3. 3. 2 強震動予測

目 次

(1) 業務の内容

- (a) 業務題目
- (b) 担当者
- (c) 業務の目的
- (d) 8か年の年次実施計画(過去年度は、実施業務の要約)
 - 1) 平成25年度
 - 2) 平成26年度
 - 3) 平成27年度
 - 4) 平成28年度
 - 5) 平成29年度
 - 6) 平成30年度
 - 7) 平成31年度
 - 8) 平成32年度
- (e) 平成27年度業務目的

(2) 平成27年度の成果

- (a) 業務の要約
- (b) 業務の成果
 - 1) 微動アレイ探査
 - a) 調査の概要
 - b) 微動アレイ観測
 - c) 微動アレイ解析による S 波速度構造の推定
 - 2) 地震波形記録の収集
 - 3) 地震波形記録を用いた既存地下速度構造モデルの検証
 - a) サイト特性の推定手法
 - b) 推定されたサイト特性と理論増幅率との比較
 - 4) 震源断層モデルに基づく強震動予測
 - a) 震源断層パラメータの設定
 - b) 強震動予測手法の概要
 - c) 強震動予測結果
- (c) 結論ならびに今後の課題
- (d) 引用文献
- (e) 成果の論文発表・口頭発表等
- (f) 特許出願、ソフトウエア開発、仕様・標準等の策定

(3) 平成28年度業務計画案

(1) 業務の内容

(a) 業務題目

3.2 強震動予測

(b) 担当者

所属機関	役職	氏	名
京都大学防災研究所	教授	岩田	知孝
	准教授	関口	春子
	准教授	浅野	公之
福井大学附属国際原子力工学研究	准教授	大堀	道広
所			
鳥取大学大学院工学研究科	教授	香川	敬生
	助教	野口	竜也
東京工業大学大学院総合理工学研	教授	山中	浩明
究科			
	助教	地元	孝輔
東京大学地震研究所	准教授	三宅	弘恵
国立研究開発法人防災科学技術研	領域長	藤原	広行
究所社会防災システム研究領域			
	主任研究員	森川	信之
国立研究開発法人産業技術総合研	主任研究員	堀川	晴央
究所活断層・火山研究部門			

(c) 業務の目的

サブサブテーマ 2.5 で構築された日本海沿岸地域の断層形状モデルに基づいて、強震動 予測のための震源断層モデルに必要なパラメータを検討し、震源モデルの特性化を行う。 従来の速度構造モデルや必要な微動観測などを行い、対象地域の地下速度構造モデルの高 度化を進める。これらの情報を組み合わせて、対象断層帯が活動した場合の強震動予測を 行い、地震動分布の特徴を調べる。

(d) 8か年の年次実施計画(過去年度は、実施業務の要約)

1) 平成25年度:

内陸地震の震源モデル特性化情報を収集した。既往地下速度構造モデル集約情報に基づき、情報が十分でない石川県の加賀平野南部及び邑知潟平野において、微動アレイ探査及び単点微動調査を行い、地下速度構造モデル情報を得た。福井県、石川県の自治体震度計波形記録の収集を行った。

2) 平成26年度:

内陸被害地震の震源モデルの収集を継続し、強震動生成の観点に立った震源モデル特性 化を継続した。既往地下速度構造モデル集約情報に基づいて、富山平野において微動アレ イ探査を行い、地下速度構造モデル情報を得た。富山県の自治体震度計波形記録を収集し、 福井、石川、富山県の地震波形を用いた地震波サイト増幅特性評価を開始した。

3) 平成27年度:

平成 26 年度に引き続き、強震動予測に資する地下速度構造モデルの集約情報に基づき、探査が必要な地域(富山等の北陸地方)において微動アレイ探査、単点微動調査を行った。対象地域における地震波形記録の収集を継続し、観測サイトの地盤震動特性を分析した。対象地域における震源断層モデルに基づいて、強震動予測の試算のための準備をすすめ、平成 26 年度までに収集した震源モデル特性化に基づいたシナリオ地震想定と予測を行った。

4) 平成28年度:

平成27年度に引き続き、強震動予測に資する地下速度構造モデルの集約情報に基づき、 北陸地方から山陰地方にかけての日本海沿岸地域のうち地下速度構造モデル情報の不足し ている地域において微動アレイ探査などの地下構造調査を行う。対象地域における地震波 形記録の収集を継続し、観測サイトの地盤震動特性を分析する。対象地域における震源断 層モデルに基づいて、シナリオ地震想定と強震動予測を行う。

5) 平成29年度:

対象地域の地震記録の収集、地震記録や微動記録等を用いた地下速度構造モデルの検証、改良を継続する。プロトタイプ特性化震源モデルの妥当性の検証に基づき、震源モデルの改良を行う。本調査プロジェクトのサブサブテーマ 2.5 等で得られた震源断層モデルにプロトタイプ特性化震源モデル、及び更新された地下速度構造モデルを用いて、山陰地方等における強震動予測を実施する。

6) 平成30年度:

対象地域の地震記録の収集、地震記録や微動記録等を用いた地下速度構造モデルの検証、 改良を継続する。平成 29 年度までの検討を踏まえて特性化震源モデルの改訂版を提案す る。必要に応じて、平成 29 年度までの強震動予測結果を再検討する。

7) 平成31年度:

対象地域の地震記録の収集、地震記録や微動記録等を用いた地下構造モデルの検証、改良を継続する。本調査プロジェクトのサブサブテーマ 2.5 等で得られた震源断層モデルにプロトタイプ特性化震源モデル、及び更新された地下速度構造モデルを用いて、北海道、東北北部等の日本海側における強震動予測を実施する。

8) 平成32年度:

地下構造モデルを改訂する。本調査プロジェクトのサブサブテーマ 2.5 等で得られた震

源断層モデルに、強震動予測のための改訂特性化震源モデル、及び更新された地下速度構造モデルを整理して提案する。

(e) 平成27年度業務目的

強震動予測の高度化には、強震動予測のための震源モデル及び地下速度構造モデルの高度化が必要である。地下速度構造モデルは一般には地球物理学的探査を踏まえた情報によって構築されているが、既往情報の多寡によってそのモデルの性能が決まる。また強震動予測手法は、実地震データに基づいて検証を行い、予測手法の妥当性を確認し、更新していく必要がある。地下速度構造モデルに対しては、平成26年度に引き続き、地下速度構造モデルの集約情報に基づいて、富山県等の北陸地方を対象とした微動アレイ探査を行う。対象地域における地震波形記録の収集を継続し、観測サイトの地盤震動特性を分析する。対象地域における震源断層モデルに基づいて、強震動予測の試算のための準備を進め、前年度までに収集した震源モデル特性化に基づいたシナリオ地震想定と予測を行う。

(2) 平成27年度の成果

(a) 業務の要約

平成 26 年度に引き続き、地震基盤までの堆積層の速度構造情報が不足している富山平野を現地調査対象領域として設定し、微動アレイ観測を 5 地点で実施した。微動アレイ観測により得られた上下動微動波形記録に SPAC 法を適用して位相速度を求め、Rayleigh波基本モードの分散曲線をフィッティングすることにより、S 波速度構造を推定した。富山県、石川県及び福井県内に位置する強震・震度観測点の地震波形記録を収集した。収集した地震波形記録を用いて、スペクトルインバージョン法により各強震観測点のサイト増幅特性を推定し、J-SHIS 深部地盤モデル V2 から計算された理論増幅特性と比較し、地下速度構造モデルの検証を行った。平成 26~27 年度にサブサブテーマ 2.5 で得られた富山沖及び砺波平野の震源断層モデルに基づいて、特性化震源モデルを設定し、強震動予測を実施した。

(b) 業務の成果

- 1) 微動アレイ探査
- a) 調査の概要

強震動予測を実施するためには、適切な震源モデルに加え、地表から地震基盤までの堆積層の詳細なS波速度構造モデルが不可欠である。北陸地方における堆積層までの速度構造情報を拡充するため、既往の探査の空白域において、新たに微動アレイ探査を実施した。

まず、微動アレイ探査の調査地点の選定のために、北陸地方 3 県における地震観測や微動観測に基づく地下構造調査に関する文献調査を実施した。このうち、微動アレイ探査によって地表から地震基盤までの S 波速度構造が推定されている文献 $^{1)-10)}$ を表 1 に示す。福井県及び石川県の主要な平野部においては、既往研究及び平成 25 年度の本業務によって微動アレイ探査がなされ、速度構造が求められている。しかし、富山平野においては、地震基盤までの S 波速度構造に関する情報が得られていなかった。このため、平成 26 年

度は、富山平野 (新川平野、射水平野、砺波平野を含む)の 10 地点において、微動アレイ探査を実施した (図 1)。本年度は、平成 26 年度の調査結果を踏まえ、射水平野、砺波平野及び新川平野の 5 地点において新たな微動アレイ探査を実施するとともに、平成 26 年度に微動アレイ探査を実施した滑川において追加調査を実施した (図 2)。

表 1 北陸地方における微動アレイ探査による地下構造調査に関する既往文献

調査地域	文献	調査地点数	調査地点
福井平野及	山中・他(2000)1)	5 地点	福井市(福井)
び加越台地			坂井市(春江、丸岡、坂井、三国)
福井平野	安井・野口(2005)2)	2 地点	吉田郡永平寺町(KiK-net 永平寺)
			福井市(K-NET 福井)
福井平野	安井・他(2008) 3)	6 地点	福井市(板垣、菅谷、山室)
			坂井市(春江、東荒井、丸岡)
鯖江盆地	安井・他(2011) 4)	5 地点	鯖江市(東陽中学校、中河小学校、東
			公園、南グラウンド、豊小学校)
敦賀平野	小嶋・他(2008) 5)	11 地点	敦賀市(松原、敦賀病院、敦賀南小、
			きらめきスタジアム、東洋町、中郷、
			日本原子力研究開発機構、呉羽町、総
			合運動公園、粟野中学校、和久野)
金沢平野	神野・他(2003) 6)	10 地点	金沢市(A3、B1、B2、B3、C1、C2、
			X1 地点)
			かほく市 (X2 地点)
			白山市 (A1 地点)
			野々市市(A2 地点)
加賀平野南	日本海地震・津波	4 地点	小松市(K-NET 小松)
部及び邑知	調査プロジェクト		白山市 (美川支所)
潟平野	平成25年度成果報		羽咋市(K-NET 羽咋)
	告書 7)		七尾市(K-NET 七尾)
奥能登地域	山中・他(2008) ⁸⁾	1地点	輪島市門前町
奥能登地域	堀川・他(2010) 9)	2 地点	輪島市中心部、輪島市町野地区
富山平野(新	日本海地震・津波	10 地点	下新川郡入善町(入善町役場)
川、射水、砺	調査プロジェクト		滑川市 (滑川市役所)
波平野を含	平成26年度成果報		富山市(K-NET 富山、KiK-net 富山、
む)	告書 10)		K-NET 八尾、大山消防署)
			中新川郡立山町(立山町消防本部)
			射水市(KiK-net 大門、下庁舎)
			砺波市(砺波市役所)

b) 微動アレイ観測

富山平野の 5 地点(魚津市 1 地点、射水市 1 地点、小矢部市 1 地点、南砺市 2 地点)に おいて新たな微動アレイ観測を実施した(図 1~2、表 2)。これらの地点では、既存の K-NET または震度計観測点の周辺でアレイを構成した。各地点では、最大アレイ半径 R_{max} の異なるアレイ観測を複数セット実施した。本報告では R_{max} の大きい順に、L アレイ、S アレイ、N アレイとする。それぞれの観測では、大きさの異なる 2 組の正三角形の頂点 3 点と重心 1 点からなる二重正三角形アレイを基本としつつ、道路等の制約を踏まえ、それぞれの地点で図 3~7 に示すようなアレイ形状で観測した。また、昨年度に調査を実施した滑川市の 1 地点(NMK)において表層の情報を追加取得するための N アレイの補充観測を実施した(図 8)。現地での観測は 2015 年 11 月 9 日~12 日の昼間に実施した。表 2 に各アレイの半径の情報を含む観測の諸元をまとめている。観測開始前には、ハドルテストを行い、地震計間のコヒーレンスが適切であることを確認した。アレイを構成する各点には、固有周期 5 秒の 3 成分速度型地震計 LE-3D/5s(Lennartz-Electronic 製)を設置し、データ収録装置 LS-8800(A/D 変換 24 bit、白山工業製)により微動波形を収録した。時刻較正は収録装置毎に GPS 時計により行った。サンプリング周波数は 100 Hz とした。

