2.3.2 強震動予測

目 次

- (1) 業務の内容
 - (a) 業務題目
 - (b) 担当者
 - (c) 業務の目的
 - (d) 8 ヵ年の年次実施計画(過去年度は、実施業務の要約)
 - 1) 平成 25 年度
 - 2) 平成 26 年度
 - 3) 平成 27 年度
 - 4) 平成 28 年度
 - 5) 平成 29 年度
 - 6) 平成 30 年度
 - 7) 平成 31 年度(令和元年度)
 - 8) 令和2年度
 - (e) 令和 2 年度業務目的
- (2) 令和 2 年度の成果
 - (a) 業務の要約
 - (b) 業務の成果
 - 1) 堆積平野地盤構造モデルの改訂
 - 2) 震源断層モデルに基づく強震動予測
 - 3) 1894年庄内地震の震源断層モデルに関する検討
 - 4) 1766年明和津軽地震の震源断層モデルに関する検討
 - (c) 結論ならびに今後の課題
 - (d) 引用文献
 - (e) 成果の論文発表・口頭発表等
 - (f) 特許出願、ソフトウエア開発、仕様・標準等の策定
- (3) 8ヵ年の成果
 - (a) 業務の成果
 - 1) 微動による堆積平野速度構造調査
 - 2) 堆積平野地盤構造モデルの改訂
 - 3) 地震波形記録の収集
 - 4) 震源断層モデルに基づく強震動予測
 - (b) 結論ならびに今後の課題
 - (c) 引用文献

(a) 業務題目

3.2 強震動予測

(b)	担	当	者
	-		_

所属機関	役職	氏名		
京都大学防災研究所	教授	岩田	知孝	
	准教授	関口	春子	
	准教授	浅野	公之	
福井大学附属国際原子力工学研究	准教授	大堀	道広	
所				
鳥取大学大学院工学研究科	教授	香川	敬生	
	助教	野口	竜也	
東京工業大学環境・社会理工学院	教授	山中	浩明	
	助教	地元	孝輔	
東京大学地震研究所	准教授	三宅	弘恵	
国立研究開発法人防災科学技術研	部門長	藤原	広行	
究所マルチハザードリスク評価研				
究部門	主任研究員	森川	信之	
国立研究開発法人産業技術総合研	主任研究員	堀川	晴央	
究所活断層·火山研究部門				

(c) 業務の目的

サブテーマ2で構築された日本海沿岸域の断層形状モデルに基づいて、強震動予測のた めの震源断層モデルに必要なパラメータを検討し、震源モデルの特性化を行う。従来の速 度構造モデルや必要な微動観測などを行い、対象地域の地下速度構造モデルの高度化を進 める。これらの情報を組み合わせて、対象断層帯が活動した場合の強震動予測を行い、地 震動分布の特徴を調べる。

(d) 8 ヵ年の年次実施計画(過去年度は、実施業務の要約)

1) 平成 25 年度:

内陸地震の震源モデル特性化情報を収集した。既往地下速度構造モデル集約情報に基づ き、情報が十分でない石川県の加賀平野南部及び邑知潟平野において、微動アレイ探査及 び単点微動調査を行い、地盤速度構造モデル情報を得た。福井県、石川県の自治体震度計 波形記録の収集を行った。

2) 平成 26 年度:

内陸被害地震の震源モデルの収集を継続し、強震動生成の観点に立った震源モデル特性

化を継続した。既往地下速度構造モデル集約情報に基づいて、富山平野において微動アレ イ探査を行い、地盤速度構造モデル情報を得た。富山県の自治体震度形波形記録を収集し、 福井、石川、富山県の地震波形を用いた地震波サイト増幅特性評価を開始した。

3) 平成 27 年度:

平成 26 年度に引き続き、地震基盤までの堆積層の速度構造情報が不足している富山平 野を現地調査対象領域として設定し、新たに微動アレイ探査を行い、地盤速度構造モデル 情報を得た。北陸地方の強震・震度観測点の地震波形記録を収集し、収集した地震波形記 録を用いて、スペクトルインバージョン法により各強震観測点のサイト増幅特性を推定し、 既存地下構造モデルの検証を行った。サブサブテーマ 2.5 で得られた富山沖及び砺波平野 の震源断層モデルに基づいて、特性化震源モデルを設定し、強震動予測を実施した。

