(co’ST - SH‘)u= - 
12 

(PO’ - k : p ) ~ ” ( ( N  - 1)Az) + pd4)((N - 1)Az) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

When w is equal to the eigenfrequency of the mode for which u is the eigenfunction, the basic error at each node point (the 
elements of the first vector on the right-hand side of eq. (3.34) is zero to O(Az’). The modified operator ( w 2 T  - H’) thus 
approximately satisfies eqs (2.20), (2.23) and (2.24). 

We define the wave velocities and the vertical components of the wavenumbers. The results for P waves will be used in the next 
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section. We have 
I ,-- 

Eq. (3.32) gives the basic error component of 6 T  as 

! pAz3 pAz3 - = - ___ 12 k$u,  12 

where we used eq. (3.1). If u is an eigenfunction, it is normalized such that 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

u((N - 1)Az) 

We combine eqs (2.21), (3.32), (3.37) and (3.38) to obtain the relative error (see eq. 2.21) 

(3.39) 

3.4 Inhomogeneous SH( 1)  

We use a constant grid interval in each region (Az, in region 1 and AZ, in region 2) in this example. The operators for the 
inhomogeneous medium shown in Fig. l(b) are obtained by ‘overlapping’ as shown in Fig. 3(a): 

(3.40) 

(3.41) 

(3.42) 

The modified operators in eqs (3.40)-(3.42) are equivalent to those used by Korn (1987). 
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Figure 3. (a) The SH stiffness and mass matrices for the two-layered medium in Fig. l(b) are constructed by overlapping operators for the 
respective media as shown. The overlapped element is summed. (b) The modified P-SY mass and stiffness matrices for the two-layered medium 
shown in Fig. l(b) are constructed by overlapping operators for the respective media as shown. The overlapped elements are summed. Note that 
the matrix elements in the third supra- and sub-diagonals are zero where the matrices are overlapped. 

We use a straightforward extension of the procedure used to derive eq. (3.34) to obtain the error of ( w Z T  - H'). The basic error 
for each mode is zero to O(Azz) when o is equal to that mode's eigenfrequency; the boundary error is 

( d 6 T  - 6H')u = (3.43) 

Thus the modified operators approximately satisfy eq. (2.23) to O(Az2). Because of the nature of the eigenfunctions, the first and 
last elements of the vector in eq. (3.43) will fortuitously be zero, but the boundary error at the internal boundary at z = z, will in 
general be non-zero. 

3.5 Inhomogeneous SH(2)  

We consider the case in which p and p are inhomogeneous but have no discontinuities, and Az is constant. If there are 
discontinuities in elastic properties or Az, separate operators can be constructed for each segment and then overlapped as shown 
in Fig. 3(a). We divide the density and elastic properties into two parts: one varying step-wise in each segment centred around a 
node and the residual, which can vary arbitrarily. Using p as an example, and setting zo = 0 for convenience, we define 

(3.45) 
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1 
2Az 

H(2) = __ 

We neglect z < 0 and z > NAz in eq. (3.45). We similarly define (ls,ep)j and &d, and ( P , , ~ , ) ~  and presid, by replacing p by 1 and p, 
respectively, in eqs (3.44) and (3.45). 

We divide the modified operators into two parts: 

- - 
Po + Pl -(Po + Pl)  

-(Po + P d  Po + 2Pl+ P 2  - ( P I  + P 2 )  

- ( P N - 2 + P N - l )  / * N - 2 + 2 P N - l + P N  - b N - I + P N )  

- ( P N - ~ + P N )  P N - I + P N  - - 

(3.46) 

(3.47) 

As we assume presid and preSid are relatively small, we account for their effects using the unmodified operators in eqs (3.5) and (3.6). 
We consider Hitep and Ti,,, in the following discussion, but we drop the subscript ‘step’ from both the operators and elastic 

moduli. The density and rigidity at the jth grid point are pI = p(jAz) and pj = p( jAz), respectively, as given by eq. (3.44). H“) is 
obtained using eq. (3.8): 

, 

&Po &Po 

h P 1  2 P 1  hPl 
h P 2  16P2 h P 2  

- 
ll2PN-1 ZPN-1  h P N - 1  

h P N  h P N  

(3.48) 

(3.49) 

Any arbitrary linear combination of Tiight and TAght  with weights summing to one could be used as the mass matrix without 
significantly degrading the accuracy of the numerical solutions. We use the symmetric part of Th,,,, 

T = f(Tiight + T:ght) 9 

as the modified mass matrix to ensure that reciprocity will be satisfied by the numerical solutions. 

