- 3.3.2 強震動予測
- 目 次
- (1) 業務の内容
 - (a) 業務題目
 - (b) 担当者
 - (c) 業務の目的
 - (d) 8 か年の年次実施計画(過去年度は、実施業務の要約)
 - 1) 平成25年度
 - 2) 平成26年度
 - 3) 平成27年度
 - 4) 平成28年度
 - 5) 平成29年度
 - 6) 平成30年度
 - 7) 平成31年度
 - 8) 平成32年度
 - (e) 平成28年度業務目的
- (2) 平成28年度の成果
 - (a) 業務の要約
 - (b) 業務の成果
 - 1) 微動による堆積平野速度構造調査
 - a) 調査の概要
 - b) 微動アレイ観測
 - c) 微動アレイ解析によるS波速度構造の推定
 - d) 単点微動観測
 - 2) 地震波形記録の収集と地震波形記録を用いた地盤増幅率評価
 - 3) 震源断層モデルに基づく強震動予測
 - a) 簡便法による強震動予測
 - b) 詳細法による強震動予測のための震源断層パラメータの設定
 - c) 詳細法による強震動予測手法の概要
 - d) 詳細法による強震動予測結果
 - (c) 結論ならびに今後の課題
 - (d) 引用文献
 - (e) 成果の論文発表・口頭発表等
 - (f) 特許出願、ソフトウエア開発、仕様・標準等の策定
- (3) 平成29年度業務計画案

(a) 業務題目

3.2 強震動予測

(b)	担	当	者

所属機関	役職	氏	名
京都大学防災研究所	教授	岩田	知孝
	准教授	関口	春子
	准教授	浅野	公之
福井大学附属国際原子力工学研究	准教授	大堀	道広
所			
鳥取大学大学院工学研究科	教授	香川	敬生
	助教	野口	竜也
東京工業大学環境・社会理工学院	教授	山中	浩明
	助教	地元	孝輔
東京大学地震研究所	准教授	三宅	弘恵
国立研究開発法人防災科学技術研	部門長	藤原	広行
究所社会防災システム研究部門			
	主任研究員	森川	信之
国立研究開発法人産業技術総合研	主任研究員	堀川	晴央
究所活断層·火山研究部門			

(c) 業務の目的

サブテーマ2で構築された日本海沿岸地域の断層形状モデルに基づいて、強震動予測の ための震源断層モデルに必要なパラメータを検討し、震源モデルの特性化を行う。従来の 速度構造モデルや必要な微動観測などを行い、対象地域の地下速度構造モデルの高度化を 進める。これらの情報を組み合わせて、対象断層帯が活動した場合の強震動予測を行い、 地震動分布の特徴を調べる。

(d) 8か年の年次実施計画(過去年度は、実施業務の要約)

1) 平成25年度:

内陸地震の震源モデル特性化情報を収集した。既往地下速度構造モデル集約情報に基づ き、情報が十分でない石川県の加賀平野南部及び邑知潟平野において、微動アレイ探査及 び単点微動調査を行い、地盤速度構造モデル情報を得た。福井県、石川県の自治体震度計 波形記録の収集を行った。

2) 平成26年度:

内陸被害地震の震源モデルの収集を継続し、強震動生成の観点に立った震源モデル特性

化を継続した。既往地下速度構造モデル集約情報に基づいて、富山平野において微動アレ イ探査を行い、地盤速度構造モデル情報を得た。富山県の自治体震度形波形記録を収集し、 福井、石川、富山県の地震波形を用いた地震波サイト増幅特性評価を開始した。

3) 平成27年度:

平成 26 年度に引き続き、地震基盤までの堆積層の速度構造情報が不足している富山平 野を現地調査対象領域として設定し、新たに微動アレイ探査を行い、地盤速度構造モデル 情報を得た。北陸地方の強震・震度観測点の地震波形記録を収集し、収集集した地震波形 記録を用いて、スペクトルインバージョン法により各強震観測点のサイト増幅特性を推定 し、既存地下構造モデルの検証を行った。サブサブテーマ 2.5 で得られた富山沖及び砺波 平野の震源断層モデルに基づいて、特性化震源モデルを設定し、強震動予測を実施した。

4) 平成28年度:

平成27年度に引き続き、強震動予測に資する地下速度構造モデルの集約情報に基づき、 北陸地方から山陰地方にかけての日本海沿岸地域のうち地下速度構造モデル情報の不足し ている地域のうち、今年度は山陰地方西部の堆積平野を現地調査対象領域として設定し、 微動アレイ探査などの地下構造調査を行った。対象地域における地震波形記録の収集を継 続し、観測サイトの地盤震動特性を分析した。対象地域における震源断層モデルに基づい て、シナリオ地震想定と強震動予測を行った。

5) 平成29年度:

平成 28 年度に引き続き、日本海沿岸地域の強震動予測に資する地下速度構造モデルの 集約を進めるとともに、北海道道南の地下速度構造情報の不足している地域で微動アレイ 観測などの地下構造調査を行う。日本海沿岸の対象地域の地震波形記録の収集を継続し、 観測サイトの地盤震動特性を分析する。平成 28 年度までにサブサブテーマ 2.5 で構築さ れた震源断層モデルに基づいて、シナリオ地震想定と強震動予測を行う。

6) 平成30年度:

対象地域の地震記録の収集、地震記録や微動記録等を用いた地下構造モデルの検証、改 良を継続する。前年度までの検討を踏まえて特性化震源モデルの改訂版を提案する。必要 に応じて、前年度までの強震動予測結果を再検討する。

7) 平成31年度:

対象地域の地震記録の収集、地震記録や微動記録等を用いた地下構造モデルの検証、改 良を継続する。本調査研究サブテーマ2等で得られた震源断層モデルにプロトタイプ特性 化震源モデル、及び更新された地下速度構造モデルを用いて、北海道、東北北部等の日本 海側における強震動予測を実施する。

8) 平成32年度:

地下構造モデルを改訂する。本調査研究サブテーマ 2 等で得られた震源断層モデルに、

強震動予測のための改訂特性化震源モデル、及び更新された地下速度構造モデルを整理して提案する。

(e) 平成28年度業務目的

強震動予測の高度化には、強震動予測のための震源モデル及び地下構造モデルの高度化 が必要である。地下構造モデルは一般には地球物理学的探査を踏まえた情報によって構築 されているが、既往情報の多寡によってそのモデルの性能が決まる。また、強震動予測手 法は、実地震データに基づいて検証を行って、方法の妥当性を確認し、更新していく必要 がある。今年度は、地震基盤までの堆積層の速度構造情報が不足している山陰地方西部の 堆積平野を現地調査対象領域として設定し、微動アレイ探査を行う。北陸地方から山陰地 方の対象地域における地震波形記録の収集を継続し、観測サイトの地盤震動特性を分析す る。対象地域における震源断層モデルに基づいて、シナリオ地震想定と強震動予測を行う。

(2) 平成28年度の成果

(a) 業務の要約

地震基盤までの堆積層の速度構造情報が不足している山陰地方西部の堆積平野を現地 調査対象領域として設定し、微動アレイ観測及び単点微動観測を4地点で実施した。微動 アレイ観測により得られた上下動微動波形記録に SPAC 法を適用して位相速度を求め、 Rayleigh 波基本モードの分散曲線をフィッティングすることにより、S 波速度構造を推定 した。また、対象地域の強震・震度観測点の地震波形記録を収集した。収集した地震波形 記録を用いて、スペクトルインバージョン法により各強震観測点のサイト増幅特性を推定 し、J-SHIS 深部地盤モデル V2 から計算された理論増幅特性と比較し、地下構造モデルの 検証を行った。サブサブテーマ 2.5 で得られた福井沖から鳥取沖にかけての震源断層モデ ルに基づいて、特性化震源モデルを設定し、簡便法及び詳細法による強震動予測を実施し た。

(b) 業務の成果

1) 微動による堆積平野速度構造調査

a)調査の概要

強震動予測を実施するためには、適切な震源モデルに加え、地表から地震基盤までの堆 積層の詳細なS波速度構造モデルが不可欠である。北陸地方から山陰地方にかけての日本 海沿岸地域を対象とした既存の地下速度構造調査に関する文献調査及び日本海地震・津波 調査プロジェクトによる過去年度の成果を踏まえ、平成28年度は山陰地方における堆積 層までの速度構造情報を拡充するため、既往の探査の空白域において、新たに微動アレイ 探査及び単点微動観測を実施した。まず、微動アレイ探査の調査地点の選定のために、山 陰地方における堆積平野の地下速度構造調査に関する文献調査を実施した。このうち、微 動アレイ探査によって地表から基盤までのS波速度構造が推定されている文献¹⁾⁻¹²⁾を表 1に示す。鳥取県の鳥取平野、倉吉平野、米子平野、島根県の松江平野、出雲平野、浜田 平野においては、既往研究によって微動アレイ探査がなされ、速度構造が求められている。 また、九州地方北部の福岡平野及び筑紫平野においては、平成23~25年度警固断層帯(南 東部)における重点的な調査観測 ^{13),14)} で詳細な調査が実施されている。しかし、山陰地 方西部(島根県西部及び山口県の日本海沿岸)においては、地震基盤までのS波速度構造 に関する情報が得られていなかった。このため、島根県西部から山口県にかけての4地点 において、微動アレイ探査及び単点微動観測を実施した。

調査地域	文献	地点数	調査地点
鳥取平野	Noguchi et	8 地点	鳥取市(TTD:鳥取大学、YNG:安長、JHK:鳥
	al. (2002)1)		取城北高校、KAR: 賀露、SHB: 菖蒲、GNT: 源
			太、NIK:二階町、TTA:鳥取空港)
鳥取平野	野口・他	3 地点	鳥取市(GKA:玄好町、KSA:久松小学校、
	(2003) ²⁾		HGA: 庖丁人町)
			+既存調査地点の再解析 13 地点
鳥取平野	野口・他	10 地点	鳥取市(NEJ: 西円通寺、KFA: 袋河原、HKT:
	(2015) ³⁾		曳田、KSK:河原町佐貫、KTS:河原町徳吉、
			WKB: 若葉台)
			八頭郡八頭町(FNK: 船岡、HYB: 隼福、ITN:
			市谷、OTB:大坪)
倉吉平野	野口・他	4 地点	倉吉市(AGI:上井、UNA:上灘、KRC:倉吉市
	(2003) ⁴⁾		役所、KYN: 倉吉西高校)
倉吉平野	野口・他	3 地点	東伯郡湯梨浜町(YRH: 湯梨浜)
	(2012) ⁵⁾		東伯郡北栄町(HKE: 北栄、HSD: 東新田場)
倉吉平野	野口・香川	5 地点	東伯郡湯梨浜町(HAM: 浜、MTY: 光吉、MZS:
	(2014) 6)		水下、NGE:永江、MTZ:松崎)
弓ヶ浜半島	吉川・他	5 地点	境港市(SSH:境水産高校、SID:誠道町付近、
	(2002)7)		AFC: 航空自衛隊美保基地)
			米子市(YGH: 境港消防署弓ヶ浜出張所、YSK:
			米子市役所)
弓ヶ浜半島	坂井・他	3 地点	米子市(TMS:富益、ABE:安倍、YTH:米子工
~米子平野	(2006) 8)		業高)
松江平野	足立・他	2 地点	松江市(KMT: K-NET 松江、PTC: ポリティク
	(2006) 9)		センター島根)
松江平野~	足立・他	4 地点	松江市 (松江)
出雲平野	(2009) 10)		出雲市(出雲、平田、斐川)
出雲平野	足立・他	4 地点	出雲市(IZK: K-NET 出雲、TAS: 大社町、HRS:
	(2007) 11)		斐伊川河川敷、HKS:出東小学校)
浜田平野	野口・他	4 地点	浜田市(浜田高校校庭、浜田駅裏、浜田市役所、
	$(2009)^{12)}$		原井小学校)