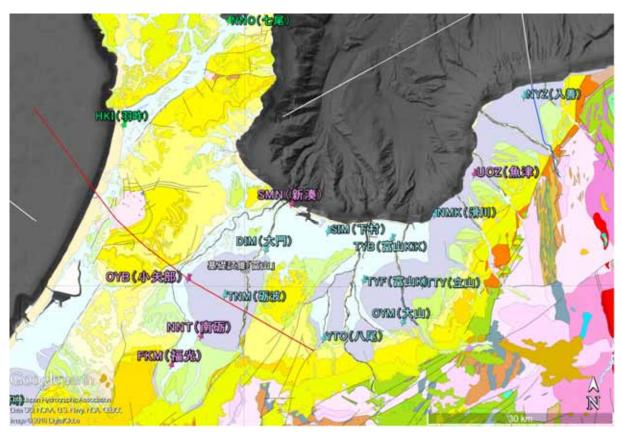


図1 過去年度及び本年度の微動アレイ観測実施地点

緑: 平成 25 年度、水色: 平成 26 年度、桃色: 平成 27 年度。実線は日本海地震・津波調査プロジェクトによる反射法地震探査測線。青: 平成 25 年度入善沖ー黒部測線 7、赤: 平成 26 年度かほく - 砺波測線 10)、白: 平成 25 年度沿岸反射法探査測線 7。基図は 20 万分の 1 日本シームレス地質図 11)であり、凡例は全国統一凡例

(https://gbank.gsj.jp/seamless/legend.html) に従っている。

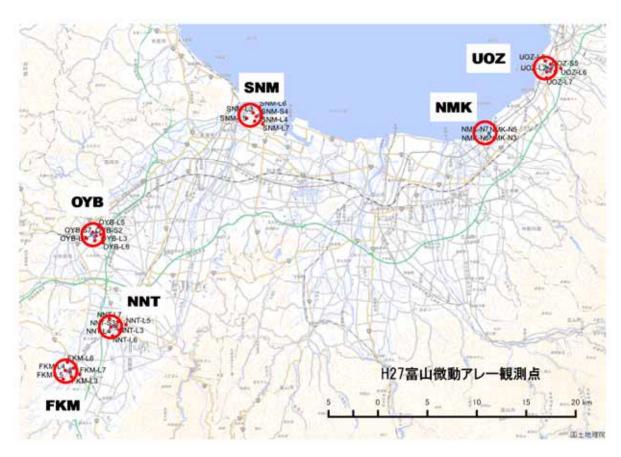


図2 本年度の微動アレイ観測の実施地点(赤丸)

表 2 微動アレイ観測の諸元 (緯度経度は世界測地系)

	中心点地名	ア	アレイ	アレイ中心点		
地点	(付近の既存強	レ	半径	緯度	経度	観測日時
	震観測点)	イ	(m)	(度)	(度)	
NINTIZ	滑川市寺家町	NT	17 71	20.70422	197 94100	0018/11/0 10:10 10:10
NMK	(滑川市震度計)	N	17, 51	36.76432	137.34198	2015/11/9 12:10–13:10
UOZ	魚津市上村木	S	81, 243	36.82314	137.41153	2015/11/9 14:10-15:10
	(JMA 魚津)	L	500, 1000	36.82313	137.41197	2015/11/9 16:10–18:10
FKM	南砺市天神	S	75, 225	36.54680	136.86649	2015/11/10 12:35–13:35
	(旧 JMA 南砺)	L	500, 1000	36.54693	136.86774	2015/11/10 10:25-11:55
NNT	南砺市苗島	S	75, 225	36.58838	136.91946	2015/11/11 9:35-10:35
	(南砺市震度計)	L	510, 1020	36.58833	136.91946	2015/11/10 15:35–17:05
OYB	小矢部市水牧	N	26.7	36.67167	136.89547	2015/11/11 16:55-17:15
	(K-NET 小矢部)	S	80, 240	36.67172	136.89518	2015/11/11 15:40-16:40
		L	500, 1000	36.67097	136.89671	2015/11/11 12:05-13:35
SNM	射水市中央町	S	78, 234	36.78046	137.08285	2015/11/12 12:05-13:05
	(K-NET 新湊)	L	500, 1000	36.78004	137.07794	2015/11/12 9:40-11:10

図 3 UOZ アレイの観測地点 (左:S アレイ、右:L アレイ)

図 4 FKM アレイの観測地点 (左:Sアレイ、右:Lアレイ)

図 5 NNT アレイの観測地点 (左:Sアレイ、右:Lアレイ)

図 6 OYB アレイの観測地点(左:Nアレイ及びSアレイ、右:Lアレイ)

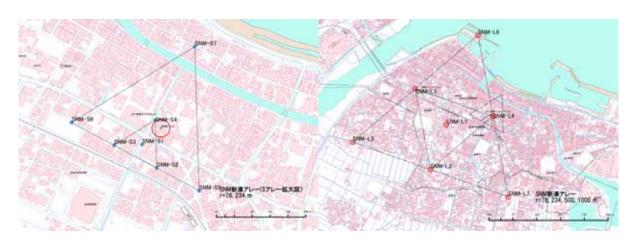


図 7 SNM アレイの観測地点 (左:Sアレイ、右:Lアレイ)

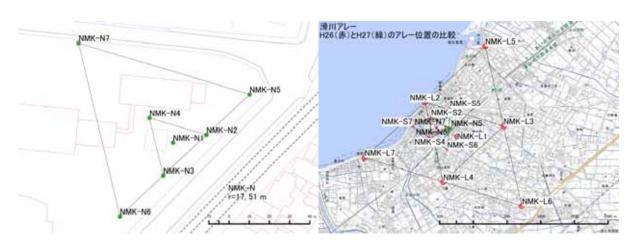


図 8 NMK アレイの観測地点 (左:Nアレイ、右:平成 26 年度実施分との比較)

c) 微動アレイ解析による S 波速度構造の推定

i) Rayleigh 波位相速度の推定

アレイ直下の地下速度構造の情報と密接に関係する表面波の分散性(位相速度-周波数の関係)を検出する。本業務では、空間自己相関法(以下、SPAC 法; Aki, 1957) ¹²⁾ を用いて、位相速度を推定した。SPAC 法では基本的には円形アレイを展開し、中心点と半径 rの円周上に等間隔に設置した各観測点(今回の観測では正三角形の 3 つの頂点)の相関係数を方位平均した空間自己相関係数を求める。このとき、微動が定常確率過程であるという仮定から、空間自己相関係数は

$$\rho(f,r) = J_0 \left(\frac{2\pi f}{c(f)} r \right)$$

と表現される。左辺は観測量(ρ : 空間自己相関係数)であり、得られた空間自己相関係数 $\rho(f,r)$ は0次のベッセル関数 J_0 となることを意味している。左辺の観測量に対応するベッセル関数の変数を見つけることができれば、半径r における周波数f での位相速度c(f)が求まる。

微動アレイ観測で収録した微動の上下動成分を用い、40.96秒間を解析区間の単位として40秒ずつずらしながら、時間的、空間的に安定した微動波形が得られている区間を5区間以上選定し、選定された区間に対してSPAC法を適用し、微動中に含まれる表面波 (Rayleigh波) 位相速度を推定した。ただし、OYBONアレイについては、20.48秒間を解析区間の単位として20秒ずつずらしながら解析した。フーリエスペクトルを求める際のスムージングには、Parzenウィンドウを用い、そのウィンドウ幅は0.2441 Hzとした。図9に各アレイの平均パワースペクトルを示す。Lアレイについては、約 $0.6\sim0.9$ Hz以下の周波数帯域で、アレイを構成する各点の平均パワースペクトルが類似していることが確認できる。Sアレイ及びNアレイの記録も統合すれば、UOZはV1 Hz、V2 FKMはV3.5 Hz V3 NMにV5 Hz V4 FKMはV5 Hz V5 NMにV7 NMにV7 を観測データが得られた。

図10に各アレイでSPAC法により得られた観測位相速度を丸印で示す。Lアレイ、Sアレイ、Nアレイとアレイ種類毎に丸印の色を変えている。NMKアレイについては、平成26年度に実施したLアレイとSアレイの結果と併せてプロットした。図10中の太実線は、サイズの異なるアレイから得られた解析結果を統合した、その地点での最終的な観測位相速度である。0.2 Hz付近から連続性のある分散曲線が得られた。上限周波数は2~8 Hzの範囲で観測地点による。ただし、NNTにおいては、0.6~2.0 Hzに亘って逆分散形状が見られ、観測自己相関関数に対するベッセル関数のフィッティングもやや良好ではなかった。図9のパワースペクトルの比較から、これらの周波数帯での微動のパワーが極端に低く、十分に信頼できる位相速度が得られなかった可能性が考えられる。表層付近のS波速度に関係していると考えられる高周波数側の位相速度に注目すると、富山湾岸のSNMやNMKでは位相速度が特に遅く、これらの地域における沖積層の存在と対応する。これに対し、UOZ、FKM、NNTでは3~4 Hz付近の位相速度が約0.6 km/s以上である。これらの地点の表層地質は扇状地堆積物であり13,14)、工学的基盤面がごく浅くにあるものと考えられる。

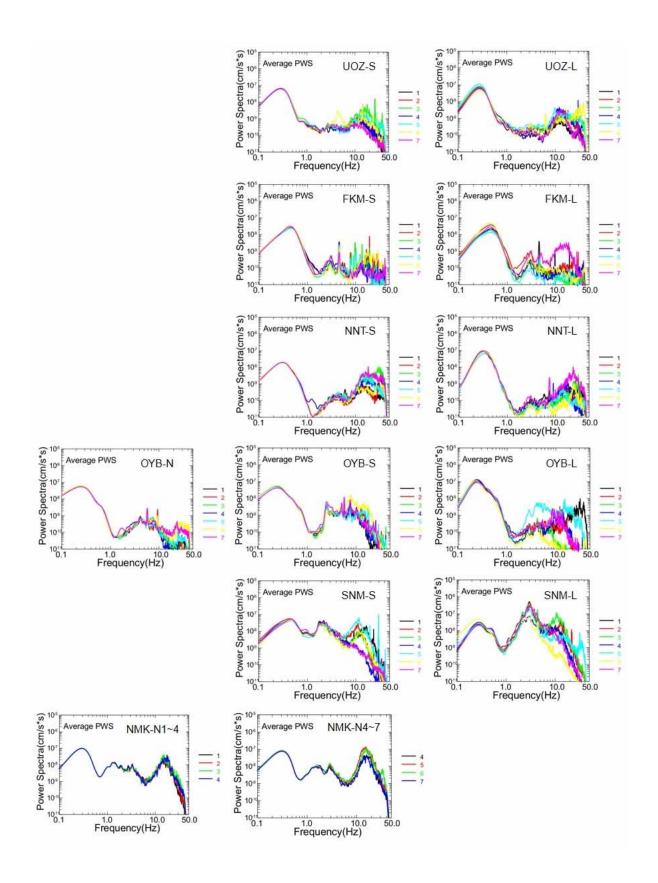


図9 各アレイにおける各観測点の微動の平均パワースペクトル 図中の線の色と番号はアレイを構成する各点の地震計番号(図3~8参照)を表す。

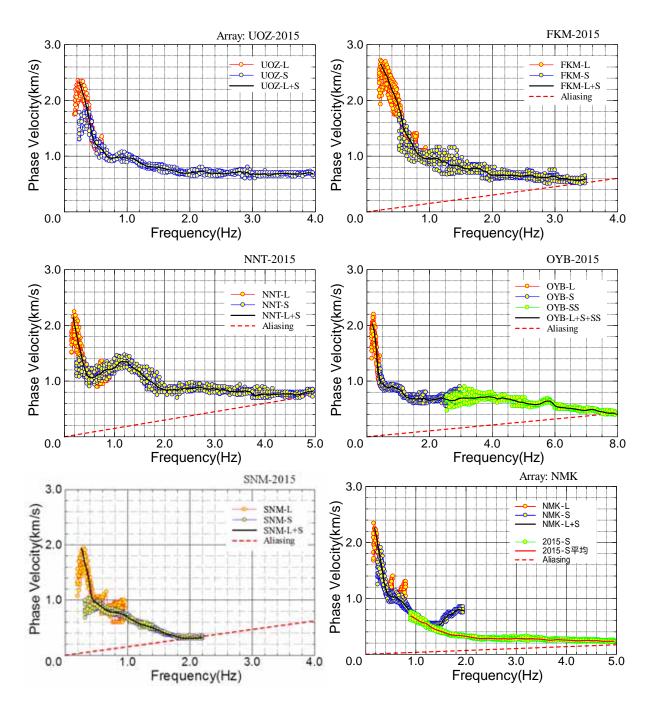


図 10 各アレイにおける観測位相速度 赤線は最小サイズのアレイで空間エイリアジングが生じる限界を示す。

ii)S波速度構造モデルの推定

表面波位相速度から S 波速度構造モデルを推定した。パラメータの推定手法としては、遺伝的アルゴリズム(Genetic Algorithm、以下 GA)による速度構造のモデリング手法(Yamanaka and Ishida, 1996) $^{15)}$ を用いた。仮定した速度構造モデルから計算されるRayleigh 波基本モードの位相速度と観測位相速度の misfit 関数

$$misfit = \frac{1}{N} \sum_{i}^{N} (O_i - C_i)^2 \left(\frac{\sigma_0}{\sigma_i + w_0} \right)^2$$
 (1)