(3.50) 

We define the modified operator ‘to the right’, HgA,, as follows: 

&PO 

16Pl 

hP2 

h P 1  

2 P 2  

Z P N -  1 

t P N  

(3.51) 

and use the symmetric part of Hi:&, as H(’)‘: 

H(’)’ = $[H!&, + H$iz]. (3.52) 

The modified stiffness matrix H’ is given by eq. (3.33), using eqs (3.48) and (3.52). Note that eqs (3.50) and (3.52) reduce to 
eq. (3.31) for a homogeneous medium. 

A straightforward analysis using Taylor series expansions of both u and p shows that the operator H”) in eq. (3.48) has the 
following value (first term) and basic error (second term): 

On the other hand, the desired value (first term) and basic error (second term) are 

(3.53) 

(3.54) 
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However, we are most concerned with the accuracy when k, is largest. In this case p’ and the higher derivatives of the elastic 
moduli will be negligible, so we can regard the basic error in eq. (3.53) as fully acceptable for practical purposes. 

Eq.(3.50) gives the modified operator T .  A Taylor series expansion considering the derivatives of both u and p gives the 
following value and basic error: 

(3.55) 
Az2 
12 pu t - (pu” + p‘u‘ + $p”u),  

whereas the desired value and basic error are 

(3.56) 
Az2 Az2 
12 12 

pu + - (pu)“ = pu + - (pu” + 2p‘u’ + p”u) . 

The value and basic error of H(’)‘ are obtained by replacing p by p in eqs (3.55) and (3.56). In summary, the modified operators 
in eqs (3.50) and (3.52) approximately satisfy eq. (2.24) with sufficient accuracy to OjAz2). 

3.6 Absorbing boundary conditions 

We consider a medium with a free boundary at z = zo, and the following radiation boundary condition at z = zN: 

(3.57) 
du 
- + ik,,u = 0 .  
dz 

As shown by Geller & Ohminato (1994, eqs 9 and 37), the weak form operator for a medium with a radiation boundary condition 
is obtained by adding a surface integral to the weak form operator to alter the natural boundary condition. For the S H  case with 
the boundary condition eq. (3.57), the weak form of the equation of motion is 

[xrn(pwz - kfp )u  - (xrn),zpU,z~ dz - ikzppXrnulz=zN= - s:” X r n f d z  (rn=0, 1,2, ..., N ) .  (3.58) 

The DSM equation of motion obtained from eq. (3.58) is 
( d T - H + R ) c =  -g,  (3.59) 

where T, H and g are defined as in eqs (3.5)-(3.9), and R is given by 

Rrnn = -ikz,@rnXnIz=zN. (3.60) 

It is straightforward to obtain modified operators for this case. We use T as defined by eq. (3.50), and H‘ as defined by eq. (3.33). 
We define R‘ as follows: 

(3.61) 

We can use the same approach for the P-SV case. The matrix elements for a radiation boundary condition are given by eqs (B15) 
and (B18) of Geller & Ohminato (1994). 

If the rhs of eq. (3.59) is zero, it is a generalized eigenvalue problem (Lancaster 1966, ch. 4), as it contains w2, wl, and wo terms. 
The formal error analysis in Section 2 is thus not directly applicable to eq. (3.59). We have not yet carried out a formal error 
analysis for eq. (3.59), but we conjecture it would lead to a criterion which is a generalization of eq. (2.20), and that the modified 
operators derived above for the SH problem with a radiation boundary condition could be shown to satisfy this generalized criterion. 