表1 山陰地方における微動アレイ探査による地下構造調査に関する既往文献

b) 微動アレイ観測

山陰地方西部の4地点(島根県益田市1地点、山口県萩市1地点、山口県長門市2地 点)において新たな微動アレイ観測を実施した(図1、表2)。これらの地点では、原則と して、既存のK-NETまたは震度計観測点の周辺でアレイを構成した。ただし、益田平野 (益田市)においては、既存の強震観測点(益田市役所震度計、K-NET 益田)が平野端部 に位置しているため、益田平野の速度構造を把握するための微動アレイ(MSDアレイ)は 平野中心部(益田市かもしま西町)で実施し、アレイ観測地点と震度計サイトの表層地盤 構造の違いを把握するため、益田市役所震度計近傍において追加のSアレイ(MCHアレ イ)を実施した。各地点では、最大アレイ半径Rmaxの異なるアレイ観測を複数セット実施 した。本報告ではRmaxの大きい順に、Lアレイ、Sアレイとする。MCHを除く観測では、 大きさの異なる2組の正三角形の頂点3点と重心1点からなる二重正三角形アレイを展開 した(図2、4~6)。なお、道路等の制約により、こういったアレイ形状をとれない地点で は、図(例えば、図2の左)に示すようなアレイ形状を展開した。MCHアレイでは、半 径10mの正三角形アレイを展開した(図3)。現地での観測は2016年11月14日~17日 の昼間に実施した。表2に各アレイ観測の諸元をまとめている。観測開始前には、ハドル テストを行い、地震計間のコヒーレンスが適切であることを確認した。

アレイを構成する各点には、固有周期 5 秒の 3 成分速度型地震計 LE-3D/5s (Lennartz-Electronic 製)を設置し、データ収録装置 LS-8800 (A/D 変換 24bit、白山工業製)により 微動波形を収録した。時刻較正は収録装置毎に GPS 時計により行った。サンプリング周波 数は 100 Hz とした。

図1本年度の微動アレイ観測の実施地点(赤丸)

地点 中心点地名		P	アレイ	アレイ	,中心点	
		u	半径	緯度	経度	観測日時
		イ	(m)	(度)	(度)	
MGD	米田市かれしま画町	S	10, 30	34.69414	131.83235	2016/11/17 11:15-11:45
MSD 益田市小	1111111111111111111111111111111111111	L	110, 220	34.69416	131.83240	2016/11/17 9:45-10:45
MCH	益田市常盤町	S	10	34.67466	131.84351	2016/11/17 12:40-13:10
	恭声江南	S	10, 30	34.40722	131.39887	2016/11/16 11:40-12:10
пад	秋川江門	L	116, 232	34.40632	131.39881	2016/11/16 10:00-11:00
NOT	巨明古古河川	\mathbf{S}	10, 30	34.37418	131.18038	2016/11/14 15:00-15:30
NGI	支门 印泉休川	\mathbf{L}	100, 200	34.37496	131.18132	2016/11/14 13:10-14:20
HEK	長門市日置上	S	10, 30	34.39028	131.10141	2016/11/15 11:35-12:05
	(旧大津郡日置町)	\mathbf{L}	140, 280	34.39030	131.10053	2016/11/15 10:00-11:00

表 2 微動アレイ観測の諸元(緯度経度は世界測地系)

図3 MCHアレイの観測地点 (Sアレイ)

図 4 HAG アレイの観測地点(左:Sアレイ、右:Lアレイ)

図5 NGT アレイの観測地点(左:Nアレイ及びSアレイ、右:Lアレイ)

c) 微動アレイ解析による S 波速度構造の推定

i)Rayleigh 波位相速度の推定

アレイ直下の地下速度構造の情報と密接に関係する表面波の分散性(位相速度-周波数の関係)を検出する。本業務では、空間自己相関法(以下、SPAC法; Aki, 1957)¹⁵⁾を用いて、位相速度を推定した。SPAC法では基本的には円形アレイを展開し、中心点と半径 rの円周上に等間隔に設置した各観測点(今回の観測では正三角形の3つの頂点)の相関 係数を方位平均した空間自己相関係数を求める。このとき、微動が定常確率過程であるという仮定から、空間自己相関係数は

$$\rho(f,r) = J_0\left(\frac{2\pi f}{c(f)}r\right)$$

と表現される。左辺は観測量(ρ :空間自己相関係数)であり、得られた空間自己相関係数 $\rho(f, r)$ は0次のベッセル関数 J_0 となることを意味している。左辺の観測量に対応するベ ッセル関数の変数を見つけることができれば、半径 r における周波数 f での位相速度 c(f)が求まる。

微動アレイ観測で収録した微動の上下動成分を用い、20.48秒間(Sアレイ)または40.96 秒間(Lアレイ)を解析区間の単位として20秒ずつ(Sアレイ)または40秒ずつ(Lアレイ) ずらしながら、時間的、空間的に安定した微動波形が得られている5区間に対し、SPAC法 を適用し、微動中に含まれる表面波(Rayleigh波)位相速度を推定した。この解析を9セッ ト(計45区間)に対して行い、位相速度の平均値と標準偏差を求めた。フーリエスペクト ルを求める際のスムージングの幅は0.2441 Hzとした。

図7に各アレイの平均パワースペクトルの例を示す。Lアレイについては、約1.0 Hz以下の周波数帯域で、アレイを構成する各点の平均パワースペクトルが類似しており、相関のある信号が取得されていることが確認できる。Sアレイについては、MSD、MCH、HAGでは高周波数まで十分なパワーと類似性を持った信号が得られている。図8に各アレイでSPAC法により得られた観測位相速度を丸印で示す。Lアレイ、Sアレイとアレイ種類毎に丸印の色を変えている。黒実線が本調査で得られた最終的な位相速度を表している。

MSD及びHAGについては5Hzまで、連続性のよい位相速度を求めることができたため、 表層から深部地盤までのS波速度構造を拘束できる情報が得られた。MSD、HAGともに5 Hz付近の位相速度は約0.16 km/sであり、この地点における沖積層の存在を示している。 MCHの位相速度は5Hzで約0.11 km/sと求められており、MSDよりも小さな値が得られた。

NGTでは1~5 Hz付近の微動のパワーが極端に弱く、この帯域では位相速度を適切に求めるために十分な相関を持つ信号が得られなかった。また、原因は不明であるが、Lアレイ中心点(NGT-L1)での観測スペクトルは、他の観測点と異なった様相を示し、コヒーレントなものとして取り扱うことはできなかった。このため、Lアレイは0.5~0.8 Hzのみを対象にし、L1を外した組み合わせを用いてSPAC係数を求め、位相速度を推定した。Sアレイによる位相速度は10 Hzでも約0.9 km/sと他の地点に比べ大きな値が得られた。

HEKでは、2~6 Hz付近にかけての微動のパワーが極めて低く、この帯域において位相 速度を適切に求めるために十分な相関を持つ信号は得られなかったため、解析可能な周波 数範囲で位相速度を推定した。

図7 各アレイにおける各観測点の微動の平均パワースペクトルの例。図中の線の色と番 号はアレイを構成する各点の地震計番号に対応する。

図8 各アレイにおける観測位相速度(破線は最小サイズのアレイで空間エイリアジングが生じる限界を示す)。上段左:MSD、上段右:MCH、中段左:HAG、中段右:HEK、 下段左:NGT、下段右:NGT(L1を外したLアレイの解析結果)

ii)S波速度構造モデルの推定

表面波位相速度から S 波速度構造モデルを推定した。パラメータの推定手法としては、 遺伝的アルゴリズム (Genetic Algorithm、以下 GA) による速度構造のモデリング手法 (Yamanaka and Ishida, 1996)¹⁶⁾を用いた。仮定した速度構造モデルから計算される Rayleigh 波基本モードの位相速度と観測位相速度の misfit 関数

$$misfit = \frac{1}{N} \sum_{i}^{N} (O_{i} - C_{i})^{2} \left(\frac{\sigma_{0}}{\sigma_{i} + w_{0}}\right)^{2}$$

ができるだけ小さくなるような速度構造モデルを探索した。ここで、Nはデータの個数、 O_i 、 σ_i 、 C_i はそれぞれ観測位相速度、その標準偏差、理論位相速度、 σ_0 は標準偏差の係数、 w_0 は極端に小さな σ_i の悪影響を防ぐためのパラメータである。実際には、 σ_0 には $\sigma_i + w_0$ の 最大値を、 w_0 には 0.001 (km/s)を与えた。

S 波速度構造モデルの探索に際しては、国立研究開発法人防災科学技術研究所が運営し ている地震ハザードステーション (J-SHIS) で公開されている深部地盤モデル V2¹⁷⁾ (以 下、J-SHIS V2 モデル) を参照し、深部地盤を構成する各層の S 波速度は J-SHIS V2 モ デルで与えられている値に固定して、層厚を探索した。また、 Vs = 0.6 km/s の層の上に、 表層として 1~2 層を追加し、層厚と S 波速度の両方を探索の対象とした。地震基盤(半 無限層)の Vsは 3.1 km/s とした。探索に際し、GA のパラメータとして、1 世代当たりの 個体数を 10、世代数は 5000 世代とし、乱数の初期値を変えて 10 回試行し、misfit 最小 解を最適な速度構造モデルとした。図 9 にそれぞれの観測点での観測位相速度とともに最 適な速度構造モデルによる Rayleigh 波基本モードの位相速度分散曲線、図 10 に推定され た S 波速度構造モデルを示す。misfit が最小の 2 倍までのモデルを図中に赤細線で図示 し、速度構造モデル推定の誤差を定性的に示した。

各観測点ともに推定速度構造モデルによる Rayleigh 波基本モードの位相速度分散曲線 は観測位相速度とよく一致しており、観測位相速度を説明できる地下構造モデルが推定さ れた。比較のため、既存の J-SHIS V2 モデルから観測点直下の一次元速度構造モデル(図 10の緑実線)を抽出し、理論分散曲線を計算したものを図9に緑実線で示した。以下、各 地点での推定結果の概要と J-SHIS V2 モデルとの差異を述べる。

MSD(益田):地震基盤は深さ約0.4 km で、±0.1 km 程度の範囲内で推定されている。 J-SHIS V2 モデルと比べ、地震基盤の深さは類似しているものの、堆積層の速度が全体的 に遅い。これを反映して、位相速度はJ-SHIS V2 による理論位相速度と実際に観測された ものでは大きく異なっている。表層(この地点では沖積層に対応していると考えられる) の Vsは0.17 km/s で、層厚は30 m と推定された。

MCH(益田市役所):益田市役所は益田平野南端に位置する。表層の Vsは 0.12 km/s と かなり遅い速度が得られている。観測位相速度の得られた周波数の下限が約 2 Hz である ため、Vs=0.6 km/sの層の下面深さは十分に拘束できてはいない。国土地理院土地条件調 査解説書「益田・日原地区」¹⁸⁾ 収載のボーリング柱状図よって、益田川に沿って厚さ 20 m 程度の沖積層が分布していることとも調和的である。

HAG(萩):地震基盤の深度の推定精度はあまりよくはないが、得られた解の分布(図 10の赤線)から、少なくとも深さ1km以上である。このことは、実際の地震基盤の深さが、既存の J-SHIS V2 モデルに比べ、明らかに深いことを示している。沖積層(Vs=0.16 km/s 及び 0.20 km/s)の厚さは 32 m と推定された。

NGT(長門):前述のように 0.7~6 Hz の広い帯域で微動のパワー不足により位相速度 が得られていない。高周波数側では、6 Hz でも 1 km/s を超える位相速度が得られ、表層 がかなり薄いことを示している。また、低周波数側では 2.5 km/s を超える位相速度が得ら れている。GAにより得られた速度構造からは、表層は 14 m で、 Vs が 0.44 km/s と、い わゆる沖積層の速度よりはかなり速いことから、表層は沖積層ではないと考えられる。地 震基盤の深度は約 1 km と、J-SHIS V2 モデルよりはやや深い値が得られている。J-SHIS V2 モデルから計算される位相速度よりは、観測されている位相速度が低いことを考えれば、地震基盤が J-SHIS V2 モデルよりも深い値となることは妥当である。

HEK(日置):前述のように 2~6 Hz で微動のパワー不足により位相速度が求められて いない。それ以外の帯域では比較的良好に位相速度が得られているので、これを用いて速 度構造モデルを推定した。表層の厚さは 6 m と求められ、Vs が 0.24 km/s である。地震基 盤の深度は概ね 0.5 km である。J-SHIS V2 モデルと比較すると、全体にやや深い値が得 られている。中間周波数帯域の位相速度情報が抜けていることの速度構造モデル推定結果 への影響は小さいと考えている。

図 9 観測位相速度及び標準偏差(o印)、推定速度構造モデルによる Rayleigh 波基本モードの位相速度分散曲線(最適解:青実線、misfit が最適解の2倍以内のモデル:赤実線)、J-SHIS V2 モデルによる Rayleigh 波基本モード(緑実線)、1次及び2次モード(緑破線)の位相速度分散曲線。