4) 平成 28 年度:

強震動予測に資する地下速度構造モデルの集約情報に基づき、北陸地方から山陰地方に かけての日本海沿岸域のうち地下速度構造モデル情報の不足している地域のうち、山陰地 方西部の堆積平野を現地調査対象領域として設定し、微動アレイ探査などの地下構造調査 を行った。対象地域における地震波形記録の収集を継続し、観測サイトの地盤震動特性を 分析した。対象地域における震源断層モデルに基づいて、シナリオ地震想定と強震動予測 を行った。

5) 平成 29 年度:

日本海沿岸域の強震動予測に資する地下速度構造モデルの集約を進めるとともに、北海 道道南の地下速度構造情報の不足している地域である函館平野にて微動アレイ観測などの 地下構造調査を行った。日本海沿岸の対象地域の地震波形記録の収集を継続し、観測サイ トの地盤震動特性を分析した。平成 28 年度までにサブサブテーマ 2.5 で構築された震源 断層モデルに基づいて、シナリオ地震想定と強震動予測を行った。

6) 平成 30 年度:

日本海沿岸域の強震動予測に資する地下速度構造モデルの集約を進めるとともに、情報 の不足している青森県西部地域の堆積平野(津軽平野)で微動アレイ観測を行い、地下速 度構造情報を得た。日本海沿岸の対象地域の地震波形記録の収集を継続し、観測サイトの 地盤震動特性を分析した。サブサブテーマ 2.5 で構築された震源断層モデルに基づいて、 シナリオ地震想定と強震動予測を行った。

7) 平成 31 年度 (令和元年度):

青森県日本海側の地下速度構造情報の不足している地域で微動アレイ観測などの地下 構造調査を行うとともに、これまでの調査結果を集約して、日本海沿岸域の強震動予測の ための地下速度構造モデルの検証・改良を継続した。日本海沿岸の対象地域の地震波形記 録の収集を継続し、観測サイトの地盤震動特性を分析した。サブサブテーマ 2.5 で構築さ れた震源断層モデルに基づいて、シナリオ地震想定と強震動予測を行い、地震動分布の特 徴等を調べた。

8) 令和2年度:

平成 31 年度(令和元年度)までの調査成果に基づき、日本海沿岸域の主要な平野での強 震動予測のための地下速度構造モデルを改訂した。サブサブテーマ 2.5 で構築された海域 及び陸域の震源断層モデルに基づいて、特性化震源モデル等の作成及び強震動予測を行い、 地震動分布の特徴等をとりまとめた。

(e) 令和2年度業務目的

強震動予測の高度化には、強震動予測のための震源モデル及び地下構造モデルの高度化 が必要である。地下構造モデルの高度化に関しては、本プロジェクトによるこれまでの調 査結果等を基に、北陸地方及び津軽平野の地下速度構造モデルの改良を行う。震源モデル 及びそれを用いた強震動予測高度化に関しては、サブサブテーマ 2.5 で構築された北海道 南西沖から新潟沖の海域及び東北地方日本海沿岸の陸域の震源断層モデルに基づいて、シ ナリオ地震想定と強震動予測を行う。

(2) 令和2年度の成果

(a) 業務の要約

日本海沿岸域での強震動予測の高度化には、地殻構造や堆積平野構造の調査を充実させた上で、強震動予測のための震源モデル及び地下構造モデルの双方を高度化していくことが真に必要である。平成25年度~令和2年度の本プロジェクトによる調査結果等を基にして、富山平野周辺及び津軽平野周辺の地下構造を対象に、深部地盤構造モデルの改良を行った。サブサブテーマ2.5から提案された北海道南西沖から新潟沖の海域の震源断層モデルに基づいて、特性化震源モデルを設定した。簡便法及び詳細法による強震動予測を実施し、個々の震源断層が日本海沿岸域に及ぼす地震動の特徴について取りまとめた。また、庄内平野周辺を震源とする1894年庄内地震と津軽平野周辺を震源とする1766年明和津軽地震について、震源断層モデルに基づく強震動評価を行い、これらの歴史地震を引き起こした震源断層の候補について検討を行った。