4 P - S V  PROBLEM 

The strong form of the equation of motion for the laterally homogeneous P-SV problem (Fig. la) in the (w, k,, z) domain is 

Cpw2 - p k f l u ,  - -ik,Au, + ( A  + 2p) dz 

du, d 
[pw2 - (2 + 2p)kf]u,  - iAk, -+ dz [ p ( %  - ikxuz)]  + f, = 0 ,  

(4.1) 

where u, and u, are the z-dependent parts of the z- and x-components of the displacement, and f, and f, are the z-dependent parts 
of the z- and x-components of the body force. The weak form of the equation of motion for a medium with free surface boundary 
conditions is 

[Xp(pw2  - pkf )u ,  - Xpikxpu: + X;ik,Au, - X $ +  2p)u:] dz= - X, f ,  dz ( p  = 0, . . . , N ) ,  s,:” 
{ X p [ p w 2 - ( A + 2 p ) k f ] u x - X p i k x A u ~ + X ~ i k x p u , - X ~ p u ~ }  dz= - jX,,fxdz ( p = O ; . . ,  N )  r 

(4.3) 

(4.4) 
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0 . 0 .  

A O A O X  

0 . 0 . 0 .  

A O A O A O X  

+ o .  
A 0  

The trial function expansions and force vector elements are, respectively, 

0 . 0 .  

A o  A o X  

+ 0 . 0 . 0 .  

A O A O A O  

where cpy is the expansion coefficient. The index y = 1 denotes the z-component and y = 2 denotes the x-component. The rows 
and columns of T and H and the elements of c and g are ordered so that y varies most rapidly. We thus have the order 
(py) = ( O l ) ,  ( 0 2 ) ,  ( l l ) ,  ( 1 2 ) ; . . ,  (Nl), ( N 2 ) .  We use p y  as the indices for the rows of T and H, and p’y’ as the indices for the columns 
(see Fig. 4). T and H are given by 

+ o  

7-6”. ( y =  y ‘ ) .  

I 0  otherwise, TPYP’Y’ = 

. 0 . 
A O A o  

Note that some of the subscripts in t..; second and i..ird rows of eq. ( 

p ‘ O O 1 1 2 2 3 3 4 4  

p 7  
0 1  
0 2  
1 1  
1 2  
2 1  
2 2  
3 1  
3 2  
4 1  
4 2  . .  . .  . .  . .  . .  . .  . .  . .  
N 1  
N 2  

0 
\ 

(4.9) 

(4.10) 

0) are in reverse order. 

........ N N 

1 2  ........ 

0 

A O A O X  

0 . 0 . 0 .  

A O A o A O  

+ o  . 0 . 
Figure 4. P-SV coefficient matrix (m2T - ti) .  Ti), ti“), tit2), ti(3) and ti‘” contribute to the elements shown as open circles. tit3) and ti‘4p contribute 
to the matrix elements shown as black triangles. H(3)T and contribute to the matrix elements shown as closed circles. The crosses indicate 
matrix elements which are zero for the original operators, but which we use for the modified operators and H(4)’T. The plus signs indicate 
matrix elements which are zero for the original operators but which we use for the modified operators The use of these elements 
(crosses and pluses) does not increase the bandwidth of the coefficient matrix, and therefore does not increase the CPU time required to solve the 
DSM equation of motion, eq. (2.1). The numbering conventions for the rows and columns are shown at  left and top, respectively. 

and 
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The operators on the rhs of eq. (4.10), which we call ‘submatrices’, are 

T:; = p X ,  X,, d z  , 
.1ZO i’ 

pp i,. --I H“’, =. AX, X,, dz , 

H $  = [: pX,,X,, dr , 

HYJ i”’ 1x,x;. dr , 
J Z U  

Hrj, = [: p X ,  X b ,  dz  , 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

HI3’ and H(4)’ contribute to the elements shown as black dots in Fig. 4, while H(3)T and 
black triangles. On the other hand T(lJ, H(’), H@’, 

contribute to the elements shown as 
and H‘6) contribute to the elements shown by open circles in Fig. 4. 

For a homogeneous medium with constant Az, H‘3’ and are as follows: 

\ 

112 
0 112 

- 112 0 

- 112 

(4.18) 

T“’, H 

modified operators into two parts: 

T = + Tresid (4.19) 

H ’ =  + Hresid (4.20) 

we use the unmodified operators in eqs (4.9)-(4.17) for presidr Aresld and presid. We now derive the modified operators for pstepr 
istep and pStep. We drop the subscript ‘step’. 