ができるだけ小さくなるような速度構造モデルを探索した。ここで、Nはデータの個数、 O_i 、 σ_i 、 C_i はそれぞれ観測位相速度、その標準偏差、理論位相速度、 σ_0 は標準偏差の係数、 w_0 は極端に小さな σ_i の悪影響を防ぐためのパラメータである。実際には、 σ_0 には $\sigma_i + w_0$ の最大値を、 w_0 には 0.001 (km/s)を与えた。

速度構造モデルの探索に際しては、国立研究開発法人防災科学技術研究所が運営している地震ハザードステーション (J-SHIS) で公開されている深部地盤モデル 16,17 を参照し、観測点直下の J-SHIS モデルの層構造の S 波速度を固定して、層厚を探索した。また、観測位相速度が高周波数側で 0.6~km/s を下回る場合には、表層を $1~emath{m}$ 層追加し、層厚と S 波速度の両方を探索の対象とした。また、NMK を除く各点では、 $V_S=0.6~km/s$ と 1.1~km/s の層の間に $V_S=0.75~km/s$ の層を追加した。なお、地震基盤(半無限層)の V_S を 3.4~km/s とした。探索に際し、GA のパラメータとして、 $1~emath{m}$ 世代当たりの個体数を 10、世代数は $5000~emath{m}$ 世代とし、乱数の初期値を変えて $8~emath{m}$ 回試行し、misfit 最小解を最適な速度構造モデルとした。図 $11~emath{m}$ にそれぞれの観測点での観測位相速度とともに最適な地下構造モデルによるRayleigh 波基本モードの位相速度分散曲線、図 $12~emath{m}$ に推定された $12~emath{m}$ S 波速度構造モデルを示す。また、misfit が最小の $12~emath{m}$ を示す。また、misfit が最小の $11~emath{m}$ を同じに示した。

各観測点での推定速度構造モデルによる Rayleigh 波基本モードの位相速度分散曲線は観測位相速度とよく一致しており、観測位相速度をよく説明できる地下速度構造モデルが推定された。比較のため、既存の J-SHIS 深部地盤モデル $V2^{17}$ (以下、「J-SHIS V2 モデル」と呼ぶ。)からアレイ地点直下の一次元速度構造モデルを抽出し、理論分散曲線を計算したものを図 11 の緑実線で示した。本業務で実施した微動アレイ探査から得られたモデルと J-SHIS V2 モデルには幾分異なった結果が得られた。

以下、各地点での推定結果の概要と J-SHIS V2 モデルとの差異を述べる。

UOZ (魚津): 地震基盤(ここでは $V_S = 3.4 \text{ km/s}$ の層)は深さ約 4 km で、 $\pm 1 \text{ km}$ 程度の範囲内で推定される。深さ 1 km 程度までは、良好に層境界深さが推定される。J-SHIS $V_S = 2 \text{ km}$ を発き全体的に層境界の深さが深い。位相速度が 2 km はまで 2 km を表層に設定する必要はない。既刊の富山県地質図及び説明書 2 km によれば、上部更新統下部の下段累層(低位段丘・扇状地堆積物の礫層)が地表付近に分布しており、完新統がほとんどないためと考えられる。

FKM (福光): 地震基盤は深さ $2 \text{ km} \pm 1 \text{ km}$ 程度で推定された。J-SHIS V2 モデルと比べ、位相速度が小さく求められたことを反映し、地震基盤以浅で全体的に層境界の深さが深い。富山県地質図及び説明書によれば、表層地質は上部更新統下部の下段累層(低位段丘・扇状地堆積物の礫層)であり、Vs が 0.6 km/s よりも遅い層は設定しなくても、観測

位相速度を説明できた。

NNT(南砺): 推定された分散曲線のうち、位相速度が逆分散し、十分な信頼性が得られていないと考えられる $0.6 \sim 2.0~Hz$ の周波数帯域を除外して速度構造モデルを推定した。位相速度が 5~Hz 付近で $0.7 \sim 0.8~km/s$ とかなり大きいため、Vs が 0.6~km/s よりも遅い層を表層に設定する必要はない。表層地質は庄川扇状地の砂礫で構成されている。地震基盤の深さは 6~km 付近に求められたが、misfit が $2~em 2~em 2.5 \sim 6~km$ に分布する。 J-SHIS $V2~em 2~em 2.5 \sim 6~km$ に分布する。 J-SHIS $V2~em 2~em 2.5 \sim 6~km$ に分布する。 かられる値よりもかなり小さい。このことから地震基盤は J-SHIS $V2~em 2~em 2~em 2.5 \sim 8~em 2.5 \sim$

OYB (小矢部): 5 Hz 付近で位相速度が 0.7 km/s 前後と、NNT と同程度に大きな値が得られている。J-SHIS V2 モデルと比較して、 $0.4 \sim 2 \text{ Hz}$ 付近で分散曲線の違いが大きく、主に 1 km 以浅のモデルの差に影響していると考えられる。 $V_S = 0.38 \text{ km/s}$ の層厚は 23 m と推定された。地震基盤の深さは、 $5 \text{ km} \pm 1.5 \text{ km}$ 程度で求められているが、長周期側の観測分散曲線と理論分散曲線の一致がやや悪い。本アレイは、平成 26 年度海陸統合探査 「かほく一砺波測線 101」の測線近傍(CMP 番号 13200 付近)に位置している。かほく一砺波測線の地質解釈によれば、先新第三系の基盤(大陸地殻)の深さは約 5 km と推定されており、微動アレイ探査による推定結果とも推定誤差の範囲内で対応している。また、微動アレイ探査による推定結果とも推定誤差の範囲内で対応している。また、微動アレイ探査によるモデルのうち、 $V_S = 0.75 \text{ km/s}$ の層の下限が第四系の基底(第三系の上面)、 $V_S = 1.1 \text{ km/s}$ 層の下限が音川層の基底に対応しているように見える。

SNM (新湊): 高周波数側の位相速度が 2~Hz で 0.3~km/s 程度まで低下し、それを反映して表層は $V_S=0.3~km/s$ 程度の層が厚い。地震基盤の深さは $6~km\pm3~km$ (推定値の分布の中心を基準にすれば、 $5~km\pm2~km$) 程度で求められている。ただし、位相速度を最も形作っているのは、深さ 1.5~km 付近のコントラストの強い境界と考えられる。射水平野での既往のボーリング調査によれば、約 200~m で第三系に到達する 14)。微動アレイから推定された $V_S=0.75~km/s$ の上面深さは 195~m であり、地質情報とも調和的である。完新統(沖積層)に相当する $V_S=0.29~km/s$ の層の厚さは 89~m と推定された。

NMK (滑川): N アレイを追加実施したことで、昨年度よりも改善され、妥当な分散曲線が得られた (図 11)。表層から地震基盤に至るまで、推定誤差は少なく、良好に層境界深さが求められている。地震基盤上面は $5.4~\rm km$ に推定された。完新統(沖積層)に相当する $V\!\rm s=0.28~\rm km/s$ の層の厚さは $82~\rm m$ と推定された。

昨年度と今年度に実施した調査結果を整理し、富山平野周辺域での J-SHIS V2 モデルの各速度層上面深さの空間分布と微動アレイ探査による推定速度構造モデルの各速度層上面深度を比較したものを図 14 に示す。ここでは、 $V_S=1.1~km/s$ 、1.7~km/s、2.7~km/s、3.1~km/s 層上面深度の情報を例として示している。地図の背景のカラーコンター(J-SHIS V2 モデル)と図 14 中の丸印の色(微動アレイによるモデル)の違いが、J-SHIS V2 モデルと本業務で微動アレイから推定した速度構造モデルの違いを表す。

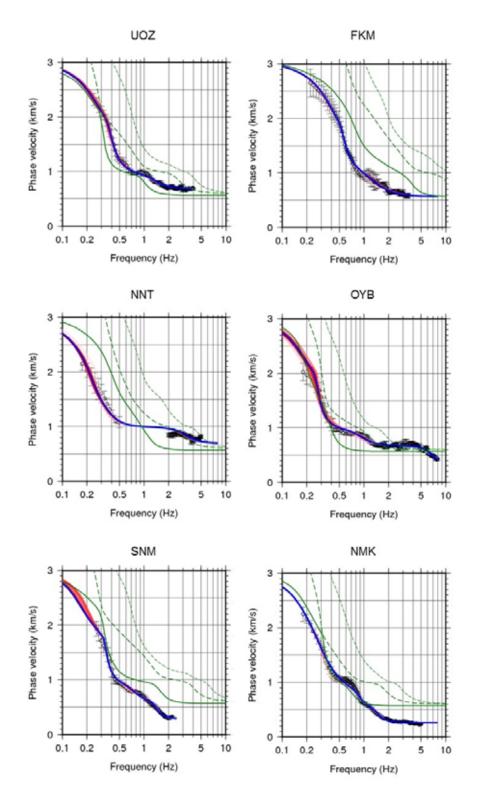


図 11 各観測点での観測位相速度と最適な地下速度構造モデルによる Rayleigh 波基本モードの位相速度分散曲線

観測位相速度及び標準偏差 (○印)、推定速度構造モデルによる Rayleigh 波基本モードの 位相速度分散曲線 (最適解:青実線、misfit が最適解の 2 倍以内のモデル:赤実線)、J-SHIS V2 モデルによる Rayleigh 波基本モード (緑実線)、1 次及び 2 次モード (緑破線)の位相 速度分散曲線。

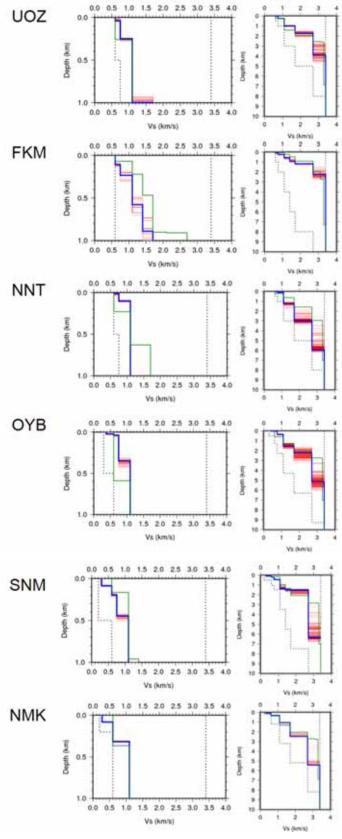


図 12 微動アレイ探査により推定された S波速度構造モデル

最適解: 青実線、misfit が最適解の 2 倍以内のモデル: 赤実線、J-SHIS V2 モデル: 緑実線。破線は、GA による層厚の探索範囲を示す。

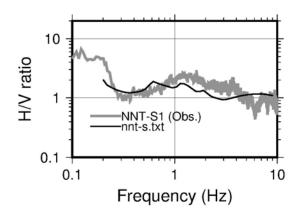


図 13 NNT における H/V スペクトル比の比較

灰実線: NNT-S アレイ中心点(図 5 の NNT-S1)での観測 H/V スペクトル比、黒実線: 推定された地下速度構造モデル(図 12 の青実線)から計算された理論 H/V スペクトル比。