図 10 微動アレイ探査により推定された S 波速度構造モデル(最適解:青実線、misfit が 最適解の2倍以内のモデル:赤実線、J-SHIS V2モデル:緑実線)

d) 単点微動観測

微動アレイ探査を実施した平野において、堆積層の空間分布に関する情報を得るため、 益田平野 15 地点、萩平野 28 地点、仙崎(深川)平野(長門市)14 地点及び長門市日置支 所震度計近傍において単点微動観測を実施した。微動アレイ観測と同様に、3 成分速度型 地震計 LE-3D/5s(Lennartz-Electronic 製)及びデータ収録装置 LS-8800(A/D 変換 24bit、 白山工業製)を用いた。サンプリング周波数は 100 Hz で、約 20 分間連続収録した。

単点微動観測により得られた3成分微動波形記録を用い、H/V スペクトル比を解析した。 単点微動観測で新たに取得したデータの他に、微動アレイ観測時の3成分観測データも併 せて解析した。目視で交通ノイズ等を除外し、微動記録が比較的定常状態にあると判断さ れる40.96秒間の解析区間を10区間抽出した。各区間について、各成分のフーリエスペ クトルを計算し、バンド幅0.293 Hz の Parzen ウィンドウで平滑化した。各成分の10区 間の平均フーリエスペクトルを求め、これらから H/V スペクトル比を

$$\frac{H}{V}(f) = \frac{\sqrt{u_{EW}u_{NS}}}{u_{UD}}$$

により計算した。水平成分は EW 成分と NS 成分の幾何平均で与えた。

単点微動観測の解析により得られた H/V スペクトル比を図 11~14 に示す。得られた H/V スペクトル比のピーク周波数を読み取り、地図上にマッピングした(図 15~18)。

益田平野(図 11、図 15)は、高津川及び益田川の河口部に発達した平野である。基盤岩 は周防変成岩であり、新第三系中新統益田層群が不整合に覆っている。堆積層の層序は下 位から益田層群豊田層、同安田層、鮮新-下部更新統の都野津層、段丘堆積物、沖積層で ある¹⁹⁾。H/V スペクトル比のピーク周波数は河口付近が相対的に低く、平野奥や端部に向 かってピーク周波数が漸増しつつも、やや複雑な分布である。基本的には2つの河川に沿 った谷底状の基盤形状をしていると考えられる。K-NET 益田(M15)は益田層群上に位置 しており、ピーク周波数も3.0 Hz と特に高く、沖積層が存在しないことに対応している。

萩平野(図12、図16)は、阿武川の三角州に発達した平野である。このため微動アレイ 解析結果からも、表層のS波速度は非常に遅い。基盤岩は白亜系の関門層群や阿武層群か らなり、基盤岩を第四系が不整合で覆っていることで、多くの地点で非常にシャープなH/V スペクトル比が得られている。三角州の中心付近のピーク周波数が最も低く(約1.0~1.2 Hz)、平野の縁辺部に向かって緩やかに上昇し、阿武川右岸及び橋本川左岸付近では2.0 Hzを超える。なお、指月山(萩城)では山陽帯の花崗岩が孤立的に露頭している^{19,20)}。

仙崎平野(図 13、図 17)は、深川川の三角州と砂嘴が複合して形成された平野である 20)。基盤である白亜系関門層群や阿武層群の上を第四系の段丘堆積物と沖積層が不整合で 覆っている ^{20,21)}。仙崎砂州付近(N8~N14)では、厚さ約 20 mの沖積層が堆積しており、 H/V スペクトル比のピーク周波数も約 2 Hz である。妙見山・湊付近(NL5)から、長門 市役所(N7)、正明市(N5、N6)にかけてピーク周波数の特に高い地点が連なっており、 ボーリング資料 ²¹⁾から指摘されている基盤の高まりによって、沖積層が極端に薄くなっ ているためと考えられる。深川川左岸は段丘が発達しており、ピーク周波数も 4 Hz 以上 と高い(N1~N3地点)。同市内日置地区の大津平野(図 14、図 18)においては、アレイ 中心地点、日置支所ともに H/V スペクトル比のピーク周波数が高いことから、この地区の 沖積層は極めて薄いと考えられ、微動アレイによる速度構造推定結果とも調和的である。

図 11 益田平野における H/V スペクトル比及びそのピーク周波数(▼印)。赤線は NS/UD、 青線は EW/UD、黒線は H/V を表す。

図 12 萩平野における H/V スペクトル比及びそのピーク周波数 (▼印)。赤線は NS/UD、 青線は EW/UD、黒線は H/V を表す。

図 12 (続き)

図 13 仙崎平野における H/V スペクトル比及びそのピーク周波数(▼印)。赤線は NS/UD、 青線は EW/UD、黒線は H/V を表す。

図 14 大津平野における H/V スペクトル比及びそのピーク周波数(▼印)。赤線は NS/UD、 青線は EW/UD、黒線は H/V を表す。

図 15 益田平野における H/V スペクトル比ピーク周波数の分布

図 16 萩平野における H/V スペクトル比ピーク周波数の分布

図 17 仙崎平野における H/V スペクトル比ピーク周波数の分布

図 18 大津平野における H/V スペクトル比ピーク周波数の分布(K1 が日置支所)

次に、微動アレイで得られた速度構造モデルの検証として、強震観測記録から求められ た増幅率と速度構造モデルによる理論増幅率の比較を行った。ここでは、益田平野と萩平 野における結果を示す。益田平野については、沖積層上の島根県震度計の記録(SMNP31、 益田市役所)を対象とし、中新統益田層群上に位置する K-NET 益田 (SMN013、第3自 由が丘公園)を基準点とした。震度計の記録は島根県から提供を受けて収集した記録(後 述)を使用した。萩平野については、微動アレイ中心点に近い K-NET 萩 (YMG002、萩 市役所)を対象とし、平野外に位置する KiK-net 萩(YMGH14、萩市立白水小学校)を基 準点とした。強震記録の解析は、対象観測点と基準点の双方で記録されているイベント記 録を抽出し、S波到達1秒前から20.48秒間の区間の水平成分のフーリエ振幅スペクトル 比を計算した。水平成分は EW 成分と NS 成分のフーリエ振幅スペクトルのベクトル和で 定義した。SMNP31/SMN013の解析には 2011 年 6 月から 2015 年 7 月の 6 イベント、 YMG002/YMGH14の解析には 2003 年 5 月から 2014 年 11 月の 44 イベントを使用した。 図 19(左)の図面で、黒線が各イベントの観測スペクトル比、赤線が SH 波の重複反射を 仮定し Haskell (1953)²²⁾ の手法により計算した理論増幅率(2E入力に対応するもの)で ある。いずれの地点でも、観測スペクトル比に見られるピークの周波数や増幅率の特徴を よく説明できており、本業務で推定した S 波速度構造モデルが適切であることを示してい る。

図 19 (右) には、MSD と HAG のアレイ中心点における微動 H/V スペクトル比 (黒線) を Arai and Tokimatsu (2004)²³⁾ の手法により計算した理論 H/V スペクトル比 (赤線) と

344

比較したものである。理論 H/V スペクトル比の計算では、微動アレイ探査により得られた 速度構造モデルを与え、Rayleigh 波と Love 波の入力比を 0.7 とし、各々基本モードから 5 次モードまで足し合わせている。観測された微動 H/V スペクトル比の特徴を概ね再現し ているといえる。

 図 19 (左)強震記録のS波部分水平成分のスペクトル比(黒)とSH波重複反射理論による理論増幅率(赤)の比較。(右)アレイ中心点での微動H/Vスペクトル比(黒)と Arai and Tokimatsu (2004)²³⁾の手法による理論H/Vスペクトル比(赤)の比較。

2) 地震波形記録の収集と地震波形記録を用いた地盤増幅率評価

各都道府県では、全国展開されている国立研究開発法人防災科学技術研究所の強震観測 網(K-NET)、基盤強震観測網(KiK-net)、気象庁の計測震度計観測点に加えて、各地方 自治体の震度情報ネットワークシステムによる計測震度計観測点が設置され、震度情報の 発表や防災対応に活用されている。平成 25~27 年度には石川県、福井県及び富山県の震 度情報ネットワークシステムで観測された地震波形記録を収集した。平成 28 年度は微動 観測地点に関係して、島根県震度情報ネットワークの地震波形記録を収集することができ た。今後、山口県の地震波形記録の収集を進める予定としている。

平成27年度には北陸地方3県(福井県、石川県、富山県)の強震記録を用い、スペクト ルインバージョン手法²⁴⁾によって、震源・伝播経路・サイトの各特性を分離し、各観測点 での地震基盤に対する地表でのS波サイト増幅特性(以下、サイト特性)を求めた。観測 点の空間カバレッジを確保するために、岐阜県北部のKiK-net 観測点8地点を加えてい る。国立研究開発法人防災科学技術研究所広帯域地震観測網F-netのSRN(白峰)観測点 (石川県白山市)を、スペクトルインバージョンを行う際の基準観測点とした。

震度波形記録を用いることによる利点は、自治体震度計は各市町村に設置されているこ

とから、人口が比較的多い地点のサイト特性を評価することができるというところである。 これは、K-NET、KiK-net が全国を稠密にカバーするために、空間的に密度がほぼ一定に なるように設置されていることと相補的な関係にあるといえる。震度計は人口密度が高い ところに多く設置されていることから、精度の高い地震ハザード評価が必要な地点の評価 ができる。例として図 20 に福井平野の例を示す。図の中にある■が、この地域の K-NET 及び KiK-net の観測点位置で、4 地点ある。一方□は自治体震度計の観測点で、10 地点あ る。地図には標高レリーフを重ね書いているが、K-NET、KiK-net の観測点は、いずれも がどちらかと言えば福井平野の縁に置かれていることがわかる。

図 21 には、スペクトルインバージョンで求められたサイト増幅特性のうち、図 20 に示 した各観測点の結果を示した。スペクトルインバージョンでは、基準観測点のサイト増幅 特性を、地表面相当と仮定して 2 となる拘束条件下で求めているので、各観測点のサイト 増幅特性にも自由表面の効果の 2 (倍) は含まれている。上の 2 段は、図に示す北西から 南東への A-A'で示される線上の観測点のサイト特性を表し、下の 2 段は、北から南へ の B-B'線上の観測点のサイト特性を示す。

A-A'で見ると、FKIP14から FKIP16 あたりまで、周波数として 0.5 Hz から数 Hz の 範囲に亘り、10~30 倍の増幅率を示している。この周波数帯域は、一般構造物の固有振動 数に対応するため、この周波数帯域での増幅は、地震ハザード評価には重要な要素となる。 これより東の観測点になると、数 Hz 以上には強い増幅があるが、1 Hz を中心とした周期 ではそれほど増幅していないことがわかる。同様の傾向は、B-B'でも見られ、南は FKIP07 あたりまでは 0.5 Hz から数 Hz の範囲で 10 倍以上の増幅率を示す地点が続いて いる。K-NET、KiK-net 観測点だけでは、FKI003 が大きな増幅を示すということしかわ からないため、この地域の増幅特性を検討するには十分なカバレジではないが、自治体震 度計記録を活用することで改善されるといえる。

図 20 福井平野及び周辺の強震観測点。■は K-NET、KiK-net 観測点。□は福井県自治 体震度計観測点。

図 21 図 20 の観測点のスペクトルインバージョンによって得られたサイト増幅特性

3) 震源断層モデルに基づく強震動予測

a) 簡便法による強震動予測

平成27年度のサブサブテーマ2.5で提案された福井沖、若狭湾周辺、丹後半島沖、香住 沖、鳥取沖の震源断層モデルを対象に、簡便法及び詳細法による強震動予測を実施した。 サブサブテーマ2.5からは、福井沖13断層、若狭湾周辺7断層、丹後半島沖3断層、香 住沖1断層、鳥取沖2断層の計26断層の矩形モデルのパラメータが提供された(図22)。 まず、これらの断層について連動を考慮した組み合わせ計8ケース(図22の矩形モデル のうち青色で着色したもの)を設定し、簡便法(地震動予測式を用いた強震動予測手法) による強震動の試算を行った。断層長さの短い断層(図22の矩形モデルのうち黒色で着 色したもの)については、陸域の強震動への寄与が小さいと予想されるため、今回の検討 対象から外した。