The modified operators TI’)’, H“” and H‘’)’ have the same form as the modified operators in eq. (3.31). We now derive the 
modified operators H‘”’ and H‘4)’. As discussed above (see eqs 1.4 and lS) ,  the coefficients of the four-point operators can be 
chosen in a straightforward fashion to yield the desired basic error. We define the following bilinear operator based on the left- 
hand side of eq. (4.4): 

and H”! are given by eq. (3.31) and and by eq. (3.16), with p replaced by 1 as appropriate. 
We next consider a medium in which A, p ,  and p vary smoothly, and Az is constant. Following the S H  case, we divide the 

(4.21) 

Eq(4.21) yields the operator to the right by inspection, as X ,  is factored out in the integrand. We obtain the operator ‘to the left’ 
by formally integrating eq. (4.21) by parts: 

(4.22) 

Thus H‘”’ operating ‘to the left’ on vT should be a finite-difference operator for 

- - ( i t ) + i u l i ; ,  (4.23) 
d 
d i  

while HI3’’ operating to the right should be a finite-difference operator for 

du 
i- 

d; 
(4.24) 
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The modified operator H'"' is as follows: 

/-71, 81, -1, \ 
-4 I -% -jA1 yA1 

(4.25) 

The first two terms in the top row and the last two terms in the rightmost column of the matrix in eq. (4.25) are chosen to matd 
the boundary terms in eqs (4.24) and (4.25). 

Using eqs (3.20)-(3.23), the value and error of the ith row of H(3)' (1 I i 5 N - 2) are 

[H""u]i = A;[ - &U(Z - Az) - &u(z) + &u(z + Az) - &u(z + ~Az)] 
(4.26) 

where /ZiAzu' and 1iAz3u(3)/12 are the exact value of the desired result and the basic error, respectively. In the i = 0 row, H(3)' has 
an O(Az2) boundary error. For the i = N - 1 and i = N rows, H(3)' has an O(Az) error, but, as shown below, the net contribution 
to uz(w2ST - SH')u, is only O(Az2): 

Contribution to O(Az) terms to uz(w26T' - SH')u, = lN-lUX[(N - l)Az] {&uL((N - 1)Az)Az) + iNu,(NAz)[-&uL(NAz)Az] 

= 0(Az2), 

where we expanded all of the quantities about z = (N - 1/2)Az to prove eq. (4.27). 
Omitting the details of the derivation, the modified operator, H(4)' is as follows: 

In summary, the modified operators for the P-SV problem are defined as follows: 

TrJ: (Y = y ' ) ,  

otherwise, 
T p y p y  = 

(4.28) 

(4.29) 

(4.30) 

H(3)' and Ht4)' are defined in eqs (4.25) and (4.28); H(') and H@) are defined by eqs (4.16) and (4.17). T(')', Htl)' and H(2)' are defined 
in the same way as eqs (3.50) and (3.33), replacing p by 1 where appropriate. 

If the order of the u, and u, elements in H and T were reversed, we could derive the following modified operators H("" and 
H(4)" to replace the operators in eqs (4.25) and (4.28). 

(4.31) 
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Homogeneous SH 
Two Layer SH - Az constant 
Two Layer SH - k,pAz constant 
SH - Velocity gradient 

P-SV Homogeneous 
P-SV Velocity gradient 

SH - Radiation boundary 

The operators for a medium with a sharp boundary (Fig. lb), or with a boundary between grids having different step sizes, can 
be obtained by defining modified operators for each region and then overlapping them as shown in Fig. 3(b). Note that there 
should be at least three nodes in each region, including boundary nodes. The first and last two rows of eq. (4.25) and the first two 
and last rows of eq. (4.28) should be used when there are only three nodes in a region. 

Spectrum Error 
Figure Unmodified Modified 

5 62.7% 1.00% 
6a 48.1% 1.47% 
6b 62.6% 1.02% 

39.3% 1.13% 
6c 11.1% 0.81% 
6d 32.1% 0.52% 

21.1% 0.40% 

5 NUMERICAL EXAMPLES 
Except for Fig. 7, we use a single force point source with a Ricker wavelet source time function, 

where t, = 40 s is the peak period and t ,  = 0 s is the time shift of the peak. For the spherical SH case (Fig. 7), we use a double 
couple point source whose source time function is f(t) = d ( t ) .  Causal Q is used throughout. 

We define the ‘spectrum error’ as follows: 

spectrum error (per cent) = x 100 (per cent). 