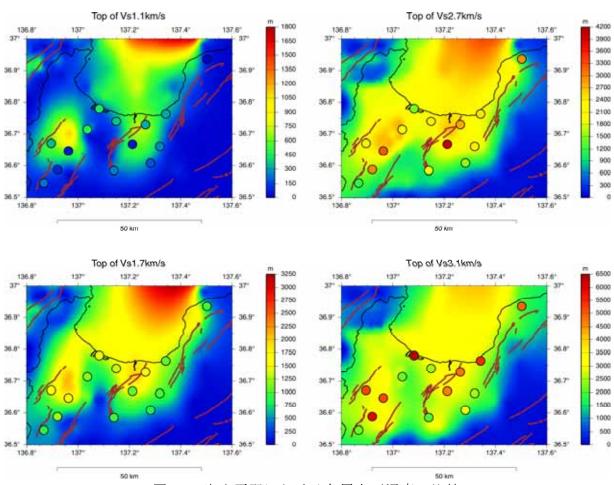


図 14 富山平野における各層上面深度の比較

背景は J-SHIS V2 モデル。○印は微動アレイ探査により推定されたモデル。

2) 地震波形記録の収集

各都道府県では、全国展開されている国立研究開発法人防災科学技術研究所の強震観測網(K-NET)、基盤強震観測網(KiK-net)、気象庁の計測震度計観測点に加えて、各地方自治体の震度情報ネットワークシステムによる計測震度計観測点が設置され、震度情報の発表や防災対応に活用されている。平成25年度は石川県及び福井県、平成26年度は富山県の震度情報ネットワークシステムで観測された地震波形記録を収集した。本年度は、石川県危機管理監室危機対策課及び福井県安全環境部危機対策・防災課のご協力を得て、前回のデータ提供以降に発生した2015年9月まで(石川県)、2015年10月まで(福井県)の地震波形記録の追加提供を受けた。

本年度までに各県の震度情報ネットワークシステムから収集した記録は、富山県が 94 地震、871 波形記録、石川県が 63 地震、313 波形記録、福井県が 136 地震、918 波形記録である。このほかに、K-NET、KiK-net の地震波形記録も収集した。収集した地震波形記録は、地震波形記録を用いた既存地下速度構造モデルの検証のためのデータ解析に使用した。

- 3) 地震波形記録を用いた既存地下速度構造モデルの検証
- a) サイト特性の推定手法

これまでに収集した北陸地方 3 県(福井県、石川県、富山県)の強震記録を用い、スペクトルインバージョン手法 19 によって、震源・伝播経路・サイトの各特性を分離し、各観測点での地震基盤に対する地表でのS 波サイト増幅特性(以下、サイト特性)を求めた。また、既存のJ-SHIS V2 モデルによる一次元理論SH 波増幅率(以下、理論増幅率)を計算し、スペクトルインバージョンで得られたサイト特性との比較を行った。また、これらのいくつかの観測点では、本業務で実施した微動アレイ観測等から得られた速度構造モデルによる理論増幅率も計算し、J-SHIS V2 モデルとの比較検討も行った。

解析対象とした地震は、2004年4月1日から2016年2月1日までに発生し、北陸地方 3 県の K-NET、KiK-net、自治体震度計で 1 地点以上の記録が存在するもののうち、3.3 ≦M_{JMA}≦5.5、震源深さ≦20 km、震源-観測点距離≦150 km(ただし、糸魚川-静岡構 造線以東の地震を除く)の条件を満たす地震を抽出し、スペクトルインバージョンに使用 する地震 – 観測点のデータセットを構築した。上記の期間中に移設した観測点(FKI001 三国、FKI007 敦賀、ISK009 七塚、TYM007 富山) については、移設前、移設後で別の 地点として取り扱った。観測点の空間カバレッジを確保するために、岐阜県北部の KiK-net 観測点 8 地点を追加した。国立研究開発法人防災科学技術研究所広帯域地震観測網 F-net の SRN (白峰) 観測点 (石川県白山市) を、スペクトルインバージョンを行う際の基準観 測点(後述)としてデータセットに含めた。SRN(白峰)観測点は速度型強震計(2011 年8月18日以前はVSE-355G2、以降はVSE-355G3) の記録を使用し、連続記録の中か ら S 波が目視で読み取れるものをデータセットとした。以上により、解析対象の強震観測 点は基準観測点を含め 160 地点となる。図 15 に解析対象の強震観測点及び震央分布を地 図上に示す。選定された128地震、160観測点の波形記録からデータセットを構築し、得 られた地震-観測点ペアの総数は2863である。図15(右)に示されているように、解析 に使用することのできた地震の震央は対象領域内で均一に分布しているわけではない。能

登半島北西岸付近(2007年能登半島地震の余震群)、富山-岐阜-長野県境付近、福井県 嶺北に多く分布している。前述の震源距離、マグニチュード範囲の条件は、データセット 内に震源距離の偏りができるだけ生じないように適切に設定した。

スペクトルインバージョンの解析方法を以下に説明する。地震 i (i = 1, 2,..., M) による観測点 j (j = 1, 2,..., N) における観測記録の Fourier 振幅スペクトル O_{ij} (f) (以下、観測スペクトル) は、地震の震源特性 $S_i(f)$ 、震源から地震基盤までの伝播経路特性 $P_{ij}(f)$ 、観測点のサイト特性 $G_i(f)$ の積として、以下の式(2)で表現することができる。

$$O_{ii}(f) = S_i(f)P_{ii}(f)G_i(f)$$
(2)

ここで、伝播経路特性 $P_{ij}(f)$ は、地震 i と観測点 j の震源距離 r_{ij} 、伝播経路の平均的な S 波速度 V_S (3.4 km/s と仮定) と Q_S 値によって、

$$P_{ij}(f) = \frac{1}{r_{ij}} \exp\left(-\frac{\pi f r_{ij}}{Q_{\rm S}(f) V_{\rm S}}\right)$$
(3)

と表すことができる。なお、 Q_S 値は伝播経路に依存しないと仮定する。式(2)の両辺の常用対数をとり、線形化すると、

$$\log O_{ij}(f) + r_{ij} = \log S_i(f) - \frac{\pi f r_{ij}}{V_S} Q_S^{-1}(f) + \log G_j(f)$$
(4)

が得られる。以上により、M個の地震に対する震源特性と N個の観測点に対するサイト増幅特性、及び 1 個の Q_S 値からなる (N+M+1) 個の未知パラメータは、地震一観測点ペアに対応した数の式(4)からなる連立方程式を解くことで評価することができる。ただし、この連立方程式を解く際は、震源特性 $S_i(f)$ とサイト特性 $G_j(f)$ の間にはトレードオフの関係があるため、基準観測点が 1 つ必要である。基準観測点は、サイト特性の影響を無視できると仮定できるような観測点である必要があるため、下部白亜系手取層群に設置されている F-net の SRN(白峰)を基準観測点とし、周波数によらずサイト特性が 2 であると仮定した。したがって、推定すべき未知パラメータは、128+159+1=288 個である。この 288 個の未知パラメータを $Q_S(f) \ge 0$ の拘束条件を課した最小二乗法 200 によって周波数毎に求めた。解析対象周波数帯域は $0.2 \sim 20$ Hz とした。

観測スペクトル $O_{ij}(f)$ は、各地点の観測波形の水平動 2 成分の加速度 Fourier 振幅スペクトルの二乗和平方根とした。加速度 Fourier 振幅スペクトルは、S 波を含む 10.24 秒間を切り出して、区間の開始、終了の各 0.5 秒間に余弦関数型のテーパ処理を適用し、周波数軸上で各周波数の ± 5 %の移動平均による平滑化を行うことで求めた。



図 15 解析対象の強震観測点及び震央分布

(左)サイト特性を推定した強震観測点(四角:K-NET 及び KiK-net、丸:福井県、石川県、富山県震度計)。(右)スペクトルインバージョンの解析対象とした地震の震央。

b) 推定されたサイト特性と理論増幅率との比較

スペクトルインバージョンによるサイト特性の推定結果の例として、各県から 3 観測点ずつ、計 9 観測点の結果を図 16 に示す。これら 9 観測点の位置を図 15 に赤印で示している。例えば $0.5\sim2.0~\rm{Hz}$ 付近の周波数帯域での増幅率に注目すると、山間部の九頭竜川沿いに位置する $\rm{FKIH01}$ (KiK-net 永平寺) は 2 程度と増幅が見られないが、大野盆地内の $\rm{FKIP05}$ (大野市役所)、鯖江盆地内の $\rm{FKIP07}$ (鯖江市文化の館)、加賀平野内の $\rm{ISK011}$ (K-NET 小松)、 $\rm{ISKP23}$ (かほく市高松)、射水・砺波平野内の $\rm{TYM005}$ (K-NET 新湊)、 $\rm{TYMP33}$ (南砺市役所) では、約 $\rm{7}\sim16$ 倍の増幅率が得られており、平野や盆地内の堆積層の影響による地震動の増幅が見られる。図 $\rm{16}$ に示したもののうちでは、 $\rm{ISK005}$ (K-NET 穴水) の $\rm{1}\sim2~\rm{Hz}$ の増幅率は顕著に大きい。

スペクトルインバージョンにより推定されたサイト特性に基づき、地震動増幅率の空間分布を調べた。ここでは、 $0.5\sim1$ Hz (周期 $1\sim2$ 秒、図 17) 及び $1\sim2$ Hz (周期 $0.5\sim1$ 秒、図 18) の結果を示す。堆積層の厚く分布していると考えられる福井平野、加賀平野、邑知潟平野、射水・砺波平野、富山平野において相対的に大きい増幅率が得られた。 $1\sim2$ Hz においては、能登半島の鳳至郡穴水町(K-NET ISK005)と輪島市門前町(県震度計)において顕著に大きな増幅率が見られた。これら 2 観測点は、2007 年能登半島地震の際に木造家屋の被害の集中が見られた地域にある。

既存の地下速度構造モデルの検証のため、J-SHIS V2 モデルから各観測点直下の一次元

速度構造を抽出し、SH 波鉛直入射を仮定した理論増幅率を Haskell (1953)の方法 21) によ り計算した結果を、図 16 に赤線でプロットした。減衰は、複素弾性率として取り入れて おり、そのときの Q値の値は J-SHIS V2 モデルによって与えられているものを周波数に 依存しない形でそのまま用いた。FKIH01及びISK011は既往研究で微動アレイ探査デー タの解析等によって推定された速度構造モデル 2),22)、TYM008 (K-NET 大山) は平成 26 年度の微動アレイ探査(OYM アレイ)による速度構造モデル 10) があるため、これらの速 度構造モデルによる理論増幅率も緑線でプロットした。Q値は $Q = V_{\rm S}/15$ ($V_{\rm S}$ の単位は m/s)と仮定して与えた。これらの観測点では、本調査の微動アレイ探査による速度構造 モデルの方が、ピーク周波数や増幅率をよりよく再現している。このことから、平成 25 ~27 年度に実施した微動アレイ探査の成果は本地域の地下速度構造モデルの改良に役立 つものといえる。このほか、2 Hz 以下の帯域においては、FKIP05、FKIP07、ISKP23、 TYM005、TYMP33では、J·SHIS V2 モデルは地震波形から得られたサイト特性の特徴を 比較的よく再現しているが、高周波数側では理論増幅率とサイト特性に乖離が見られる。 これは、既存の J-SHIS V2 モデルの最小 S 波速度が 0.6 km/s であるため、これら高周波 数の地震動増幅に寄与していると考えられる表層付近のS波速度の遅い沖積層の影響がモ デル計算に含まれていないためである。

また、スペクトルインバージョンによって分離された Q_s 値を図 19 に示した。比較のため、川瀬・松尾 $(2004)^{23}$ による領域 4 での Q_s 値のモデルを赤線でプロットした。川瀬・松尾 (2004)による結果と比べると、全体的に Q_s 値が大きい。川瀬・松尾 (2004)では、中部地方から中国・四国地方にかけての広い領域を解析対象としているのに対して、本研究では北陸地方に絞った解析をしているため、 Q_s 値の地域性による違いが結果に反映されているものと考えている。

今後はスペクトルインバージョンで推定されたサイト特性や、地震動 R/V スペクトル比 (本プロジェクト平成 26 年度報告書)の解析結果を用い、微動アレイ探査がなされていない観測点も含め、各観測点での速度構造モデルのチューニングを進めていく必要がある。

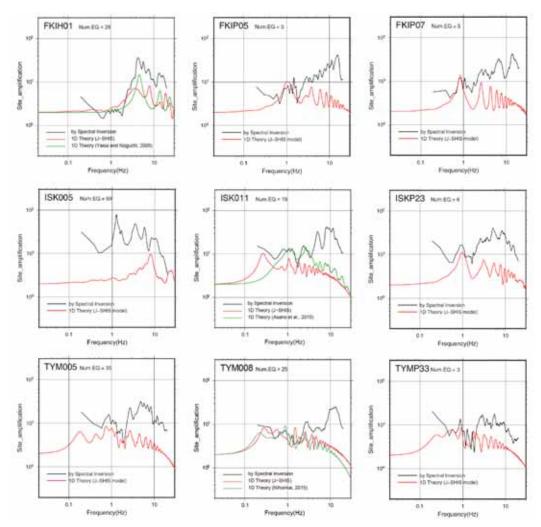


図 16 スペクトルインバージョンによって推定されたサイト特性の例

黒:本研究によって推定されたサイト特性、赤: J-SHIS V2 モデルによる理論増幅率、緑: 平成 26 年度の微動アレイ(TYM008)及び既往研究のモデル(FKIH01、ISK011)による理論増幅率。