サブサブテーマ 2.5 から提供された断層モデルパラメータ(基準点座標、上端深さ、走向、傾斜、すべり角、断層長さ、断層幅)をもとに、断層面積を求めた。入倉・三宅(2001)²⁵⁾の関係式を用い、断層面積から地震モーメント及びモーメントマグニチュードを得た。各ケースの断層パラメータを表3にまとめた。モーメントマグニチュードは最も小さい KS1が6.4、最も大きい TR1+TR2 が7.4 となっている。司・翠川(1999)²⁶⁾の地震動予測式を用い、断層最短距離とモーメントマグニチュードから工学的基盤での最大速度(PGV)を求めた。次に、藤本・翠川(2006)²⁷⁾による PGV 増幅率と AVS30の関係の経験式を J-SHIS表層地盤データ V3^{28·30)}の AVS30に適用し、工学的基盤から地表までの PGV 増幅率を求めた。得られた増幅率を用い、工学的基盤の PGV を地表の PGV に変換した。最後に、藤本・翠川(2005)³¹⁾の PGV と計測震度の関係の経験式を用いて、地表での震度を計算した。各ケースの震度分布を図 23~30 に示す。震度は計測震度に対応する気象庁震度階に応じて色分けした。計測震度 4.5 以上 4.9 以下が震度 5 弱、計測震度 5.0 以上 5.4 以下が震度 5 強、計測震度 5.5 以上 5.9 以下が震度 6 弱、計測震度 6.0 以上 6.4 以下が震度 6 強、計測震度 6.5 以上が震度 7 である。また、計測震度 4.0 未満の領域は着色していない。

FU1+FU2+FU3 断層(図 23)は、越前碓列(マツダシ~ゲンタツ瀬)の東縁に位置する北西側隆起の逆断層であり、国土交通省の日本海における大規模地震に関する調査検討会(日本海検討会)³²⁾による F51 断層に相当するとサブサブテーマ 2.5 で解釈されている。震源断層が沖合に存在するため、陸域での最大震度は6弱であり、主として福井平野及び加賀平野南部に震度6弱が分布している。このため、今年度の詳細法の検討対象とはしなかった。

FU4+FU5+FU6+FU7+FU8 断層(図 24)は、柳ヶ瀬・関ヶ原断層帯主部/北部の一部 とその北方延長(杉山・他,2003³³)に対応し、沖合延長部の安島岬北西沖区間(FU4)、 福井港沖区間(FU5+FU6)、主部/北部の鮎川断層群(越前海岸北部区間)(FU7)及び FU7 から沖合に向かって分岐した断層(FU8)の連動を想定したケースである。なお、日本海 検討会の F52 断層北部に相当する。福井平野のほぼ全域が震度 6 強以上となり、福井県坂 井市及び福井市の一部では震度 7 と予測されたため、詳細法による検討を実施することと した。なお、柳ヶ瀬・関ヶ原断層帯主部/北部及び日本海検討会 F52 断層は、越前岬付近 から越前海岸に沿って甲楽城断層及び山中断層へ続いているが、これら甲楽城-山中断層 は日本海地震・津波調査プロジェクトの調査対象外とされているため、今回の計算には含 めていない。柳ヶ瀬・関ヶ原断層帯主部/北部全体が活動した場合(日本海検討会の F52 断層全体の活動に対応する)は、陸域の断層長さ及び全体の地震規模が今回の想定よりも 大きくなるため、福井県内で高震度域がより広くなる可能性があることに注意する必要が ある。

FU13+WS1+WS2+WS6 断層(図 25)及び FU13+WS1+WS4+WS5+TG1 断層(図 26) は福井沖から若狭湾周辺、丹後半島沖にかけての逆断層や横ずれ断層をとりまとめたもの である。断層の分布が複雑であるため、どの断層が連動するかを判断することは難しい。 このため、津波予測(サブサブテーマ 3.1)と同様、複数の組み合わせを検討した。図 25、 26 いずれのケースにおいても、福井平野内で震度 6 弱であるほか、越前海岸及び丹後半島 の沿岸部付近のごく一部で震度 6 弱となってはいるが、概ねの領域で震度 5 強から 5 弱程 度の予測となった。このため、今年度の詳細法の検討対象とはしなかった。

WS7 断層(図 27)は、日本海検討会の F53 断層の海域部に相当する横ずれ断層である。 日本海検討会の F53 断層は、陸域の福井県小浜市を走る熊川断層を含む全長約 60 km の 断層(Mw7.2)が想定されているが、本プロジェクトの調査対象外である熊川断層を含め ず、平成 27 年度にサブサブテーマ 2.5.1「断層モデルの構築」によって得られた海域部の 約 32 km の区間(Mw6.7)についての活動を想定した強震動の検討を行った。若狭湾沿岸 の小浜平野などの海岸平野で震度 6 弱が予測されており、震源断層の破壊様式によっては、 より強い地震動となる可能性があることから、詳細法による検討を実施した。

TG3 断層(図 28)は、日本海検討会の F54 断層に相当するが、サブサブテーマ 2.5 に よって矩形モデルが改訂されている。平成 23 年度沿岸海域における活断層調査の成果を とりまとめた阿部・他(2012)³⁴⁾では、郷村断層帯の海域延長部に対応するとの指摘がなさ れており、日本海検討会の F54 断層は京都府京丹後市の郷村断層も含む全長約 58 km の 断層(Mw7.2)としてモデル化されているが、WS7と同様、平成 27 年度にサブサブテー マ 2.5.1「断層モデルの構築」によって得られた海域部の約 45 km の区間(Mw6.9) につ いてのみの活動を想定した強震動の検討を行った。丹後半島西岸の平野部(京都府京丹後 市の久美浜町、網野町から丹後町にかけての領域)及び兵庫県の豊岡盆地の一部において 震度 6 弱から 6 強の揺れが予測されたため、詳細法による検討を実施した。

KS1 断層(図 29)は鳥取沖から香住沖にかけて広がる海底堆積盆地の東縁に存在する西 側低下の断層である。簡便法により予測された震度は最大で5強であった。このため、今 年度の詳細法の検討対象とはしなかった。

TR1+TR2 断層(図 30)は鳥取沖に東西方向に走向を持つ断層であり、日本海検討会の F55 断層が、サブサブテーマ 2.5 によって精緻化されたものである。鳥取県西部の弓ヶ浜 半島から倉吉平野、鳥取平野にかけての広い領域で震度6強の予測となったほか、島根県 の松江平野から兵庫県北部にかけて震度6弱が分布している。本断層は海岸に平行方向(ほ ぼ東西方向)に長大な断層であることから、破壊様式による震度分布の違いを把握するた め、詳細法による検討を実施することとした。

以上の結果を踏まえ、FU4+FU5+FU6+FU7+FU8 断層、WS7 断層、TG3 断層、TR1+TR2 断層の4 ケースを詳細法による強震動予測の検討対象に選定した。

図 22 強震動予測の検討対象とした福井沖~鳥取沖の矩形断層モデル (青:強震動評価の検討対象とした断層、黒:検討対象外の短い断層)

断層名	始点緯度 (度)	始点経度 (度)	上端深さ (km, TP-)	走向 (度)	傾斜 (度)	すべり角 (度)	長さ (km)	幅 (km)	面積 (km ²)	地震モーメント (Nm)	Mw
1112	36.4325	136.0845	1.2	224	50	156	6.7	18.0		4.04E+19	
FU1+FU2+FU3	36.3884	136.0039	1.2	217	50	150	21.1	18.0	852.5		7.0
	36.2852	135.8403	1.2	224	55	158	20.9	16.8			
	36.2794	135.9904	1.1	356	60	54	7.5	16.1			
	36.2052	136.0243	1.1	333	60	31	7.7	16.1		845579868-0-1122-FOT	
FU4+FU5+FU6+FU7+FU8	36.1481	136.0520	1.1	357	70	53	10.2	14.8	1038.8	6.00E+19	7.1
	35.9393	135.9253	1.1	27	45	107	25.2	19.7			
	35.9672	135.9297	1.1	13	30	64	15	50.9			
WS7	35.5564	135.6772	0.2	318	90	5	31.8	14.8	470.6	1.23E+19	6.7
	36.1005	135.8946	0.3	253	70	175	8.5	15.6	878.6	4.29E+19	7.0
E1112+WS1+WS2+WS6	36.0401	135.8245	0.3	248	60	180	16.0	17.0			
F013+W31+W32+W30	35.9755	135.7944	1.0	256	60	-176	17.7	16.2			
	35.9378	135.5605	1.0	252	50	173	10.3	18.3			
	36.1005	135.8946	0.3	253	70	175	8.5	15.6			
	36.0401	135.8245	0.3	248	60	180	16.0	17.0		1.000 (200 (00 (00 (00 (00 (00 (00 (00 (00	
1	36.0094	135.6164	0.3	255	90	178	9.9	14.9	989.6	5.45E+19	7.1
1	36.0178	135.5151	0.3	267	90	174	9.9	14.7			
	35.9829	135.4028	0.6	224	60	152	17.6	16.6			
TG3	35.7553	135.0337	0.3	326	90	9	44.7	14.7	656.7	2.40E+19	6.9
KS1	35.9480	134.4569	0.3	154	65	9	20.0	16.2	324.0	5.54E+18	6.4
TD1+TD2	35.7537	134.4185	0.3	270	60	-147	25.3	17.0	1657.4	1 255+20	74
TRI+TR2	35,7344	134,1143	0.2	257	60	-166	66.0	17.1	1557.4	+ 1.35E+20	1.4

表3 簡便法による強震動予測のための断層パラメータ

図 23 簡便法による地表の震度分布 (FU1+FU2+FU3 断層)

図 24 簡便法による地表の震度分布(FU4+FU5+FU6+FU7+FU8 断層)

図 25 簡便法による地表の震度分布 (FU13+WS1+WS2+WS6 断層)

図 26 簡便法による地表の震度分布(FU13+WS1+WS4+WS5+TG1 断層)

図 27 簡便法による地表の震度分布(WS7 断層)

図 28 簡便法による地表の震度分布 (TG3 断層)

図 29 簡便法による地表の震度分布(KS1 断層)

図 30 簡便法による地表の震度分布 (TR1+TR2 断層)

b) 詳細法による強震動予測のための震源断層パラメータの設定

簡便法による強震動予測結果に基づき、FU4+FU5+FU6+FU7+FU8 断層、WS7 断層、 TG3 断層、TR1+TR2 断層の4ケースを対象に強震動予測を実施した。統計的グリーン関 数法による波形合成を行い、地表面での最大速度及び震度分布を推定した。簡便法と同様 に、矩形断層の位置、形状については、サブサブテーマ 2.5 の成果(本プロジェクト平成 27 年度成果報告書)に従った。サブサブテーマ 2.5 から提供されるのは矩形断層モデルで あるため、これを地震調査研究推進本部の「震源断層を特定した地震の強震動予測手法(レ シピ)」³⁵⁾を参考に、強震動生成域(アスペリティ)及び背景領域のパラメータ設定を行 った。それぞれに対して、破壊開始点の異なる2種類のシナリオを想定した。したがって、 詳細法の計算ケース数は8である。表4~7 に各断層で設定したパラメータの一覧をまと めた。設定した震源モデルの模式図を図 31 に示す。

柳ヶ瀬・関ヶ原断層帯主部/北部の FU4+FU5+FU6+FU7+FU8 断層に対しては、FU4、 FU5、FU6 に各 1 つの強震動生成域、FU7 には 2 つの強震動生成域を設定した。分岐断 層である FU8 はセグメント断層サイズが小さいため、強震動生成域を配置しなかった。 FU7 の南側の強震動生成域下端中央から破壊するケースと FU4 の強震動生成域下端中央 から破壊するケースの 2 つのシナリオを想定した。

若狭湾のWS7断層に対しては、2つの強震動生成域を配置し、南側の強震動生成域からの破壊開始と北側の強震動生成域からの破壊開始の2つのシナリオを想定した。丹後半島 沖のTG3断層についても同様に、2つの強震動生成域を配置し、破壊開始点位置の異なる 2つのシナリオを想定した。

TR1+TR2(鳥取沖断層)については、東部のTR1断層に1つの強震動生成域、西部のTR2断層に3つの強震動生成域を配置した。TR2断層の最も西の強震動生成域北西端から破壊するケースとTR1断層の強震動生成域北東端から破壊するケースの2種類のシナリオを想定した。