The spectrum errors for the various cases considered in this section are listed in Table 1. We use analytic solutions for do) whenever 
available. When no analytic solution is available, we use a numerical solution of the strong form of the equation of motion (e.g. 
Takeuchi & Saito 1972) with an extremely small step size. We then define the error of the numerical solution to be 

6c = c - do) .  
We consider SH waves at vertical incidence in a homogeneous medium with p = 5 km s - l  and Q = 200. The number of grid 

intervals is N = 100 and Az = 10 km. We plot the error of the solutions obtained using the unmodified and modified operators 
(Fig. 5). The accuracy of the solutions obtained using the unmodified operators (eqs 3.5 and 3.8), which do not satisfy eq. (2.24), 
is very poor near the eigenfrequencies. In contrast, the modified operators T and H’ (eqs 3.31 and 3.33) approximately satisfy 
eq. (2.24) and thus suppress the degradation of the accuracy in the vicinity of the eigenfrequencies. The relative error using the 
modified operators is almost exactly equal to k:Az2/12 (dashed line), as predicted in Section 3.3. Using the modified operators 
reduces the spectrum error by a factor of about 60 without changing the CPU time. 

Next, we consider SH waves at vertical incidence in a two-layered medium with p1 = 5 km s-’, 8, = 10 km s-’, and Q = 200. 
Fig. 6(a) gives results for a constant grid spacing (Azl = Az, = 10 km s- l ) ,  where Nl = 50 and N ,  = 50. For Fig. 6( b) the number 
of elements per wavelength is constant for each layer: Azl = 10 km, Az, = 20 km, N1 = 50 and N ,  = 25. Less CPU time was required 
for Fig. 6(b) than Fig. 6(a), but the modified operators were more accurate for the former. 

We consider S H  waves at vertical incidence in a medium with a velocity gradient. We use a constant p = 2.5 x 10l1 dyn cm-’ 
and a linear density gradient from p = 1 g cm-3 at z = 0 km to p = 0.25 g cm-3 at z = 1000 km. Thus the S-wave velocity changes 
smoothly from B = 5 km s - l  at z = 0 km to /3 = 10 km s - l  at z = 1000 km. We use Q = 200, Az = 10 km and N = 100. As there is 
no analytic solution, we use a solution obtained by numerical integration of the strong form of the equation of motion with an 
extremely fine grid as do). The spectrum error for the modified operators is reduced by a factor of about 35. 

We consider SH waves at vertical incidence in a homogeneous medium (0 s z < 1000) with a radiation boundary condition at 
the bottom boundary (z = 1000 km), /I = 5 km s-’, N = 100, and Q = 200. The relative error for the unmodified and modified 

(5.3) 

Table 1. Spectrum errors 
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60 

0 20 40 
Frequency( mHz) 

Figure 5 .  Comparison of the accuracy of solutions obtained using the modified and original operators for SH waves at  vertical incidence in a 
homogeneous medium. We plot the relative error of both numerical solutions on a log scale (upper figure). We plot the amplitude of the analytic 
solution on a linear scale (lower figure). The predicted relative error for the modified operators, eAz2/12, is shown by the dashed line. Near the 
eigenfrequencies, the amplitude of the analytic solution, as expected, is largest. This is therefore the region where accuracy of the numerical solution 
is most important. As shown in the upper plot, the relative error of the unmodified operators is worst near the eigenfrequencies, but the modified 
operators suppress this degradation of accuracy. 

operators is shown in Fig. 6(c). As there are no modes for this medium in the conventional sense, we do not see degradation of 
the accuracy near the eigenfrequencies. Nevertheless, the spectrum error of the modified operators is reduced by a factor of about 14. 

Cummins et al. (1994a) derived modified operators for the SH (toroidal) problem in spherical coordinates. We compute synthetics 
(Fig. 7) for the isotropic part of the spherically symmetric earth model, PREM (Dziewonski & Anderson 1981). The source is a 
moment tensor point source at a depth of 600 km, and the source mechanism is M,, = Me, = 1 with all other components zero. 
The PREM Q model is used. A causal (Butterworth) filter was used for all the synthetics in Fig. 7. The first trace (‘exact’) is 
computed using the modified operators with an extremely fine grid (N = 3200) and is effectively exact. The second trace is the 
waveform computed using the modified operators (N = 2001, and the fourth trace is the waveform computed using the unmodified 
operators (N = 200). The third trace (‘residual’) is the error (modified -exact) for the synthetic computed using the modified 
operators, and the fifth trace is the error of the synthetic for the unmodified operators. 