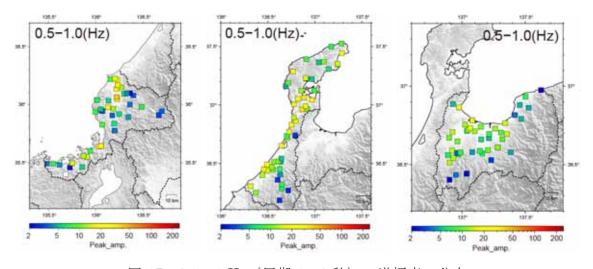


図 17 0.5~1 Hz (周期 1~2 秒) の増幅率の分布

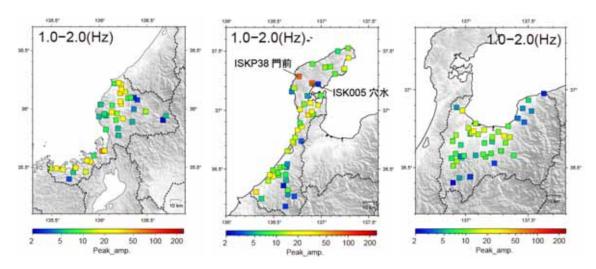


図 18 1~2 Hz (周期 0.5~1 秒) の増幅率の分布

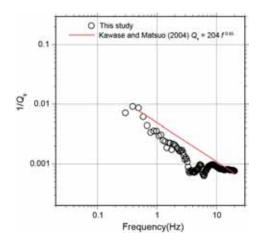


図 19 スペクトルインバージョンによって推定された $Q_{S^{-1}}$ 値(丸印) と川瀬・松尾(2004) による $Q_{S^{-1}}$ 値 $^{22)}$ (赤実線) の比較。

- 4) 震源断層モデルに基づく強震動予測
- a) 震源断層パラメータの設定

サブサブテーマ 2.5 で得られた震源断層モデルに基づき、強震動予測を実施した。今年度は、平成 26 年度に震源断層の矩形モデルが構築された新潟周辺から金沢沖にかけてのうち、富山トラフ周辺の震源断層及び平成 27 年度に矩形モデルが構築された砺波平野の震源断層を対象に選び、統計的グリーン関数法による強震動予測を行い、これらの断層で地震が発生した場合の震度分布を推定した。 矩形断層の位置、形状(走向、傾斜、すべり角)、断層長さ、断層幅については、本プロジェクト平成 26 年度及び平成 27 年度成果報告書に従った。平野部の地震動に及ぼす影響を考慮して、TB1、TB2、TB3 断層(七尾沖一能登半島東方沖の断層)の 3 連動地震、TB4 断層(魚津沖断層帯)の地震、TM1 断層(砺波平野断層帯西部のうち法林寺断層)を検討対象とした。

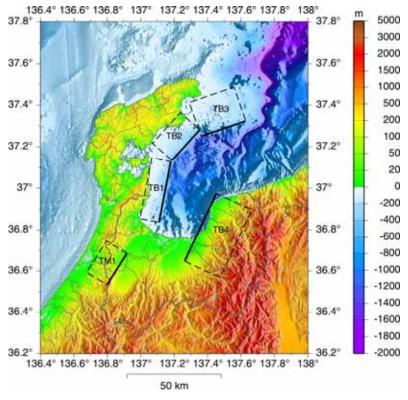
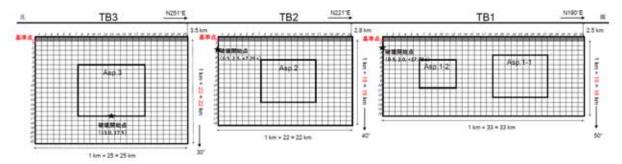
サブテーマ 2.5 から提供された矩形断層モデルをもとに、地震調査研究推進本部の「震源断層を特定した地震の強震動予測手法 (レシピ)」²⁴⁾を参考にして、強震動生成域 (ア

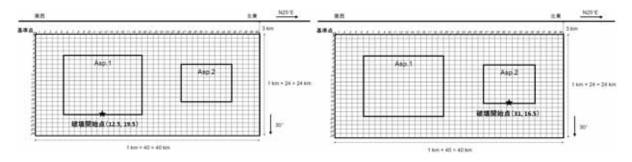
スペリティ)及び背景領域のパラメータ設定を行った。表 $3\sim5$ に各断層帯で設定したパラメータの一覧をまとめた。対象とした震源断層の位置を図 20 の地図に示し、設定した断層モデルの模式図を図 21 に示す。

七尾沖ー能登半島東方沖の断層に対しては、TB1 に 2 つのアスペリティ、TB2 及び TB3 に各 1 つのアスペリティを配置した。アスペリティは震源断層の中心部付近に置くこととした。TB3 のアスペリティの下端中央を破壊開始点とし、TB3 から TB2、TB1 へとスムーズに破壊が伝播するケースを想定した。ここでの震源断層パラメータ設定は、強震動の試算を目的としているため、サブサブテーマ 2.5 から提供された震源断層の矩形モデルのうち地震基盤よりも上にある部分(図 21(a)のグレーの部分)については、本検討のモデル化に含めなかった。この点は、津波予測のための震源モデルとは異なるモデル化となっている。

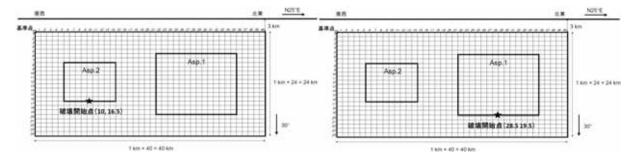
TB4 (魚津沖断層帯) については、2 つのアスペリティを設定した。大きさの異なる 2 つのアスペリティの配置が異なる 2 つの震源モデルを作成し、それぞれについて破壊開始点の位置が異なる 2 つのケースを想定した。合計で 4 ケースの計算を実施した。アスペリティの配置、破壊開始点位置以外の条件はすべて同一である。

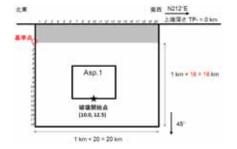
TM1 (法林寺断層) については、1 つのアスペリティを震源断層中心付近に配置し、破壊開始点の異なる 2 つのケース(ケース 1: アスペリティ下端中心、ケース 2: アスペリティ下端南端)を想定した。TB1~TB3 断層の場合と同様、震源断層の矩形モデルのうち地震基盤よりも上にある部分(図 21(f)、(g)のグレーの部分)については、本検討のモデル化に含めなかった。


図 20 本検討に用いた震源断層モデルの地表投影

(a) TB1~TB3 断層


(b) TB4 断層 ケース 1



(d) TB4 断層 ケース 3

(e) TB4 断層 ケース 4

(f) TM1 断層 ケース 1

(g) TM1 断層 ケース 2

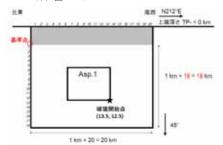


図 21 設定した震源モデルの模式図

表 3 TB1~TB3 断層の震源断層パラメータ

バラメータ	記号	- 7	B1	定值	TOS	単位	設定根拠
基準点緯度(世界測地系)		37.1	1000	TB2 37.2810	TB3 37.3239	度	平成26年度成果報告書をもとに本業務で設定
基準点程度(世界測地系)		137.		137.3532	137.6292	度	平成26年度成果報告書をもとに本業務で設と
第単点深さ 第単点深さ		1111755	3	3.4	4.0	km	平成26年度成果報告書をもとに本業務で設)
		15	-				
走向角 傾斜角			0	222 40	251	度度	平成26年度成果報告書 平成26年度成果報告書
すべり角			5	95		and the second	平成26年度成果報告書
	1.0	3			120	度 km	
断層長さ(走向方向)	L_i	3		22	25	KIII	平成26年度成果報告書 L=YL,
(全体)断層長さ(走向方向)	L			0	100	- tour	
地震発生層上端深さ	H_i		5	2.8	3.5	km	平成26年度成果報告書をもとに本業務で設
地震発生層下端深さ	H_{d}	17		17.8	18.5	km	平成26年度成果報告書をもとに本業務で設定
地震発生層の厚さ	T,		5	15	15	km	$T_1 = H_4 - H_1$
断層幅(傾斜方向)	m,	1	NAME OF TAXABLE PARTY.	18	22	km	平成26年度成果報告書
断層面積	S,	59		396	550	km ²	$S_I = L_I \times W_I$
(全体)新層面積	5		14	74		km²	$S = \Sigma S_i$
(全体)地震モーメント	M_0		1.21	E+20		Nm	(S/(4.24×10 ⁻¹¹)) ² ×10 ⁻² (Irikura and Miyake, 2011)
(全体)モーメントマグニチュード	M_w			3			(log ₁₀ M ₀ – 9.1) / 1.5 (Hanks and Kanamori, 1979)
(全体)断層全体の平均すべり量		7060		.6		113	$D = M_0/\mu S$
地震モーメント	$M_{\rm fit}$	111.0	E+19	2.89E+19	4.74E+19	km	$M_{0e} = (S_1^{3/2} / \Sigma S_1^{3/2})M_0$
断勝全体の静的応力降下量	Jσ		1	3.1	3.1	MPa	Fujii and Matsu'ura (2000)
断層全体の平均すべり量	D,	2	7	2.3	2.7	m	$D = M_0 / \mu S$
小断層長さ(走向方向)	dL.			.0		km	本業務で設定
小断層幅(傾斜方向)	dW			.0		km	本業務で設定
アスペリティ総面積の等価半径	R _a		1	5.3	6.2	km	$R_{\pm} = (S_{\pm}/\pi)^{1/2}$
アスペリティの総面積	5,	- 11		87.1	121.0	km	$S_a = 0.22S_f$
アスペリティの総面積(計算用)	5.	- 11	7.0	81.0	121.0	kmi	丰泉核で設定
アスペリティの平均すべり量	D.	5.3		4.6	5.4	m	$D_a = 2.0D_i$ (Somerville et al., 1999, 石井・他, 2001)
アスペリティの総地震モーメント	M_{0s}	1.96	E+19	1.27E+19	2.08E+19	Nm	$M_{th} = \mu D_s S_s$
アスペリティ面積/新層面積比	5,18	0.	22	0.22	0.22		
アスペリティの実効応力	$\Delta \sigma_a$	14	.1	14.1	14,1	МРа	$\Delta \sigma_a = (S_I/S_a) \Delta \sigma$ (Madariaga, 1979)
各アスペリティの番号		Asp.1-1	Asp.1-2	Asp.2	Asp.3		The state of the s
各アスペリティ面積の等価半径	Ru	5.2	3.2	5.3	6.2	km	入倉・三宅(2001)に従い、面積比を16:6とす。
各アスペリティの等価半径の比率	71	0.85	0.52	1.00	1.00		$y_I = R_w / R_x$
各アスペリティの面積	Sat	84.5	31.7	87.1	121.0	km ²	$S_{iij} = \pi R_{iij}^2$
各アスペリティの面積(計算用)	5'-	81.0	36.0	81.0	121.0	km²	$L'_{A} = W'_{A}$
各アスペリティの平均すべり量	D_w	5.9	3.6	4.6	5.4	m	$D_{w} = (\gamma_{I} / \Sigma \gamma_{I}^{3}) D_{w}$
各アスペリティの地震モーメント	M_{tot}	1.59E+19	3.66E+18	1.27E+19	2.08E+19	Nm	$M_{0\omega} = \mu D_{\omega} S_{\omega}$
各アスペリティの短周期レベル	A,	1.06E+19	6.50E+18	1.08E+19	1.27E+19	Nm/s ²	$A_i = 4\pi R_H \Delta \sigma_d \beta^2$ (Bostwright, 1984; $\dot{\mathbf{u}} \cdot \dot{\mathbf{u}}$, 2001)
各アスペリティの実効応力	σ _{ai}	14.1	14.1	14.1	14.1	MPa	Δσ,に等しいと仮定
アスペリティの長さ(走向方向)(計算用)	L'	9.0	8.0	9.0	11.0	km	本着様で設定
アスペリティの幅(傾斜方向)(計算用)	B.	9.0	6.0	9.0	11.0	km	本業務で設定
各アスペリティのライズタイム	Tr.	1.8	1.2	1.8	2.2	5	$Tr_a = 0.5W_a^a/V_a$
背景領域の総地震モーメント	M _{th}		E+19	1.62E+19	2.65E+19	Nm	$M_{0b} = M_{0i} - M_{0i}$
背景領域の総面積	Sh	41		308.9	429.0	km²	$S_b = S - S_a$
育景領域の認適積(計算用)	54		1.0	315.0	429.0	km ²	本業務で設定
背景領域の平均すべり量	D_b		9	1.7	1.9	111	$D_b = M_{0b} / \mu S_b$
背景領域の実効応力	σ,		6	2.5	2.5	MPa	$\sigma_b = (D_b/W) \times (\pi^{12}/D_b) \times r \times \Sigma r^3 \times \sigma_a$
各背景領域のライズタイム	Tra		3	3.7	4.5	5	$Tr_b = 0.5W / V_c$ (Day, 1982)
S波速度	ρ		4	3.4	3.4	km/s	J-SHIS 洋部地盤モデルV2
密度			75	2.75	2.75	-	J-SHIS 深部地盤モデルV2
	ρ		.8	31.8	-	g/cm³ GPa	
財性率	μ	31	.0	31.5	31.8	OPA	$\mu = \rho \beta^2$ $V_s = 0.72 \beta$
破壞伝播速度	V_{i}		4	2.4	2.4	km/s	(Geller, 1976)
破填框式		同心	円破壊		同心円破壊		本業務で設定
高周波数遮断フィルター	fran			.5	11	Hz	鶴來・他 (2009)
フィルター形状			1/(1+(f/5.5	$(5)^2 \times 1.24)^{1/2}$			鶴來·他 (2009)