ここでの震源断層パラメータ設定は、強震動の試算を目的としているため、サブサブテ ーマ 2.5 から提供された震源断層の矩形モデルのうち地震基盤よりも上にある部分(図 20 のグレーの部分)については、地震発生層の外であるとして、特性化震源モデルの背景領 域として含めなかった。この点は、津波予測のための震源モデルとは異なるモデル化とな っている。

(a) FU4+FU5+FU6+FU7+FU8 断層 ケース 1

図 31 設定した震源モデルの模式図

(b) FU4+FU5+FU6+FU7+FU8 断層 ケース 2

表 4 FU4+FU5+FU6+FU7+FU8 断層の震源断層パラメータ

13-1-h	\$3. P .			設定	定値			115 1-4	抗会相關
/////-3	龍方	FU8	F	U7	FU6	FU5	FU4	单位	設定依拠
基準点緯度(世界測地系)		35.9672	35.9	393	36.1481	36.2052	36.2794	度	平成27年度成果報告書
基準点経度(世界測地系)		135.9297	135.	9253	136.0520	136.0243	135.9904	度	平成27年度成果報告書
基準点深さ		1.1	1.	.1	1.1	1.1	1.1	km	平成27年度成果報告書
走向角		13	2	7	357	333	356	度	平成27年度成果報告書
傾斜角		30	4	5	70	60	60	度	平成27年度成果報告書
すべり角		64	10)7	53	31	54	度	平成27年度成果報告書
断層長さ(走向方向)	Li	17	2	5	10	8	8	km	平成27年度成果報告書
(全体)断層長さ(走向方向)	L			6	8			km	$L = \Sigma L_i$
地震発生層上端深さ	H_{s}	1.1	1.	.1	1.1	1.1	1.1	km	平成27年度成果報告書
地震発生層下端深さ	H _d	7.1	15	.2	15.2	15.0	15.0	km	平成27年度成果報告書
地震発生層の厚さ	T _s	6.0	14	k1	14.1	13.9	13.9	km	$T_s = H_d - H_s$
断層幅(傾斜方向)	W,	12	2	0	15	16	16	km	平成27年度成果報告書
断層面積	S,	146	50	00	150	128	128	km ²	$S_i = L_i \times W_i$
(全体)断層面積	S			10	52			km ²	$S = \Sigma S_i$
(全体)地震モーメント	<i>M</i> ₀			6.16	E+19			Nm	$(S/(4.24 \times 10^{-11}))^2 \times 10^{-7}$
(全体)モー かんマグニチュード	M			7	1				$(\log_{10}M_0 - 9.1) / 1.5$
(全体)断層全体の平均すべり量	w			1	.8			m	(Hanks and Kanamori, 1979) $D = M \alpha / \mu S$
地震モーメント	Ma	6.14E+18	3.89	E+19	6.40E+18	5.04E+18	5.04E+18	km	$M_{01} = (S_1^{3/2} / \Sigma S_2^{3/2})M_0$
断層全体の静的応力降下量	Δσ	3.1	3.	1	3.1	3.1	3.1	MPa	Fujii and Matsu'ura (2000)
断層全体の平均すべり量	Di	1.3	2	.4	1.3	1.2	1.2	m	$D = M_0 / \mu S$
小断層長さ(走向方向)	dL			1.	.0			km	本業務で設定
小断層幅(傾斜方向)	dW			1.	.0			km	本業務で設定
アスペリティ総面積の等価半径	R.,		5.	9	3.2	3.0	3.0	km	$R_{s} = (S_{s} / \pi)^{1/2}$
アスペリティの総面積	<i>S</i> .		11	0.0	33.0	28.2	28.2	km ²	$S_{*} = 0.22S_{*}$
アスペリティの総面積(計算用)	<i>S</i> '.		10	6.0	36.0	25.0	25.0	km ²	本業務で設定
アスペリティの平均すべり量	D.		4	9	27	2.5	2.5	m	$D_a = 2.0 D_i$
アスペリティの総地震モーメント	M _{0a}		1.71	E+19	2.81E+18	2.22E+18	2.22E+18	Nm	(Somerville et al., 1999; 石井・他, 2001) $M_{0s} = \mu D_s S_s$
アスペリティ面積/断層面積比	5./5		0.1	22	0.22	0.22	0.22		
アスペリティの実効応力	$\Delta \sigma_{a}$		14		14.1	14.1	14.1	MPa	$\Delta \sigma_{\mathbf{a}} = (S_{1}/S_{\mathbf{a}}) \Delta \sigma$
各アスペリティの番号			Asp.2-1	Asp.2-2	Asp.3	Asp.4	Asp.5		(Madanaga, 1979)
各アスペリティ面積の等価半径	R ai		5.0	3.1	3.2	3.0	3.0	km	入倉・三宅(2001)に従い、面積比を16:6とする
各アスペリティの等価半径の比率	71		0.85	0.52	1.00	1.00	1.00		$\gamma_i = R_{ai} / R_a$
各アスペリティの面積	S at.		80.0	30.0	33.0	28.2	28.2	km ²	$S_{ni} = \pi R_{ni}^2$
各アスペリティの面積(計算用)	S' al		81.0	25.0	36.0	25.0	25.0	km ²	$L'_{\mathbf{a}} \times W'_{\mathbf{a}}$
各アスペリティの平均すべり量	Dai		5.5	3.4	2.7	2.5	2.5	m	$D_{at} = (\gamma_t / \Sigma \gamma_t^3) D_a$
各アスペリティの地震モーメント	M _{0M}		1.39E+19	3.20E+18	2.81E+18	2.22E+18	2.22E+18	Nm	$M_{0ai} = \mu D_{ai} S_{ai}$
各アスペリティの短周期レベル	A		1.03E+19	6.33E+18	6.63E+18	6.13E+18	6.13E+18	Nm/s ²	$A_{i} = 4\pi R_{ai} \Delta \sigma_{a\beta} \beta^{2}$
各アスペリティの実効応力	σ		14.1	14.1	14.1	14.1	14.1	MPa	(Boatwight, 1984; 道・他, 2001) Δσ_aに等しいと仮定
各アスペリティの長さ(走向方向)(計算用)	$-L'_{a}$		9.0	5.0	6.0	5.0	5.0	km	本業務で設定
各アスペリティの幅(傾斜方向)(計算用)	W a		9.0	5.0	6.0	5.0	5.0	km	本業務で設定
各アスペリティのライズタイム	Tr _a		1.8	1.0	1.2	1.0	1.0	\$	$Tr_a = 0.5W'_a / V_r$
背景領域の総地震モーメント	M _{0b}	6.14E+18	2.18	E+19	3.58E+18	2.82E+18	2.82E+18	Nm	$M_{0b} = M_{0t} - M_{0a}$
背景領域の総面積	S _b	146.0	39	0.0	117.0	99.8	99.8	$\rm km^2$	$S_b = S - S_a$
背景領域の総面積(計算用)	S' b	146.0	39	4.0	114.0	103.0	103.0	km ²	本業務で設定
背景領域の平均すべり量	Db	1.3	1.8		1.0	0.9	0.9	m	$D_{b} = M_{0b} / \mu S_{b}$
背景領域の実効応力	σ_b	2.0	2.0		2.0	1.6	1.6	MPa	$\sigma_{b} = (D_{b} / W) \times (\pi^{12} / D_{a}) \times r \times \Sigma \gamma^{3} \times \sigma_{a}$
各背景領域のライズタイム	Trb	4.1	4.	.1	3.1	3.3	3.3	5	$Tr_{b} = 0.5W / V_{r}$ (Day, 1982)
S波速度	β	3.4	3.	4	3.4	3.4	3.4	km/s	J-SHIS 深部地盤モデルV2
密度	0	2.75	2.	75	2.75	2.75	2.75	g/cm ³	J-SHIS 深部地盤モデルV2
副性率	u	31.8	31	.8	31.8	31.8	31.8	GPa	$\mu = \alpha \beta^2$
破壊伝播速度	V.	2.4	2	4	2.4	2.4	2.4	km/s	$V_{\rm T} = 0.72\beta$
破壊様式		同心円破壊	同心日	円破壊	同心円破壊	同心円破壊	同心円破壊		(Geller, 1976) 本業務で設定
高周波数遮断フィルター	f max			6	.1			Hz	佐藤 (2002)
フィルター形状				1/(1+(f/	(6.1) ^{1.2}) ^{1/2}				佐藤 (2002)

表 5 WS7 断層の震源断層パラメータ

パラメータ	記号	設定	定値	単位	設定根拠
基準点緯度(世界測地系)		35.5	564	度	平成27年度成果報告書をもとに本業務で設定
基準占経度(世界測地系)		135.6	6772	度	平成27年度成果報告書をもとに本業務で設定
主進占認さ		1	2	km	正成97年度成里報生またよりに木業務で設定
金牛点床で		21	10	r#F	〒成21千反成木和白首としてに本未防で取足
上 印 月	-	3	0	皮庇	平成27年度成未報百香
[頃料]月		9	0	度	平成27年度成朱報告書
すべり角		t)	度	平成27年度成果報告書
断層長さ(走向方向)	L	3	2	km	平成27年度成果報告書
地震発生層上端深さ	H_{s}	1.	2	km	平成27年度成果報告書をもとに本業務で設定
地震発生層下端深さ	$H_{\rm d}$	15	.2	km	平成27年度成果報告書をもとに本業務で設定
地震発生層の厚さ	Ts	14	.0	km	$T_{\rm s} = H_{\rm d} - H_{\rm s}$
断層幅(傾斜方向)	W	1	4	km	平成27年度成果報告書をもとに本業務で設定
断層面積	S	44	18	km ²	$S = L \times W$
きょうちょう	М.	1 12	E+10	Nm	$(S/(4.24 \times 10^{-11}))^2 \times 10^{-7}$
	112.0	1.12	L.10	1 Min	(Irikura and Miyake, 2011)
モーメントマグニチュード	$M_{\rm w}$	6.	.6		$(\log_{10}M_0 - 9.1) / 1.5$
断層面積に対する等価半径	R	11	.9	km	$R = (S_{\star} / \pi)^{1/2}$
					$(7/16) \times (M_{c}/R^{3})$
断層全体の静的応力降下量	$\Delta \sigma$	2.	9	MPa	$(F_{10}) = (10, 0, 10, 10, 10, 10, 10, 10, 10, 10, 1$
断層全体の平均すべり量	D	0.	8	m	$D = M_0 / \mu S$
な田田でし	121	1.10	E. 10	NT / 2	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$
辺同期レベル	А	1.10	E+19	Nm/s ⁻	(壇・他, 2001)
小断層長さ(走向方向)	dL	1.	.0	km	本業務で設定
小断層幅(傾斜方向)	dW	1.	.0	km	本業務で設定
	n	-	0	4400	$R_{a} = (7\pi/4) \times \{M_{0}/(AR)\} \times \beta^{2}$
アスヘリティ総面積の寺価半径	K _a	5.0		km	(Boatwright, 1984; 壇·他, 2001)
アスペリティの総面積	Sa	79.0		km ²	$S_{a} = \pi R_{a}^{2}$
アスペリティの総面積(計算用)	S'	74	.0	km ²	本業務で設定
			-		$D_{a} = 2.0D$
アスペリティの平均すべり量	D _a	1.	.6	m	(Somerville et al., 1999; 石井·他, 2001)
アスペリティの総地震モーメント	M _{0a}	3.94	E+18	Nm	$M_{0a} = \mu D_a S_a$
アスペリティ面積/断層面積比	S_a/S	0.1	18		
アスペリティの実効応力	$\Delta \sigma$	16	3	MPa	$\Delta \sigma_{\rm a} = (S/S_{\rm a}) \Delta \sigma$
	a				(Madariaga, 1979)
各アスペリティの番号		Asp.1	Asp.2		
各アスペリティ面積の等価半径	R _{ai}	4.3	2.6	km	入倉・三宅(2001)に従い、面積比を16:6とする
各アスペリティの等価半径の比率	71	0.85	0.52		$\gamma_i = R_{ai} / R_a$
各アスペリティの面積	S _{aí.}	57.5	21.6	km ²	$S_{ai} = \pi R_{ai}^2$
各アスペリティの面積(計算用)	S' ai	49.0	25.0	km ²	$L'_{a} \times W'_{a}$
各アスペリティの平均すべり量	D_{ai}	1.8	1.1	m	$D_{ai} = (\gamma_i / \Sigma \gamma_i^3) D_a$
各アスペリティの地震モーメント	M _{0ai}	3.20E+18	7.36E+17	Nm	$M_{0ai} = \mu D_{ai} S_{ai}$
冬マスペリティの短周期レベル	4	1.015+10	6 10E+19	NIm /2	$A_{i} = 4\pi R_{ai} \Delta \sigma_{a} \beta^{2}$
日ノハハリノの短周期レベル	<i>A</i> ₁	1.012+13	0.192+10	INM/S	(Boatwright, 1984; 壇・他, 2001)
各アスペリティの実効応力	$\sigma_{\mathrm{a}i.}$	16.3	16.3	MPa	Δσαに等しいと仮定
各アスペリティの長さ(走向方向)(計算用)	L'a	7.0	5.0	km	本業務で設定
各アスペリティの幅(傾斜方向)(計算用)	W'a	7.0	5.0	km	本業務で設定
各アスペリティのライズタイム	Tr _a	1.4	1.0	s	$Tr_{a} = 0.5W'_{a}/V_{r}$
背景領域の総地震モーメント	M_{0b}	7.22	E+18	Nm	$M_{0b} = M_0 - M_{0a}$
背景領域の総面積	S _b	36	9.0	km ²	$S_{\rm b} = S - S_{\rm a}$
背景領域の総面積(計算用)	S'b	374	4.0	km ²	本業務で設定
背景領域の平均すべり量	$D_{\rm h}$	0.6		m	$D_{\rm h} = M_{\rm 0h} / \mu S_{\rm h}$
背景領域の実効応力	$\sigma_{\rm h}$	3.1		MPa	$\sigma_{\rm b} = (D_{\rm b}/W) \times (\pi^{1/2}/D_{\rm a}) \times r \times \Sigma y^3 \times \sigma_{\rm a}$
冬背星領域のライズタイル	Tr.	0.1			$Tr_{\rm b} = 0.5W / V_{\rm r}$
古日東限へのノイスライム	116	2.9		3	(Day, 1982)
S波速度	β	3.	.4	km/s	J-SHIS 深部地盤モデルV2
密度	ρ	2.7	75	g/cm ³	J-SHIS 深部地盤モデルV2
圖性率	μ	31	.8	GPa	$\mu = \rho \beta^2$
破壊伝播速度	V_r	2.	.4	km/s	$V_{\rm r} = 0.72\beta$
		BAC	미 또한 부총		(Geller, 1976)
吸塔惊式	6	비까	加坡域	11	今来務で取足
高周波致遮断フィルター	J max	6.	.10.1/0	Hz	(2002)
フィルター形状		1/(1+(f/	$(6.1)^{1.2})^{1/2}$		佐藤 (2002)