We compute the ‘waveform error’ for the solutions obtained using the unmodified and modified operators as follows: 

U,“, - b c t 1 2  d t  
j I %act l 2  d t  

x 100 (per cent). waveform error (per cent) = (5.4) 

As shown in Fig. 7, using the modified operators improves the waveform accuracy by a factor of about 30. The waveform error of 
130 per cent for unmodified operators means that the amplitude of the residual is larger than the amplitude of the synthetic itself. 
The reason for this is the error of the phase of the synthetic for the unmodified operators. The arrows in Fig. 7 indicate the 
theoretical arrival times of the various body-wave phases. The body-wave arrivals are clearly visible in the ‘exact’ and ‘modified’ 
synthetics, but cannot be seen clearly in the ‘unmodified’ synthetics, due to the numerical error of the unmodified operators. 

We consider a homogeneous medium with a= S& km s-’, B = 5 km s-’, QK = 10OO0, and Q, = 100, where K is the bulk 
modulus. We use Az = 10 km and N = 100. We compute solutions for an apparent velocity c, = 20 km s-’. The relative errors for 
the unmodified and modified operators are shown in Fig. 6(d). The dashed lines correspond to k:Az2/12 and k$Az/12, respectively. 
The relative error using the modified operators sometimes exceeds k i  A2’/12, perhaps because of the existence of the boundary 
error. The spectrum error for the modified operators is reduced by a factor of about 60. 

In Fig. 8 we show the eigenfunction of the nearest mode (top), the operator error (second) and the solution errors for the 
unmodified and modified operators (third and bottom, respectively) at the frequency shown by the arrow in Fig. 6(d), which is in 
the vicinity of an eigenfrequency. As these quantities are complex, their absolute value is shown in Fig. 8. The operator error is 

N 2  
(operator error)py = 1 (02Tpyp.yz - Hpyp.y.)cT\. , p ’ = o  y’= l  

(5.51 

where do) is the analytic solution for a normal mode, and w is the corresponding eigenfrequency. As the eigenfunction, operator 
error and solution error are complex, their absolute values are shown in Fig. 8. The solution error is 

(5.6) (solution error)p,y, = cp.,,, - do) P Y ’  I 
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Figure 6. Relative error (upper half) and amplitude of the analytic solution (lower half). Other details are the same as in Fig. 5, except that the 
dashed line is omitted in Fig. 6(a), as k,Az is not constant. (a) Results for the two-layered SH case with a constant grid interval (Az = 10 km). 
(b) Results for the two-layered SH case with a constant number of elements per wavelength (Az = 10 km in a slow segment, Az = 20 km in fast 
segment). (c) Results for the homogeneous SH case with a radiation boundary condition. (d) Results for P-SV solutions for a homogeneous 
medium. Dashed lines correspond to k:Az2/12 and k:AzZ/12, where k, and k,  are the z-components of the wavenumber vectors for P and S waves, 
respectively. The relative error using the modified operators sometimes exceeds k;Az2/12, perhaps because of the existence of the boundary 
error. 

where c is the numerical solution and do) is the analytic solution. The solid lines show the error for the unmodified operators and 
the dashed lines show the error for the modified operators in the lower three plots. 

As shown by the 'operator error' plots in Fig. 8, the unmodified operators have a non-zero basic error as well as a non-zero 
boundary error at the external boundary. The basic error of the modified operators is zero, but they have large boundary errors. 
As shown above in eq. (4.27), the net contribution of the boundary errors to c:(wiGT - 6H)c, is O(Azz). However, as discussed 
in Section 2.1, the boundary error does not greatly affect the error of the solution; this is confirmed by the bottom figures in Fig. 8. 
The solution error for the modified operators is over 100 times smaller than the solution error for the unmodified operators, but 
both are essentially proportional to the eigenfunction. Thus Fig. 8 confirms that only that part of the operator error which is 
proportional to the eigenfunction is important. 