表 4 TB4 断層の震源断層パラメータ

パラメータ	記号	- 227.00	2位	単位	設定根拠
基準点緯度(世界測地系)		36.6	482	度	平成26年度成果報告書
基準点経度(世界測地系)		137.2	2625	度	平成26年度成果報告書
基準点深さ		3.	0	km	平成26年度成果報告書
走向角		2	5	度	平成26年度成果報告書
傾斜角		3	0	度	平成26年度成果報告書
すべり角		5	0	190	平成26年度成果報告書
断層長さ(走向方向)	L	4		km	平成26年度成果報告書
地震発生層上端深さ	H	3		km	平成26年度成果報告書
	H_d	1			平成26年度成果報告書
地震発生層下端深さ			7	km	
地震発生層の厚さ	T,	1		km	$T_{\rm s} = H_{\rm d} - H_{\rm s}$
断層幅(傾斜方向)	11.	2		km	平成26年度成果報告書
断層面積	S	96	i0	km ²	$S = L \times W'$
地震モーメント	M_0	5,13	E+19	Nm	(S/(4.24×10 ⁻¹¹)) ² ×10 ⁻⁷ (Irikura and Miyake, 2011)
モーメントマグニチュード	M_{w}	7.	1		(log ₁₀ M ₀ – 9.1) / 1.5 (Hanks and Kanamori, 1979)
断層面積に対する等価半径	R	17	.5	km	$R = (S_z / \pi)^{1/2}$
断層全体の静的応力降下量	Δσ	4.	2	MPa	$(7/16) \times (M_0/R^3)$
医现在性内部协士 2018	-		4	1000	(Eshelby, 1957)
断層全体の平均すべり量	D	1.	/	m	$D = M_0 / \mu S$
短周期レベル	A	1,97	E+19	Nm/s2	$A = 2.46 \times 10^{10} \times (M_0 \times 10^2)^{1/3}$
	99			13/15-23	(壇・他, 2001)
小断層長さ(走向方向)	dL	1.		km	本業務で設定
小断層幅(傾斜方向)	dW	1.	0	km	本業務で設定
アスペリティ総面積の等価半径	R_{a}	9.	5	km	$R_a = (7\pi/4) \times \{M_0/(AR)\} \times \beta^2$
アスペリティ総画領の寺伽千位	A.	9.	2((KIII	(Boatwright, 1984; 增·他, 2001)
アスペリティの総面積	S.	28	1.5	km²	$S_a = \pi R_a^2$
アスペリティの総面積(計算用)	S',	27	7.0	km²	本業務で設定
	100	-	C.		$D_{\star} = 2.0D$
アスペリティの平均すべり量	D_*	3,	4	m	(Somerville et al., 1999; 石井·他, 2001)
アスペリティの総地震モーメント	M_{m}	3.01	E+19	Nm	$M_{0a} = \mu D_a S_a$
アスペリティ面積/断層面積比	5,/5	0.3	29		
アスペリティの実効応力	$\Delta\sigma_{s}$	14		MPa	$\Delta \sigma_a = (S/S_a) \Delta \sigma$ (Madariaga, 1979)
各アスペリティの番号			A 0		(Madariaga, 1979)
	n	Asp.1	Asp.2	1	T.A. Totalogue St. C. (CONT. A. L. C.)
各アスペリティ面積の等価半径	Rac	8.1	4.9	km	入倉・三宅(2001)に従い、面積比を16:6とす
各アスペリティの等価半径の比率	7.1	0.85	0.52		$\gamma_i = R_{ai} / R_a$
各アスペリティの面積	Sal	204.8	76.8	km ²	$S_{ai} = \pi R_{ai}^2$
各アスペリティの面積(計算用)	S'	196.0	81.0	km	$L_a^* \times W_a^*$
各アスペリティの平均すべり量	D_{ai}	3.8	2.3	m	$D_{ai} = (\gamma_i / \Sigma \gamma_i^{-5}) D_a$
各アスペリティの地震モーメント	$M_{\rm OM}$	2.45E+19	5.62E+18	Nm	$M_{0ai} = \mu D_{ai} S_{ai}$
And the second of the second o	702/5	Take (ba)	Alexandran	0.00	$A_1 = 4\pi R_{ai} \Delta \sigma_a \beta^2$
各アスペリティの短周期レベル	A_{i}	1.68E+19	1.03E+19	Nm/s*	(Boatwright, 1984; 增·他, 2001)
各アスペリティの実効応力	σni	14.3	14.3	MPa	Δσ。に等しいと仮定
アスペリティの長さ(走向方向)(計算用)	L'_{*}	14.0	9.0	km	本業務で設定
トアスペリティの幅(傾斜方向)(計算用)	W.	14.0	9.0	km	本業務で設定
各アスペリティのライズタイム	Tr,	2.9	1.8	S	$Tr_3 = 0.5W_A^*/V_L$
背景領域の総地震モーメント	M _{Ob}	-	E+19	Nm	$M_{0b} = M_0 - M_{0a}$
				-	
背景領域の総面積	Sb	678	7.00	km²	$S_b = S - S_a$
背景領域の総面積(計算用)	S'h	683		km*	本業務で設定
背景領域の平均すべり量	$D_{\mathfrak{h}}$	1.		m	$D_{\rm b} = M_{\rm 0b} / \mu S_{\rm b}$
背景領域の実効応力	σ_{b}	2.	2	MPa	$\sigma_b = (D_b/W) \times (\pi^{1/2}/D_s) \times r \times \Sigma_r^{-3} \times \sigma_s$
各背景領域のライズタイム	Trb	4.	9	s	$Tr_b = 0.5W / V_x$ (Day, 1982)
S波速度	β	3.	4	km/s	J-SHIS 深部地雪モデルV2
密度	22.70	2.		-	J-SHIS 深部地盤モデルV2
TT: 19	ρ		11.11	g/cm³	
		31	.0	GPa	$\mu = \rho \beta^2$
剛性率	μ	0.00		10.00	V = 0.720
	ν _τ	2.	4	km/s	$V_{i} = 0.72\beta$
剛性率 破壊伝播速度	725	2.		km/s	(Geller, 1976)
剛性率	725	2.	円破壊	km/s Hz	

表 5 TM1 断層の震源断層パラメータ

パラメータ	記号	設定値	単位	
基準点緯度(世界測地系)		36.6795	度	サプテーマ2-5の成果をもとに本業務で設定
基準点経度(世界測地系)		136.9265	度	サプテーマ2-5の成果をもとに本業務で設定
基準点深さ		2.1	km	サプテーマ2-5の成果をもとに本業務で設定
走向角		212	度	サプテーマ2-5の成果より
傾斜角		45	度	サプテーマ2-5の成果より
すべり角		105	度	サプテーマ2-5の成果より
断層長さ(走向方向)	L	20	km	サプテーマ2-5の成果より
地震発生層上端深さ	Н,	3	km	サプテーマ2-5の成果をもとに本業務で設定
地震発生層下端深さ	H_{d}	15	km	サプテーマ2-5の成果より
地震発生層の厚さ	Τ,	12	km	$T_s = H_d - H_s$
断層幅(傾斜方向)	11,	18	km	サプテーマ2-5の成果をもとに本業務で設定
断層面積	S	360	km ²	$S = L \times W$
123 (141 227 47		10.00		$(S/(2.23\times10^{*15}))^{3/2}\times10^{*7}$
地震モーメント	M_0	6.49E+18	Nm	(Somerville et al., 1999)
モーメントマグニチュード	M_w	e E		$(\log_{10}M_0 - 9.1) / 1.5$
モーメントマクニチュート	712 TK	6.5		(Hanks and Kanamori, 1979)
断層面積に対する等価半径	R	10.7	km	$R = (S_i / \pi)^{1/2}$
断層全体の静的応力降下量	Δσ	2.3	MPa	$(7/16) \times (M_0/R^3)$
的情主体の語のの方は上生	:270	2.5	MIL	(Eshelby, 1957)
断層全体の平均すべり量	D	0.6	m	$D = M_0 / \mu S$
短周期レベル	A	9.88E+18	Nm/s2	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$
	- 14	0.000	NIII/S	(壇・他, 2001)
小断層長さ(走向方向)	dL.	1.0	km	本業務で設定
小断層幅(傾斜方向)	dW	1.0	km	本業務で設定
アスペリティ総面積の等価半径	R_{A}	3.9	km	$R_a = (7\pi/4) \times \{M_0/(AR)\} \times \beta^2$
		9151	50000	(Boatwright, 1984; 墳・他, 2001)
アスペリティの総面積	Sa	47.7	km ²	$S_{\perp} = \pi R_{\perp}^{2}$
アスペリティの総面積(計算用)	S',	49.0	km*	本業務で設定
アスペリティの平均すべり量	D_s	1,1	m	D = 2.0D (Somerville et al., 1999; 石井・他, 2001)
アスペリティの総地震モーメント	M_{0a}	1.72E+18	Nm	$M_{0s} = \mu D_s S_s$
アスペリティ面積/断層面積比	S./S	0.13		
アスペリティの静的応力降下量	Δσ.	17.5	MPa	$\Delta \sigma_a = (S/S_a) \Delta \sigma$
アスペリティの特別心力降下車	200 ,	17.5	MPa	(Madariaga, 1979)
アスペリティの短周期レベル	217	9.88E+18	Nm/s ²	$A_{i} = 4\pi R_{M} \Delta \sigma_{M} \beta^{2}$
	,	5.00L*10	MINS	(Boatwright, 1984; 壇・他, 2001)
アスペリティの実効応力	σ_{si}	17.5	MPa	Δσ。に等しいと仮定
アスペリティの長さ(走向方向)(計算用)	L'a	7.0	km	本業務で設定
アスペリティの幅(傾斜方向)(計算用)	H2.	7.0	km	本業務で設定
各アスペリティのライズタイム	Tr_*	1.4	S	$Tr_a = 0.5W_a^*/V_s$
背景領域の総地震モーメント	M_{0b}	4.77E+18	Nm	$M_{0b} = M_0 - M_{0a}$
背景領域の総面積	S_b	312.3	km ²	$S_b = S - S_a$
背景領域の総面積(計算用)	S'b	311.0	km ²	本業務で設定
背景領域の平均すべり量	D_{b}	0.5	m	$D_{\rm b} = M_{0\rm b} / \mu S_{\rm b}$
背景領域の実効応力	$\sigma_{\rm b}$	2.9	MPa	$\sigma_b = (D_b/W)/(D_a/W_a)\sigma_a$
各背景領域のライズタイム	$Tr_{\mathfrak{b}}$	3.7	s	$Tr_b = 0.5W / V_r$ (Day, 1982)
S波速度	β	3.4	km/s	J-SHIS 深部地盤モデルV2
密度		2.75	g/cm ³	J-SHIS 深部地盤モデルV2
間性率	ρ	31.8	GPa	$\mu = \rho \beta^2$
MITT	μ	31.0	GEA	$\mu = \rho \rho$ $V_s = 0.72\beta$
破壊伝播速度	V_{i}	2.4	km/s	(Geller, 1976)
破壊様式		同心円破壊		本業務で設定
高周波数遮断フィルター	f mas	5.5	Hz	码来·他 (2009)
フィルター形状		$1/(1+(f/5.5)^2 \times 1.24)^{1/2}$		鶴来・他 (2009)

b) 強震動予測手法の概要

地震動計算手法は統計的グリーン関数法を採用した。 ω^2 則に従うスペクトルモデル (Boore, 1983) $^{25)}$ を用いて統計的グリーン関数を作成し、これを要素地震として入倉 (1994)の手法 $^{26)}$ を用いて波形合成を行った。破壊伝播速度には、乱数による一定のばらつきを与えている。高周波数遮断フィルターの遮断周波数 f_{max} は鶴来・他(2009) $^{27)}$ に従い、5.5 Hz とした。フィルター形状は表 $3\sim5$ に記載している。統計的グリーン関数のサブ断層サイズは 1~km 四方とした。