表 6 TG3 断層の震源断層パラメータ

パラメータ	記号	設定	定値	単位	設定根拠
基準点緯度(世界測地系)		35.7	553	度	平成27年度成果報告書をもとに本業務で設定
基準点経度(世界測地系)		135.0	0337	度	平成27年度成果報告書をもとに本業務で設定
其進占深さ		1	3	km	平成27年度成果報告書をもとに本業務で設定
土向角		226		IF	亚成97年度成里想生素
——————————————————————————————————————		0	0	度	正成97年度成末報百音
「原料円 すべり色		3	0)	度	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	7		5	授	平成27年度成未報百香
町暦長さ(正回方回)		4	5	km	平成27年度成朱報吉書
地震発生層上端深さ	H _s	1.	3	km	平成27年度成果報告書をもとに本業務で設定
地震発生層ト端深さ	H _d	15	0.3	km	平成27年度成果報告書をもとに本業務で設定
地震発生層の厚さ	I _s	14	.0	km	$I_s = H_d - H_s$
断層幅(傾斜方向)	W	1	4	km	平成27年度成果報告書をもとに本業務で設定
断層面積	S	63	30	km ²	$S = L \times W$
地震モーメント	M_0	2.21	E+19	Nm	$(S/(4.24 \times 10^{-11}))^2 \times 10^{-7}$
	3.92			-	$(\log_{10}M_0 - 9.1)/1.5$
モーメントマグニチュード	$M_{\rm w}$	6.	.8		(Hanks and Kanamori, 1979)
断層面積に対する等価半径	R	14	.2	km	$R = \left(S_{i} / \pi\right)^{1/2}$
断層全体の静的応力降下量	Δσ	3.	.4	MPa	$(7/16) \times (M_0/R^3)$
新國会はの平均さぶり号	D		1		$D = M / \mu S$
町間主体の平均すべり重	D		.1	m	$D = M_0 / \mu S$
短周期レベル	A	1.49	E+19	Nm/s ²	$A = 2.46 \times 10^{-7} \times (M_0 \times 10^{-7})^{-7}$ (19) • (11) (12) (12) (13)
小断層長さ(走向方向)	dL	1	.0	km	本業務で設定
小断層幅(傾斜方向)	dW	1	0	km	本業務で設定
					$R_{a} = (7\pi/4) \times \{M_{a}/(AR)\} \times B^{2}$
アスペリティ総面積の等価半径	R _a	6.7		km	(Boatwright, 1984; 壇・他, 2001)
アスペリティの総面積	S _a	139.5		km ²	$S_a = \pi R_a^2$
アスペリティの総面積(計算用)	S'a	13	6.0	km ²	本業務で設定
	D		0		$D_{\rm a} = 2.0D$
アスへりティの平均すへり量	Da	2.	2	m	(Somerville et al., 1999; 石井·他, 2001)
アスペリティの総地震モーメント	M _{0a}	9.78	E+18	Nm	$M_{0a} = \mu D_a S_a$
アスペリティ面積/断層面積比	S_a/S	0.3	22		
アスペリティの実効応力	$\Delta \sigma_{\rm a}$	15	5.4	MPa	$\Delta \sigma_{a} = (S/S_{a}) \Delta \sigma$ (Madariaga 1979)
各アスペリティの番号		Asp 1	Asp 2		(1410011020, 1917)
各アスペリティ面積の等価半径	R	57	35	km	入倉・三字(2001)に従い 面積比を16・6とする
各アスペリティの等価半径の比率	2 - M	0.85	0.52		$y_1 = R_{11}/R_{12}$
タアスペリティの両積	S	101.5	38.1	1cm2	$S = -p^2$
タアスペリティの両時(計算田)	S'	100.0	36.0	kin km²	$I' \times W'$
タマスペリティの平均すべり景	D	2.5	1.5	m	$D = (1, \sqrt{2}) D$
タマスペリティの地震エー かん	M ai	7.055+19	1.025+10	Mm	$\frac{D_{ai} - (\gamma_i / 2\gamma_i) D_a}{M = \mu D S}$
日ノスペリノイの地震モーノント	IVI 0ai	7.9JE+10	1.032+10	Nill	$\frac{1}{1} \frac{1}{1} \frac{1}$
各アスペリティの短周期レベル	A_{i}	1.27E+19	7.76E+18	Nm/s ²	$A_i = 4\pi R_{ai} \Delta \sigma_a \beta$ (Boatwright, 1984; 壇・他, 2001)
各アスペリティの実効応力	$\sigma_{\mathrm{a}i.}$	15.4	15.4	MPa	Δσ。に等しいと仮定
各アスペリティの長さ(走向方向)(計算用)	L'a	10.0	6.0	km	本業務で設定
各アスペリティの幅(傾斜方向)(計算用)	W'a	10.0	6.0	km	本業務で設定
各アスペリティのライズタイム	Tr _a	2.0	1.2	s	$Tr_a = 0.5W'_a / V_r$
背景領域の総地震モーメント	M _{ob}	1.23	E+19	Nm	$M_{0b} = M_0 - M_{0a}$
背景領域の総面積	S _b	49	0.5	km ²	$S_{\rm b} = S - S_{\rm a}$
背景領域の総面積(計算用)	S'h	49	4.0	km ²	本業務で設定
背景領域の平均すべり量	$D_{\rm h}$	0.8		m	$D_{\rm h} = M_{\rm 0h} / \mu S_{\rm h}$
背景領域の実効応力	$\sigma_{\rm h}$	35		MPa	$\sigma_{\rm h} = (D_{\rm h}/W) \times (\pi^{1/2}/D_{\rm h}) \times r \times \Sigma v^3 \times \sigma_{\rm h}$
冬歩星領域のライズタイト	Tr.	0.0			$Tr_{\rm b} = 0.5W / V_{\rm r}$
	1, 9	2.9		3	(Day, 1982)
S波速度	β	3.	.4	km/s	J-SHIS 深部地盤モデルV2
密度	ρ	2.	75	g/cm ³	J-SHIS 深部地盤モデルV2
剛性率	μ	31	.8	GPa	$\mu = \rho \beta^2$
破壊伝播速度	Vr	2.	.4	km/s	$V_r = 0.72\beta$ (Geller 1976)
破壊様式		同心日	円破壊		本業務で設定
高周波数遮断フィルター	f max	6.	.1	Hz	佐藤 (2002)
フィルター形状		1/(1+(f/	$(6.1)^{1.2})^{1/2}$		佐藤 (2002)