Finally, we consider a medium with a smooth velocity gradient. We consider a constant p = 1 g cm-3 and I z  = 2.5 x 10" dyn cm-', 
and an inhomogeneous p which vanes linearly from p = 2.5 x 10'l dyn cm-2 at z = 0 km to p = 5.0 x 10" dyn cm-' at z = lo00 km. 
This means that the P- and S-wave velocities change smoothly from a = 5 & k m s - '  and f i = 5  kms-' at z = O h  to 
a =  5 4  km s- '  and f i =  5& km s-' at z =  1000 km. We use QK = 10OO0, Q ,  = 100, Az= 10 km and N =  100. We compute 
solutions for c ,  = 20 km s-'. The spectrum error (figure omitted) for the modified operators is about 50 times smaller than the 
spectrum error for the unmodified operators. 

0 1995 RAS, G J I  123, 449-470 



468 R.  J.  Geller and N .  Takeuchi 

sss 

1 

Error 4.6% 

Unmodified 
Error 1300/o 

I ’ I ‘ U I I  

1 Omin. 

Figure 7. S H  (toroidal) waveforms calculated for the laterally homogeneous spherical model PREM using the modified and the unmodified 
operators. The ‘exact’ solution was calculated using the modified operators for N = 3200 grid intervals. The ‘modified‘ and ‘unmodified’ solutions 
were calculated using N = 200. The residuals are obtained by subtracting the exact synthetic from the ‘modified’ and ‘unmodified’ synthetics. The 
error is computed using eq. (5.4). Note that the error is worse than 100 per cent for the synthetics calculated using the unmodified operators 
because of the phase shift due to numerical dispersion. 

6 DISCUSSION 

As shown by the dashed lines in Figs 5 and 6(b)-(d), the relative error for the modified operators is a more or less predictable 
(kqAzz/12). The relation between the wavelength in the vertical direction, A,, and the vertical component of the wavenumber 
vector, k,, is 

2A A =- 

We thus have the following approximate relation between relative error and wavelength: 

= kz 

k?Az’ (274’ AZ’ 3.3 relative error = __ - - - - - 
12 12 1: - (elements/wavelength)” 

We can obtain an estimate of the number of elements per vertical wavelength, AJAz, required to achieve a given relative error 
from eq. (6.2): 

elements/wavelength = (6.3) 

Thus to achieve a relative error of 0.01 = 1 per cent, we require about 18 elements/wavelength. Eq. (6.2) shows that if we use 
8 elements/wavelength we obtain a relative error of about 5 per cent. This might be acceptable for forward modelling, but it is 
probably unacceptable for a formal inversion. 

For a heterogeneous region, the relative error cannot be rigorously estimated. However, if we use a grid where the number of 
elements per wavelength is more or less constant, we can obtain acceptable estimates from eqs (6.2) and (6.3). 

6.1 Future applications 

It should be straightforward to extend the modified P-SV operators of the present paper to the laterally homogeneous spheroidal 
case considered by Cummins et al. ( 1994b) and the laterally heterogeneous case in spherical coordinates considered by Cummins 
et al. (1994~). It should also be straightforward to develop modified operators for a fluid medium along the same general lines of 
the SH operators in Section 3. Note that Geller & Ohminato (1994, Section 3) and Cummins et al. (1994b) show how to handle 
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Figure 8. (Top) The absolute value of the eigenfunction whose eigenfrequency is indicated by the arrow in Fig. 6(d), (second) the operator error, 
and (bottom two rows) the solution error is for the unmodified and modified operators, respectively. The operator error and solution error are 
defined by eqs (5.5) and (5.6), respectively. The solid lines show the error for the unmodified operators, and the dashed lines show the error for 
the modified operators. We confirm that (1) if the operators have no basic error, the solution error will be very small; (2) regions that have large 
operator errors such as the external boundary do not necessarily have large solution errors. The amplitudes of the top, middle and lower two plots 
are not directly comparable, but the amplitude of the lowest two plots in each column are directly comparable. The eigenfunctions and operator 
errors were computed for a perfectly elastic medium, while the solution errors were computed for a medium with causal Q. 

a mixed fluid-solid medium. Anisotropic media are not considered in this paper, but in principle there is no reason why our 
approach cannot also be applied to anisotropic media. 

Our approach can also, in principle, be used in the time domain. Many finite-difference studies use a staggered grid, and treat 
velocity and stress as conjugate variables (e.g. Virieux 1986). We will report on modified operators for such approaches in a 
future work. 
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