統計的グリーン関数法の計算出力地点は、J-SHIS の深部地盤モデル V2 のメッシュ中心点とした。J-SHIS 深部地盤モデル V2 では、旧日本測地系の第 3 次メッシュ(基準地域メッシュ)毎に各層境界の深さが与えられており、そのメッシュ間隔は約 1 km(緯度差 30 秒、経度差 45 秒)である。計算地点毎に直下の深部地盤構造を J-SHIS 深部地盤モデル V2 から抽出することにより、水平成層構造として与えた。地震基盤から深部地盤に入射した地震動の応答は、Haskell matrix 法 21 により評価し、工学的基盤(ここでは Vs=600 m/s 層の上面)での予測波形を得る。このとき、Q 値の周波数依存性はないものと仮定した。

次に、図 22 に示す J·SHIS 表層地盤データ V3 の深さ 30 mまでの平均 S波速度 (AVS30) を用いて、工学的基盤での最大地動速度 (PGV) を藤本・翠川(2006) 28) による AVS30 と PGV 増幅率の経験式を用いて、地表の PGV を求めた。最後に、藤本・翠川(2005) 29) の地表 PGV と計測震度の経験式を用いて、地表の震度 JMAを得た。このとき、J·SHIS 表層地盤データ V3 は世界測地系(日本測地系 2000)の 4 分の 1 地域メッシュコード(約 250 m 間隔)に対して与えられているため以下のような手続きで計算した。まず、J·SHIS 表層地盤データ V3 の 4 分の 1 地域メッシュコードに対応する緯度・経度を旧日本測地系に変換した後、旧日本測地系の 4 分の 1 地域メッシュコードに変換した。次に、この旧日本測地系 4 分の 1 地域メッシュコード左 8 桁と同じコードとなる J·SHIS 深部地盤モデル V2 の第 3 次メッシュに対応する工学的基盤での予測波形に、表層地盤データによる増幅率を適用し、約 250 m 間隔での予測震度分布を得た。地図などへの作図に際しては、再度測地系を世界測地系に戻す変換を行っている。また、藤本・翠川(2006)28) による PGV 増幅率は、AVS30 = 600 m/s を超える領域では 1 倍未満となる。そのような場合は、地盤増幅率を 1 倍としてみなして計算した(つまり、統計的グリーン関数法による工学的基盤での予測波形のままとした)。

統計的グリーン関数法による強震動予測の対象領域は、地震動予測式(以下、簡便法)から得られる予測震度が5強以上となる領域を含むように設定した。ここでは、司・翠川 (1999) 30 の地震動予測式を用いて工学的基盤上の最大水平速度 (PGV) を評価し、Midorikawa et al. (1994)で提案されているPGV増幅率とAVS30の関係式 31 を用いて地表のPGVを計算した。得られた地表PGVから、藤本・翠川(2005)の方法 29 により計測震度を計算した。

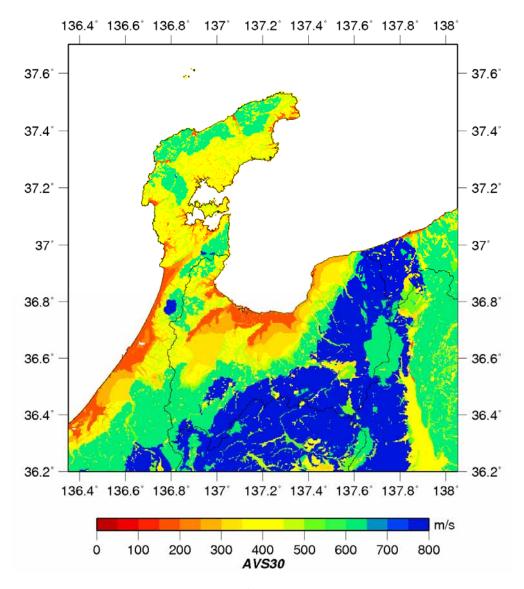


図 22 J-SHIS 表層地盤データ V3 による AVS30 の分布

c) 強震動予測結果

TB1~TB3 断層の 3 連動型地震の強震動予測結果を図 23 (左:最大水平速度 (PGV、以下同様)、右:震度)に示す。TB4 断層については、ケース1を図 24 (左:最大水平速度、右:震度)、ケース 2 を図 25 (左:最大水平速度、右:震度)、ケース 3 を図 26 (左:最大水平速度、右:震度)、ケース 3 を図 26 (左:最大水平速度、右:震度)に示す。TM1 断層については、ケース 1 を図 28 (左:最大水平速度、右:震度)、ケース 2 を図 29 (左:最大水平速度、右:震度)に示す。これらの図面では、すべて地表での強震動予測結果を示した。震度は計測震度に対応する気象庁震度階に応じて色分けした。計測震度 4.5 以上 4.9 以下が震度 5 弱、計測震度 5.0 以上 5.4 以下が震度 5 強、計測震度 5.5 以上 5.9 以下が震度 6 弱、計測震度 6.0 以上 6.4 以下が震度 6 強、計測震度 6.5 以上が震度 7 である。

TB1~TB3 断層の3連動型地震では、震源断層に近い能登半島の東岸側で震度6強の地

域が分布する。震源域からは南に離れている富山平野に対しても影響が大きくなるような想定として、破壊が北から南に進むものとしたが、富山平野での震度は一部を除き震度 5 強であった。震度 6 弱が砺波平野の一部に現れているが、これは AVS30 が小さく表層地盤増幅がやや大きい地域であることに起因する(図 $22 \gg 10$)。

TB4 断層では、東に傾斜する震源断層であることから、震源断層面が浅いところにある 震源域西部と震源域西側に隣接する富山平野東部で震度 6 強以上となっている。富山平野 の堆積層による震動増幅により、震源域直上から少し離れたところでも揺れが大きくなる 可能性があることを示している。設定した大小 2 つのアスペリティのうち、南側に大きいアスペリティをおいた場合(ケース 1 及びケース 2)では、南側アスペリティの下端から破壊が開始するケース 1 の方が北側アスペリティ下端から破壊が開始するモデルであるケース 2 よりも総じて予測震動レベルが高い予測結果となった。一方、大きいアスペリティを北側においた場合には、ケース 3 (南側アスペリティ下端破壊)、ケース 4 (北側アスペリティ下端破壊)ともに北側の大きなアスペリティに近い、入善町から滑川市、富山市といった富山県東部での震動レベルが大きい予測結果となった。

TM1 断層は地震規模が Mw 6.5 の内陸の震源断層で、砺波平野といった地震動を増幅する堆積層下に位置する断層モデルであることから、震度 6 強以上が局所的に現れている。 興味深い点は、震源断層モデルが北西に傾斜角 45 度で傾斜していることから、石川県側の河北潟周辺(金沢平野)でも震度 6 弱以上の震動が予測される。

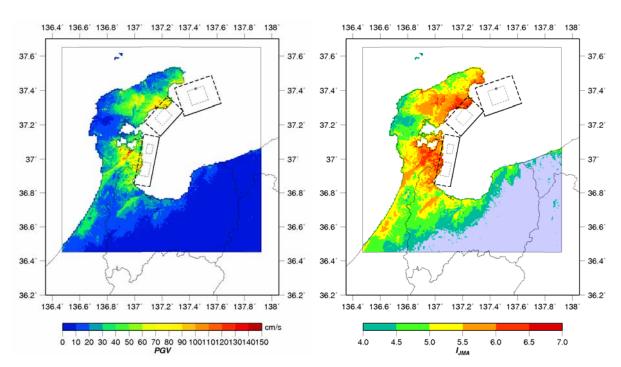


図 23 地表の最大水平速度分布(左)及び震度分布(右)(TB1~TB3 断層 3 連動型) ★は破壊開始点の位置を表す(以下、図 24~29 も同様)。

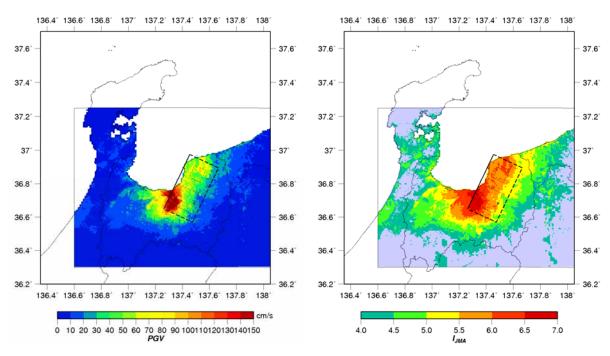


図 24 地表の最大水平速度分布(左)及び震度分布(右)(TB4 断層ケース 1)

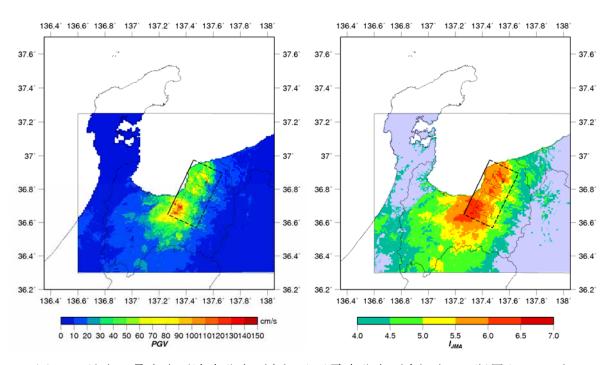


図 25 地表の最大水平速度分布(左)及び震度分布(右)(TB4 断層ケース 2)

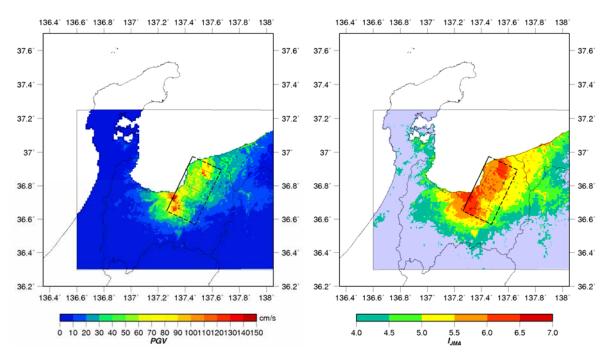


図 26 地表の最大水平速度分布(左)及び震度分布(右)(TB4 断層ケース 3)

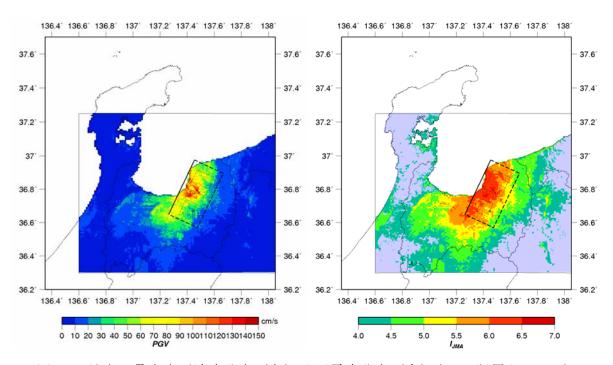


図 27 地表の最大水平速度分布(左)及び震度分布(右)(TB4 断層ケース 4)