表 7 TR1+TR2 断層の震源断層パラメータ

パラメータ	記号		設定	と値		単位	設定根拠
其進占續度(卅男測納系)		TR1		25 7476		座	亚山97年度は思想生またトレニ大業数で設定
基本市场 (世界) (世界) (世界) (世界) (世界) (世界) (世界) (世界)		134 4185		134 1105		度	干成41十度成本報告首をもしに本来物で設定 更成97年度成里胡生素かもとに本業務で設定
基準点相及(E5F)加地示/ 其進占波士		20		2.8		12 km	十成41十度成本報告首をもとに本来物で設定 正式97年 庫成里却生またもとに本業務で設定
本中点体で		2.5		2.0		r#F	T成21中反成未報百音をもとに本未初で取足 正式97年産は思想生ま
上时用 植剑鱼		60		60		度	十成21年度成未報百音 亚动97年庫武里想生素
すべり角		-147		-166		度	正成97年度成果報告書
新層長さ(走向方向)	L	25		66		km	平成27年度成果報告書
(全体)断層長さ(走向方向)	L		9	1		km	$L = \Sigma L$
地震発生層上端深さ	H.	29		2.8		km	平成27年度成果報告書をもとに本業務で設定
地震発生層下端深さ	HA	15.0		14.9		km	平成27年度成果報告書をもとに本業務で設定
地震発生層の厚さ	T.	12.1		12.1		km	$T_{a} = H_{d} - H_{a}$
断層幅(傾斜方向)	W,	14		14		km	平成27年度成果報告書をもとに本業務で設定
断層面積	S,	350		924		km ²	$S_i = L_i \times W_i$
(全体)断層面積	S		12	74		km ²	$S = \Sigma S$,
(全体)地震モーメント	M ₀		9.03	E+19		Nm	$(S/(4.24 \times 10^{-11}))^2 \times 10^{-7}$
				•			(Irikura and Miyake, 2011) $(\log_{10}M_0 - 9.1) / 1.5$
(王体)セーメントマクニチュード	Mw		1.	2			(Hanks and Kanamori, 1979)
(全体)断層全体の平均すべり量	16		2.	2		m	$D = M_0 / \mu S$
地震モーメント	M _{0i}	1.71E+19		7.32E+19		km	$M_{0i} = (S_i^{3/2} / \Sigma S_i^{3/2}) M_0$
断層主体の静的応力降下重	$\Delta \sigma$	3.1		3.1		MPa	Fujii and Matsuura (2000) $D = M_{eff}/\mu S$
小断層長さ(未向方向)	dI	1.5	1	0		km	大業務で設定
小断層幅(傾斜方向)	dW		1.	0		km	本業務で設定
アスペリティ総面積の等価半級	R	5.0		80		km	$P = (S / \pi)^{1/2}$
アスペリティの総面積	S S	77.0		203.3		km ²	$\frac{R_a}{S} = 0.22S.$
アスペリティの総面積(計算用)	S'a	81.0		198.0		km ²	太業務で設定
アスペリティの平均すべり量	D.	31		5.0		m	$D_a = 2.0D_i$
アスペリティの総地震モーシント	Ma	7.51E+18		3 22E+19		Nm	(Somerville <i>et al.</i> , 1999; 石井・他, 2001) <i>M</i> ₀ = <i>u</i> D_S
アスペリティ面積/断層面積比	S./S	0.22		0.22			110a http://ab.a
アスペリティの実効応力	$\Delta \sigma_{a}$	14.1		14.1		MPa	$\Delta \sigma_{\rm a} = (S_{i}/S_{\rm a}) \ \Delta \sigma$
タファジリニュの平日							(Madariaga, 1979)
合アスヘリナイの番号	D	Asp.1	Asp.2-1	Asp.2-2	Asp.2-3	1	定体化されてのします
合アスペリティ面積の寺価干住	K ai	5.0	4.0	4.0	5.7	кm	面積比を1:1:2と9 つ
合アスペリティの寺価千住の几半	71	1.00	0.50	0.50	0.71	1 2	$\gamma_i = \kappa_{ai} / \kappa_a$
合アスペリティの両時(計算用)	S ai.	11.0	50.8	50.8	101.6	km ⁻	$S_{al} = \pi K_{al}$
各アスペリティの単位(計算用)	D.	31	49.0	49.0	5.8	кт m	$D = (u / \Sigma u^3) D$
各アスペリティの地震モーシント	Mari	7.51E+18	6.67E+18	6.67E+18	1.89E+19	Nm	$\frac{D_{ai} - (\gamma_i + 2\gamma_i) D_a}{M_{ai} = \mu D_a S}$
177、1771の地震で アント	and Oar	7.012.10	0.072.10	0.072.10	1.002.10	1111	$A_{\mu} = 4\pi R_{\mu} \Delta \sigma_{\mu} R^{2}$
各アスペリティの短周期レベル	A _i	1.01E+19	8.23E+18	8.23E+18	1.16E+19	Nm/s ²	(Boatwright, 1984; 壇・他, 2001)
各アスペリティの実効応力	σ _{at.}	14.1	14.1	14.1	14.1	MPa	Δσ。に等しいと仮定
各アスペリティの長さ(走向方向)(計算用)	L'a	9.0	7.0	7.0	10.0	km	本業務で設定
各アスペリティの幅(傾斜方向)(計算用)	Wa	9.0	7.0	7.0	10.0	km	本業務で設定
各アスペリティのライスタイム	Ir _a	1.8	1.4	1.4	2.0	S	$Ir_a = 0.5W_a/V_T$
育京領域の総地震モーメント	M _{0b}	9.56E+18		4.10E+19		Nm 1 2	$M_{0b} = M_{0t} - M_{0a}$
育京領域の総面積	Sb C'	273.0		720.7		km ⁻	S _b = S = S _a
1月泉限域の応回復(日昇用) 変星領域の平均すべし景	D.	1.1	726.0		Km	$\frac{4}{D_{1}} = M_{1} / \mu S_{1}$	
背景領域の実効応力	σ_b	3.1	1.8		MPa	$\sigma_{\rm b} = (D_{\rm b}/W) \times (\pi^{1/2}/D_{\rm a}) \times r \times \Sigma \gamma^3 \times \sigma_{\rm a}$	
各背景領域のライズタイム	Trb	2.9	2.9			s	$Tr_{\rm b} = 0.5W / V_{\rm r}$ (Day, 1982)
S波速度	β	3.4		3.4		km/s	J-SHIS 深部地盤モデルV2
密度	ρ	2.75		2.75		g/cm ³	J-SHIS 深部地盤モデルV2
剛性率	μ	31.8		31.8		GPa	$\mu = \rho \beta^2$
破壊伝播速度	$V_{\rm r}$	2.4		2.4		km/s	$V_r = 0.72\beta$
破壊様式		同心円破壊		同心円破壊			(06464, 1970) 本業務で設定
高周波数遮断フィルター	f_{max}		6.	1		Hz	佐藤 (2002)
フィルター形状			1/(1+(f/	6.1) ^{1.2}) ^{1/2}			佐藤 (2002)

c) 詳細法による強震動予測手法の概要

地震動計算手法は統計的グリーン関数法を採用した。ω⁻² 則に従うスペクトルモデル (Boore, 1983)³⁶⁾を用いて統計的グリーン関数を作成し、これを要素地震として入倉 (1994)の手法³⁷⁾を用いて波形合成を行った。破壊伝播速度には、乱数による一定のばらつ きを与えている。高周波数遮断フィルターの遮断周波数*f*_{max}は佐藤(2002)³⁸⁾による6.1 Hz を用いた。フィルター形状は表4~7に記載している。統計的グリーン関数法のサブ断層サ イズは1 km×1 kmとした。統計的グリーン関数法による強震動予測の対象領域は、簡便法 による予測震度が5強以上となる領域を含むように設定した。

統計的グリーン関数法の計算出力地点は、J-SHISの深部地盤モデル V2のメッシュ中心 点とした。J-SHIS 深部地盤モデル V2 では、旧日本測地系の第 3 次メッシュ(基準地域 メッシュ)毎に各層境界の深さが与えられており、そのメッシュ間隔は約 1 km (緯度差 30 秒、経度差 45 秒)である。計算地点毎に直下の深部地盤構造を J-SHIS 深部地盤モデ ル V2 から抽出することにより、水平成層構造として与えた。地震基盤から深部地盤に入 射した地震動の応答は、Haskell matrix 法²²⁾により評価し、工学的基盤(ここでは Vs = 600 m/s 層の上面)での予測波形を得る。このとき、Q 値の周波数依存性はないものと仮 定した。

次に、J-SHIS 表層地盤データ V3 の AVS30 を用いて、工学的基盤での PGV を藤本・ 翠川(2006)²⁷⁾ による AVS30 と PGV 増幅率の経験式を用いて換算し、地表の PGV を求め た。最後に、藤本・翠川(2005)³¹⁾ の地表 PGV と計測震度の経験式を用いて、地表の震度 *I*_{JMA}を得た。このとき、J-SHIS 表層地盤データ V3 は世界測地系(日本測地系 2000)の 4 分の 1 地域メッシュコード(約 250 m 間隔)に対して与えられているため以下のような 手続きで計算した。まず、J-SHIS 表層地盤データ V3 の 4 分の 1 地域メッシュコードに 対応する緯度・経度を旧日本測地系に変換した後、旧日本測地系の 4 分の 1 地域メッシュ コードに変換した。次に、この旧日本測地系 4 分の 1 地域メッシュニード左 8 桁と同じコ ードとなる J-SHIS 深部地盤モデル V2 の第 3 次メッシュに対応する工学的基盤での予測 波形に、表層地盤データによる増幅率を適用し、約 250 m 間隔での予測震度分布を得た。 地図などへの作図に際しては、再度測地系を世界測地系に戻す作業を行っている。

d) 詳細法による強震動予測結果

FU4+FU5+FU6+FU7+FU8 断層の地震の強震動予測結果を図 32~35 に示す。各ケース について、工学的基盤上での最大速度(ケース 1:図 32、ケース 2:図 34)、地表での震 度(ケース 1:図 33、ケース 2:図 35)の分布を掲載した。以下、同様に、WS7 断層の地 震の結果を図 36~39 に、TG3 断層の地震の結果を図 40~43 に、TR1+TR2 断層の地震の 結果を図 44~47 に示す。

FU4+FU5+FU6+FU7+FU8 断層の地震(図 32~35)では、FU6 断層や FU7 断層の上 盤側に位置する福井平野の広い範囲に震度 7 が分布する。特に、南から破壊が始まるケー ス1(図 33)では福井平野から福井県北部にかけての広い領域に、震度 6 強や震度 7 が分 布するほか、加賀平野南部で震度 6 弱となるなど高震度域が広い。北から破壊が始まるケ ース 2(図 35)では、加賀平野の震動は小さくなるものの、震源断層からやや遠い敦賀平 野で震度 6 弱になっている。両ケースは全体的に簡便法による予測結果(図 25)に比して 震度が大きい予測結果となった。これは、震源断層の破壊過程の不均質の効果に加え、深 部地盤構造による地震動増幅効果に寄与する深い堆積盆地(福井平野、敦賀平野など)が この事例の計算領域内に分布しているためといえる。今回の検討では、工学的基盤から地 表までの増幅率は、微地形区分による AVS30 に基づいた経験式を用いた手法によって与 えられている。断層近傍の福井平野やその周辺においては、工学的基盤上での PGV が 50 cm/s以上の極めて大きな地震動となっていることから、表層地盤の土質特性に基づく詳細 な非線形応答解析を実施した場合には、今回の予測結果と異なる結果が得られる可能性も あることにも注意する必要がある。

本検討で行った FU4+FU5+FU6+FU7+FU8 断層のケースの詳細法計算領域内には、平 成 25 年度日本海地震・津波調査プロジェクトで実施した微動アレイ観測により、速度構 造モデルの推定が行われた地点が含まれている(表 8)。J-SHIS 深部地盤モデル V2 と本 プロジェクトで新たに推定された速度構造モデル³⁹⁾による強震動予測結果の比較を行っ た。本報告書では、例として、FU4+FU5+FU6+FU7+FU8 断層ケース1における小松(I SK011)での計算結果の比較を図 48 に示す。この地点では、微動アレイ観測の解析結果に より、既存モデルよりも基盤深度が浅くなったモデル(図 48 下段)での計算結果は、J-S HIS V2 モデルによる計算結果(図 48 上段)に比べ、PGV や震度が小さくなった。速度 構造が強震動予測結果に及ぼす寄与は無視できず、速度構造モデル情報を拡充することの 必要性、意義を再確認できる。

若狭湾のWS7断層の地震(図 36~39)の震度分布は、大局的には簡便法による予測結果(図 27)と類似した結果が得られたが、北西から南東に破壊が伝播するケース2において、震源の破壊過程の影響により、福井県の小浜平野での震度が6強と、簡便法による結果よりも1段階大きな結果が得られた。若狭地域から遠ざかるような破壊様式となるケース1では震度6弱が最大となった。ただし、今回検討しなかった熊川断層との連動を考慮した場合、震源断層が陸域に入ってくることと地震規模が大きくなることから、高震度の領域が今回の予測結果よりも広がる可能性があることに注意する必要がある。

丹後半島沖の TG3 断層の地震(図 40~43)では、いずれのケースも最大で震度 6 弱程 度の地震動が予測され、簡便法の結果(図 28)よりも全体的に小さめとなった。これは、 丹後半島周辺では、河川沿いや河口付近の小規模な平野に沖積層が分布していることを除 けば、宮津花崗岩などの基盤岩が地表に広範に分布していることにより、地震動が小さめ になっているものと考えられる。南東から北西に破壊が伝播するケース1よりも北西から 南東に破壊が伝播するケース2の方が、相対的には工学的基盤の PGV や地表の震度が大 きい。今回の検討では丹後半島の郷村断層帯との連動を考慮していないが、郷村断層帯は 1927年北丹後地震で破壊しており、丹後沖の TG3 断層との連動の可能性は当面は低いか もしれない。

鳥取沖の TR1+TR2 断層の地震(図 44~47)では、簡便法による予測結果(図 30)と 類似した震度分布が得られた。想定している断層が鳥取県域にほぼ平行な走向で存在する ことから、ケース1とケース2での PGV や震度の空間分布に顕著な違いは見られなかっ た。ただし、鳥取県西部の弓ヶ浜半島の大部分では、ケース2が震度5強であるのに対し て、ケース1では震度6弱から6強となっており、破壊過程の影響が見られた。同様に、 島根県の松江平野や出雲平野での震度もケース1の方が相対的に大きい。

(FU4+FU5+FU6+FU7+FU8 断層ケース 1、★:破壊開始点)

(FU4+FU5+FU6+FU7+FU8 断層ケース 2、★:破壊開始点)

図 36 工学的基盤上での PGV 分布(WS7 断層ケース 1、★:破壊開始点)

図 37 地表での震度分布(WS7 断層ケース 1、★:破壊開始点)

図 38 工学的基盤上での PGV 分布(WS7 断層ケース 2、★:破壊開始点)

図 39 地表での震度分布(WS7断層ケース 2、★:破壊開始点)

図 40 工学的基盤上での PGV 分布 (TG3 断層ケース 1、★:破壊開始点)

図 41 地表での震度分布(TG3 断層ケース 1、★:破壊開始点)

図 42 工学的基盤上での PGV 分布 (TG3 断層ケース 2、★:破壊開始点)

図 43 地表での震度分布(TG3)断層ケース 2、★:破壊開始点)

表8 微動アレイ観測により速度構造モデルが推定された地点

観測点名	観測点コード	緯度	経度	第3次メッシュコード	文献
小松	ISK011	36.3967	136.4432	54364375	浅野他(2015)
美川	ISKP14	36.4910	136.4917	54365389	浅野他(2015)

図 48 小松(ISK011)における FU4+FU5+FU6+FU7+FU8 断層ケース 1 の工学的基盤
 での予測波形(速度及び加速度波形)、速度構造モデルの比較(上段: J-SHIS V2 モデル、下段:浅野・他 (2015)のモデル)

(c) 結論ならびに今後の課題

文献調査に基づき、地震基盤までの堆積層の速度構造情報が不足している山陰地方西部 の平野を現地調査対象領域として設定し、新規の微動アレイ観測を4地点で実施した。微 動アレイ観測により得られた上下動微動波形記録に SPAC 法を適用して位相速度を求め、 Rayleigh 波基本モードの分散曲線をフィッティングすることにより S 波速度構造を推定 した。これにより、表層から地震基盤までの堆積層の速度構造モデルの更新に必要な情報 を取得した。また、堆積層の分布情報を面的に把握するため、各平野において多数の単点 微動観測を実施し、H/V スペクトル比のピーク周波数の空間分布の情報を得た。平成25~ 28 年度の調査を通して、堆積層のS 波速度構造情報が不足していた北陸地方の加賀平野、 邑知潟平野、富山平野ならびに山陰地方西部の益田平野、萩平野、仙崎平野、大津平野に ついて、新たな情報を得ることができた。次年度以降のプロジェクト後半は、北海道道南 地方や東北地方北部の日本海沿岸地域の堆積平野域で速度構造情報が不足している地域を 抽出し、微動アレイ探査等による速度構造情報の取得を進め、情報を蓄積していく必要が ある。

上記調査に関係して、島根県の震度情報ネットワークシステムの地震波形記録を収集、 微動アレイ探査の予察調査及び結果の検証等に活用した。また、山口県についてもデータ 提供に向けた交渉を進めた。これら震度計の波形記録収集には、各県庁の危機管理担当部 局担当者のお世話になった。

本業務で収集した地震波形記録を用い、スペクトルインバージョン解析により、各強震 観測点でのS波のサイト増幅特性を推定した。福井平野内など人口集中域で、サイト増幅 特性の空間変化を稠密に把握することができた。次年度は、スペクトルインバージョンで 推定されたサイト特性を用いて、各観測点での速度構造モデルのモデル化を進めていく必 要がある。

サブサブテーマ 2.5 で作成された福井沖から鳥取沖にかけての震源断層の矩形モデルに 基づいて、特性化震源モデルを作成し、簡便法(地震動予測式)及び詳細法(統計的グリ ーン関数法)による強震動予測を実施し、各断層が活動した場合の予測震度分布の情報を 得た。次年度以降も、サブサブテーマ 2.5 で新たに構築される山陰から北九州沖にかけて の震源断層モデルに基づいて、強震動の試算を継続し、試算結果をプロジェクトに還元し ていく。

(d) 引用文献

- Noguchi, T. and Nishida, R.: Determination of Subsurface Structure of Tottori Plain Using Microtremors and Gravity Anomaly, J. Nat. Disas. Sci., Vol.24, No.1, pp.1–13, 2002.
- 2) 野口竜也,西田良平,岡本拓夫,平澤孝規:人工地震,微動,重力観測による鳥取平野の地盤構造の推定,土木学会地震工学論文集, Vol.27, paper no.197, 2003.
- 3) 野口竜也,石田勇介,香川敬生,鳥取平野南部地域における微動探査に基づく地震動評価のための地盤構造モデルの構築,土木学会論文集 A1 (構造・地震工学), Vol.71, No.4 (地震工学論文集第 34 巻), pp.I_943–I_952, 2015.
- 4) 野口竜也,西田良平,中野雅巳,作永達也:倉吉市における地盤構造および地盤震動特

性, 第2回日本地震工学会年次大会 2003 梗概集, pp.48-49, 2003.

- 5) 野口竜也,伊藤奨悟,香川敬生:微動探査による鳥取県中部の地盤構造推定,土木学会 第32回地震工学研究発表会講演論文集, paper no,269, 2012.
- 6) 野口竜也,香川敬生:微動および重力探査による倉吉平野臨海部の地盤構造推定,土木 学会論文集 A1 (構造・地震工学), Vol.70, No.4, pp.I_888–I_896, 2014.
- 7)吉川大智,盛川 仁,赤松純平,野口竜也,西田良平:重力および微動データに基づく 弓ヶ浜半島の3次元基盤構造の推定,第11回日本地震工学シンポジウム論文集,pp.447-450,2002.
- 8) 坂井公俊,盛川 仁,野口竜也:重力及び微動データの併合処理による地盤構造推定手 法の適用性検証,第12回日本地震工学シンポジウム論文集,pp.274-277,2006.
- 9) 足立正夫,元木健太郎,瀬尾和大,野口竜也,西田良平:島根県松江平野の常時微動から推定される地盤構造,第12回日本地震工学シンポジウム論文集,pp.290-293,2006.
- 10) 足立正夫, 野口竜也, 小村紘平, 西田良平: 出雲平野および松江平野の深部地盤構造, 土木学会論文集 A1 (構造・地震工学), Vol.65, No.1, pp.97–103, 2009.
- 11) 足立正夫,野口竜也,西田良平,元木健太郎,瀬尾和大:島根県出雲平野の常時微動 から推定される地盤構造,地震工学論文集,No.29, pp.220-228, 2007.
- 12) 野口竜也,足立正夫,田原一志,山下 毅,西田良平:微動探査による島根県浜田市の地盤構造の推定,土木学会論文集 A1 (構造・地震工学), Vol.65, No.1 (地震工学論 文集第 30 巻), 82-87, 2009.
- 13) 文部科学省研究開発局,国立大学法人九州大学:「警固断層帯(南東部)における重点 的な調査観測」平成 23~25 年度成果報告書, 378p., 2014.
- 14) 山田伸之,竹中博士:福岡地域の深部地盤 S 波速度構造 一地震動評価用の数値モデ ル構築のために一,地震第2輯, Vol.67, No.1, pp.25-34, 2014.
- 15) Aki, K.: Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst., Univ. Tokyo, Vol.35, No.3, pp.415-456, 1957.
- 16) Yamanaka, H. and Ishida, H.: Application of genetic algorithms to an inversion of surface-wave dispersion data, Bull. Seismol. Soc. Am., Vol.86, No.2, pp.436–444, 1996.
- 17)藤原広行,河合伸一,青井 真,森川信之,先名重樹,東 宏樹,大井昌弘,はお憲 生,長谷川信介,前田宜浩,岩城麻子,若松加寿江,井元政二郎,奥村俊彦,松山尚典, 成田 章:東日本大震災を踏まえた地震ハザード評価の改良に向けた検討,防災科学技 術研究所研究資料, No.379, 2012.
- 18) 国土地理院:土地条件調查解説書「益田·日原地区」,18p., 2010.
- 19) 松浦浩久,尾崎正紀,脇田浩二,牧本 博,水野清秀,亀高正男,須藤定久,森尻理 恵,駒澤正夫:20万分の1地質図幅「山口及び見島」,独立行政法人産業技術総合研究 所地質調査総合センター,2007.
- 20) 西村祐二郎,今岡照喜,金折祐司,亀谷 敦:山口県地質図第3版(15万分の1)及 び説明書,山口県地学会,2012.
- 21) 尾崎正紀,今岡照喜,井川寿之:仙崎地域の地質,独立行政法人産業技術総合研究所 地質調査総合センター,2006.

- 22) Haskell, N. A.: The dispersion of surface waves on multilayered media, Bull. Seismol. Soc. Am., Vol.43, No.1, pp.17-34, 1953.
- 23) Arai, H. and Tokimatsu, K.: S-wave velocity profiling by inversion of microtremor H/V spectrum, Bull. Seismol. Soc. Am., Vol.94, No.1, pp.53-63, 2004.
- 24) 岩田知孝,入倉孝次郎:観測された地震波から震源特性,伝播経路特性及び観測点近傍の地盤特性を分離する試み,地震第2輯, Vol.39, No.4, pp.579–593, 1986.
- 25)入倉孝次郎, 三宅弘恵:シナリオ地震の強震動予測, 地学雑誌, Vol.110, No.6, pp.849-875, 2001.
- 26) 司 宏俊・翠川三郎:断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式,日本建築学会構造系論文集,No.523, pp.63-70, 1999.
- 27) 藤本一雄・翠川三郎:近接観測点ペアの強震記録に基づく地盤増幅度と地盤の平均 S 波速度の関係,日本地震工学会論文集, Vol.6, No.1, pp.11-22, 2006.
- 28) 若松加寿江, 松岡昌志: 全国統一基準による地形・地盤分類 250 m メッシュマップの 構築とその利用, 日本地震工学会誌, No.18, pp.35-38, 2013.
- 29) Wakamatsu, K. and Matsuoka, M.: Nationwide 7.5-Arc-Second Japan Engineering Geomorphologic Classification Map and Vs30 Zoning, J. Disas. Res., Vol.8, No.5, pp.904-911, 2013.
- 30) 松岡昌志,若松加寿江:地形・地盤分類 250 m メッシュマップ全国版に基づく地盤の ゆれやすさデータ,独立行政法人産業技術総合研究所,知的財産管理番号 H20PRO-936, 2008.
- 31) 藤本一雄・翠川三郎:近年の強震記録に基づく地震動強さ指標による計測震度推定法, 地域安全学会論文集, No.7, pp.241-246, 2005.
- 32) 日本海における大規模地震に関する調査検討会:日本海における大規模地震に関する 調査検討会報告書, 43p., 2014.
- 33) 杉山雄一,山本博文,村上文敏,宇佐見琢哉,畑山一人,島崎裕行:柳ヶ瀬・関ヶ原 断層帯主部/北部北方延長域(坂井市沖〜福井市沖)における活断層の分布と活動性, 活断層・古地震研究報告, No.13, pp.145–185, 2013.
- 34)阿部信太郎、山本博文、荒井良祐:高分解能マルチチャンネル音波探査記録に基づく 郷村断層帯海域延長部の断層分布・性状について、活断層・古地震研究報告、No.12、 pp.195-240, 2012.
- 35) 地震調査研究推進本部地震調査委員会:震源断層を特定した地震の強震動予測手法 (「レシピ」),全国地震動予測地図 2016 年版報告書別冊,46p.,2016.
- 36) Boore, D. M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seismol. Soc. Am., Vol.73, No.6A, pp.1865-1894, 1983.
- 37)入倉孝次郎: 震源のモデル化と強震動予測, 地震第2輯, Vol.46, No.4, pp.495-512, 1994.
- 38) 佐藤智美: KiK-net 強震記録に基づく鳥取県西部地震とその余震のラディエーション パターン及び fmaxの評価,日本建築学会構造系論文集,No.556, pp.25-34, 2002.
- 39) 浅野公之,岩田知孝,宮腰 研,大堀道広:微動アレイ観測と単点微動観測による加

賀平野南部及び邑知潟平野の堆積平野速度構造モデルの検討,日本地震工学会論文集, Vol.15, No.7, pp.194-204, 2015.

(e) 成果の論文発表・口頭発表等

著者	題名	発表先	発表年月日
染井一寛,	スペクトルインバージョンに	日本地球惑星科学連合	2016年5月
浅野公之,	基づく北陸地方の強震観測点	2016年大会	24 日
岩田知孝,	におけるサイト増幅特性の推		
宮腰 研,	定(口頭発表)		
大堀道広			
Somei, K.,	Estimation of Site	表層地質が地震動に及ぼ	2016年8
Asano, K.,	Amplification Factors for	す影響に関する第5回国	月 15 日
Iwata, T.,	Strong Motion Stations in	際シンポジウム論文集	
Miyakoshi,	the Hokuriku District, Japan		
K., Ohori	(ポスター発表)		
М.			

(f)特許出願、ソフトウエア開発、仕様・標準等の策定

1) 特許出願

なし

2) ソフトウエア開発

なし

3) 仕様・標準等の策定

なし

(3) 平成29年度業務計画案

平成 28 年度に引き続き、日本海沿岸地域の強震動予測に資する地下速度構造モデルの 集約を進めるとともに、北海道道南の地下速度構造情報の不足している地域で微動アレイ 観測などの地下構造調査を行う。日本海沿岸の対象地域の地震波形記録の収集を継続し、 観測サイトの地盤震動特性を分析する。平成 28 年度までにサブサブテーマ 2.5 で構築さ れた震源断層モデルに基づいて、シナリオ地震想定と強震動予測を行う。