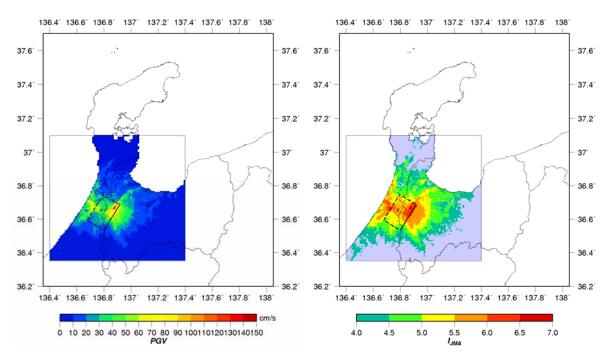


図 28 地表の最大水平速度分布(左)及び震度分布(右)(TM1 断層ケース 1)

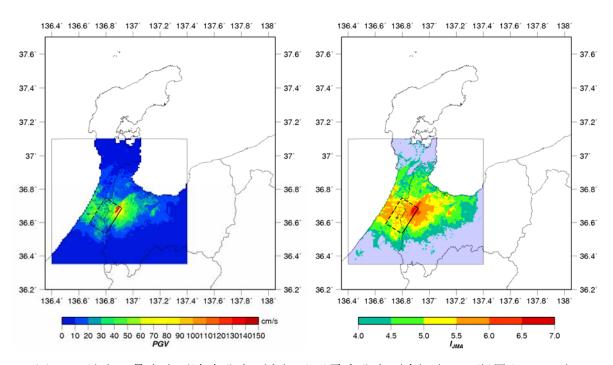


図 29 地表の最大水平速度分布(左)及び震度分布(右)(TM1 断層ケース 2)

(c) 結論ならびに今後の課題

文献調査に基づき、地震基盤までの堆積層の速度構造情報が不足している富山平野を平成 26 年度に引き続いて現地調査対象領域として設定し、新規の微動アレイ観測を 5 地点で実施した。また、平成 26 年度に取得したデータを補強するため、1 地点で追加観測を実施した。微動アレイ観測により得られた上下動微動波形記録に SPAC 法を適用して位相速度を求め、Rayleigh 波基本モードの分散曲線をフィッティングすることにより S 波速度構造を推定した。これにより、表層から地震基盤までの堆積層の速度構造モデルの更新に必要な情報を取得した。平成 25~27 年度の調査を通して、堆積層の S 波速度構造情報が不足していた加賀平野、邑知潟平野、富山平野(新川、射水、砺波平野を含む)については、新たな情報を得ることができた。次年度以降も日本海沿岸地域の堆積平野域で速度構造情報が不足している地域を対象として、微動アレイ探査等による速度構造情報の取得を進め、情報を蓄積していく必要がある。

平成 25 年度に震度情報ネットワークシステムの地震波形記録の提供を受けた石川県及び福井県から、前回の収集以降に発生した地震の地震波形記録を収集した。これら震度計の波形記録収集には、各県庁の担当者にお世話になった。国立研究開発法人防災科学技術研究所の K-NET 及び KiK-net の地震波形記録も継続的に収集した。次年度以降は、北陸地方以外の日本海側の自治体の地震波形記録も拡充していく必要がある。

本業務で収集した地震波形記録を用い、スペクトルインバージョン解析により、各強震観測点でのサイト特性(地震動増幅特性)を推定した。各観測点で得られたサイト特性を、既往の J-SHIS V2 深部地盤モデル及び微動アレイ探査等により得られた速度構造モデルから計算される理論増幅率と比較した。本プロジェクトで行った微動アレイ探査で得られた速度構造モデル等が、よりよく観測サイト特性を再現することがわかり、本プロジェクトの微動アレイ探査結果の有用性と速度構造モデルが高度化されたことを示すことができた。今後はスペクトルインバージョンで推定されたサイト特性や、地震動 R/V スペクトル比(本プロジェクト平成 26 年度報告書)の解析結果を用いて、微動アレイ探査がなされていない観測点も含め、各観測点での速度構造モデルのチューニングを進めていく必要がある。

サブサブテーマ 2.5 で作成された震源断層の矩形モデルに基づいて、特性化震源モデルを作成し、統計的グリーン関数法による強震動予測を実施した。今年度は、富山トラフから富山・砺波平野周辺に位置する 3 つの断層帯 (5 つの矩形断層モデルが含まれる)を対象として、地震シナリオを想定した。特性化震源モデルに基づき、強震動予測を実施し、予測震度分布の情報を得た。次年度も、サブサブテーマ 2.5 から新たに提供される矩形モデルに基づいて、強震動の試算を継続していく。

(d) 引用文献

- 1) 山中浩明,栗田勝美,瀬尾和大,小嶋啓介,佐藤浩章,宮腰 研,赤澤隆士:微動アレイ観測による福井平野のS波速度構造の推定,地震第2輯,Vol.53,No.1,pp.37-43,2000.
- 2) 安井 譲, 野口竜也, KiK-net 永平寺観測地点と K-NET 福井観測地点の地盤速度構造

- の検討,福井工業大学研究紀要,No.35,pp.177-182,2005.
- 3) 安井 譲,森本鉄郎,野口竜也,微動アレイ観測に基づく福井平野の深部地盤速度構造の照査・検討,福井工業大学研究紀要,No.38,pp.199-206,2008.
- 4) 安井 譲,野口竜也,小嶋啓介,香川敬生,白﨑貴也,橋本勇一,中谷英史,堀川晋壱, 鯖江盆地の微動アレイ観測,福井工業大学研究紀要,No.41,pp.208-214,2011.
- 5) 小嶋啓介・野口竜也, 佐藤毅, 黒田貴紀: 常時微動観測に基づく敦賀平野の S 波速度構造の推定, 自然災害科学, No.27, pp.85-96, 2008.
- 6) 神野達夫, 先名重樹, 森川信之, 成田 章, 藤原広行:金沢平野における3次元地下構造モデル, 物理探査, Vol.56, No.5, pp.313-326, 2003.
- 7) 文部科学省研究開発局・国立大学法人東京大学地震研究所:平成25年度科学技術基礎調査等委託事業「日本海地震・津波調査プロジェクト」成果報告書,313p.,2014.
- 8) 山中浩明,元木健太郎,山田伸之,福元俊一,山田悦子,瀬尾和大:2007年能登半島地震の余震観測と微動探査による輪島市門前町の地盤震動特性の評価,物理探査,Vol.61,No.5,pp.385-396,2008.
- 9) 堀川晴央,杉山長志,馮 少孔,徳丸哲義:新潟および奥能登地域における微動アレー探査,平成 21 年度沿岸域の地質・活断層調査研究報告,地質調査総合センター研究速報,No.54,pp.89-93,2010.
- 10) 文部科学省研究開発局・国立大学法人東京大学地震研究所:平成 26 年度科学技術基礎調査等委託事業「日本海地震・津波調査プロジェクト」成果報告書,365p.,2015.
- 11) 産業技術総合研究所地質調査総合センター(編): 20 万分の 1 日本シームレス地質図 2014 年 1 月 14 日版, 2014.
- 12) Aki, K.: Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst., Univ. Tokyo, Vol.35, No.3, pp.415–456, 1957.
- 13) 藤井昭二:富山平野, アーバンクボタ, No.31, pp.38-47, 1992.
- 14) 富山県: 10 万分の 1 富山県地質図説明書, 201p., 1992.
- 15) Yamanaka, H. and Ishida, H.: Application of genetic algorithms to an inversion of surface-wave dispersion data, Bull. Seismol. Soc. Am., Vol.86, No.2, pp.436–444, 1996.
- 16) 藤原広行,河合伸一,青井 真,森川信之,先名重樹,工藤暢章,大井昌弘,はお憲生,早川 譲,遠山信彦,松山尚典,岩本鋼司,鈴木晴彦,劉 瑛:強震動評価のための全国深部地盤構造モデル作成手法の検討,防災科学技術研究所研究資料,No.337,2009.
- 17) 藤原広行,河合伸一,青井 真,森川信之,先名重樹,東 宏樹,大井昌弘,はお憲生,長谷川信介,前田宜浩,岩城麻子,若松加寿江,井元政二郎,奥村俊彦,松山尚典,成田 章:東日本大震災を踏まえた地震ハザード評価の改良に向けた検討,防災科学技術研究所研究資料,No.379,2012.
- 18) Arai, H. and Tokimatsu, K.: S-wave velocity profiling by inversion of microtremor H/V spectrum, Bull. Seism. Soc. Am., 94, pp.53-63, 2004.
- 19) 岩田知孝, 入倉孝次郎:観測された地震波から震源特性, 伝播経路特性及び観測点近

- 傍の地盤特性を分離する試み, 地震第2輯, Vol.39, No.4, pp.579-593, 1986.
- 20) Lawson, C. L. and Hanson R. J.: Solving least squares problems, Prentice-Hall, New Jersey, 340 p., 1974.
- 21) Haskell, N. A.: The dispersion of surface waves on multilayered media, Bull. Seism. Soc. Am., Vol.43, No.1, pp.17–34, 1953.
- 22) 浅野公之,岩田知孝,宮腰 研,大堀道広:微動アレイ観測と単点微動観測による加賀平野南部及び邑知潟平野の堆積平野速度構造モデルの検討,日本地震工学会論文集, Vol.15, No.7, pp.194-204, 2015.
- 23) 川瀬 博, 松尾秀典: K-NET, KiK-net, JMA 震度計観測網による強震動波形を用いた震源・パス・サイト各特性の分離解析, 日本地震工学会論文集, Vol.4, No.1, pp.33–52, 2004.
- 24) 地震調査研究推進本部地震調査委員会:震源断層を特定した地震の強震動予測手法 (「レシピ」),全国地震動予測地図 2009 技術報告書,付録 3,2009.
- 25) Boore, D. M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seism. Soc. Am., Vol.73, No.6A, pp.1865–1894, 1983.
- 26) 入倉孝次郎: 震源のモデル化と強震動予測, 地震第2輯, Vol.46, No.4, pp.495-512, 1994.
- 27) 鶴来雅人・香川敬生・入倉孝次郎: 2007 年新潟県中越沖地震本震観測記録の高域遮断フィルター,日本地球惑星科学連合 2009 年大会予稿集,S152-P002,2009.
- 28) 藤本一雄・翠川三郎:近接観測点ペアの強震記録に基づく地盤増幅度と地盤の平均 S 波速度の関係,日本地震工学会論文集,Vol.6,No.1,pp.11-22,2006.
- 29) 藤本一雄・翠川三郎:近年の強震記録に基づく地震動強さ指標による計測震度推定法, 地域安全学会論文集, No.7, pp.241-246, 2005.
- 30) 司 宏俊・翠川三郎: 断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式,日本建築学会構造系論文集,No.523,pp.63-70,1999.
- 31) Midorikawa, S., Matsuoka, M., and Sakugawa, K.: Site effects on strong-motion records observed during the 1987 Chiba-ken-toho-oki, Japan earthquake, Proc. 9th Japan Earthq. Eng. Sym., Vol.3, pp.85–90, 1994.

(e) 成果の論文発表・口頭発表等

著者	題名	発表先	発表年月日
野口竜也•	微動・重力探査に基づく鳥取県	日本地球惑星科学連合	平成 27 年 5
香川敬生•	鹿野地域における地盤振動特性	2015 年大会	月 25 日
津吉祐典·	の評価と地盤構造の推定(ポス		
小倉康平·	ター発表)		
吉田昌平			
野口竜也·	鳥取平野南部地域における微動	土木学会論文集 A1 (構造・	平成 27 年 9
石田勇介•	探査に基づく地震動評価のため	地震工学), Vol.71, No.4,	月 25 日

香川敬生	の地盤構造モデルの構築	pp.I_943–I_952	
野口竜也•	鳥取県内の地震観測点における	第 35 回土木学会地震工学	平成 27 年
西川隼人•	地盤構造の把握とサイト特性の	研究発表会	10月6日
吉田昌平·	評価 (口頭発表)		
香川敬生			
浅野公之·	微動観測から推定される加賀平	日本地震工学会論文集,	平成 27 年
岩田知孝·	野南部及び邑知潟平野の地下速	Vol.15, No.7, pp.194–204	12月25日
宮腰研・大	度構造		
堀道広			

- (f) 特許出願、ソフトウエア開発、仕様・標準等の策定
 - 1) 特許出願なし
 - ソフトウエア開発 なし
 - 3) 仕様・標準等の策定 なし

(3) 平成28年度業務計画案

平成 27 年度に引き続き、強震動予測に資する地下速度構造モデルの集約情報に基づいて、北陸地方から山陰地方にかけての日本海沿岸地域のうち地下速度構造モデル情報の不足している地域において微動アレイ探査などの地下構造調査を行う。対象地域における地震波形記録の収集を継続し、観測サイトの地盤震動特性を分析する。対象地域における震源断層モデルに基づいて、シナリオ地震想定と強震動予測を行う。