(b) 業務の成果

1) 堆積平野地盤構造モデルの改訂

a) これまでの経緯

日本海側の主要な堆積平野・堆積盆地のうち、秋田県(秋田平野、能代平野、本荘平野、 横手盆地など)、山形県(庄内平野、山形盆地など)、新潟県(越後平野、柏崎平野、高田 平野など)については「ひずみ集中帯の重点的調査観測・研究プロジェクト」¹⁾で、福岡 県の福岡平野と筑紫平野については「警固断層帯(南東部)における重点的な調査観測」 ²⁾で、それぞれ多数の微動アレイ探査やボーリングデータの収集等が実施され、詳細な深 部地盤構造モデルが構築されている。また、北海道の石狩平野³⁾、石川県の金沢平野⁴⁾、 福井県の福井平野⁵⁾、敦賀平野⁶⁾、鳥取県の鳥取平野⁷⁾、島根県の出雲平野、松江平野⁸⁾ についても、既往の研究において、微動アレイ探査及びその他の物理探査が実施され、三 次元の詳細な地盤構造モデルが提案されている。しかしながら、本プロジェクト開始時点 においては、日本海沿岸域の主要な堆積平野のうち、北海道の函館平野、青森県の津軽平 野、富山県の富山平野(射水平野、砺波平野を含む)については、それぞれ堆積平野の規 模が大きく、各地域の中核的都市が位置している上、周辺に主要活断層も分布しているに も関わらず、堆積平野の地震波速度構造に関する十分な調査やモデル化が行われていない 状況にあった。このうち、函館平野については、本プロジェクトにおいて、平成29年度に 微動アレイ探査、平成30年度に海陸統合地殻構造探査(サブサブテーマ2.3)が実施され、 これら調査結果を基に、平成31年度(令和元年度)に新たな深部地盤構造モデルを作成し た。したがって、令和2年度は津軽平野及び富山平野周辺を対象に、深部地盤構造モデル を完成させた。

富山平野を含む北陸地方では、平成 25~27 年度に微動探査(微動アレイ、単点微動)、 平成 25~26 年度に海陸統合地殻構造探査(サブサブテーマ 2.3)を実施した。また、これ ら現地調査に併行し、富山県のご協力の下、震度情報ネットワークシステムの地震波形記 録を収集し、地下構造に関わる情報を抽出するための分析を行った。津軽平野では、平成 30~31(令和元)年度に微動探査(微動アレイ、単点微動)、令和 2 年度に反射法地震探 査(サブサブテーマ 2.3)を実施した。また、青森県のご協力の下、震度情報ネットワーク システムの地震波形記録を収集し、地下構造に関わる情報を抽出するための分析を進めた。 これらの調査・分析結果を集約し、両地域の深部地盤構造モデルを改訂した。

b) 富山平野周辺

深部地盤構造モデルを修正するにあたっては、J-SHIS V2 モデル 9 を初期モデルとした。J-SHIS V2 モデルは堆積層内の速度構造を多数の層で表現し、地震波速度と密度は層毎に一定の値が与えられ、各層の上面深度が空間的にモデル化されている。本プロジェクトの調査結果を基に、各層の層厚の修正量を空間補間・調整することで、最終的な深部地盤構造モデルを得た。対象地域の微動アレイ探査地点及び強震観測点を図 1 の地質図 ¹⁰ 上に示す。以下に、深部地盤構造モデルの修正手順を具体的に説明する。

まず、微動アレイ探査結果(図2)を用いて、J-SHIS V2 モデルを修正した。修正の際 は、富山平野(射水平野、砺波平野も含む)全体を修正するように、修正量を補間した。 ただし、地震基盤のS波速度をJ-SHIS V2 モデルの3.3 km/sに揃えるため、微動アレイ 探査によって推定されたS波速度構造モデルの基盤のS波速度を3.3 km/sに変更し、理 論位相速度と観測位相速度の整合性を確認した。観測データとの乖離がある場合には各層 の上面深度を調整した。図3に微動アレイデータによるモデルの修正例を示す。図中の〇 印が、微動アレイ観測で得られた観測位相速度である。

次に、修正初期モデルを用いて、国立研究開発法人防災科学技術研究所 K-NET 及び KiKnet の地震観測データによる R/V スペクトル比(強震観測点は図1の●)を説明できるよ うに、S 波速度を固定し、層厚を修正した。修正の際には、修正初期モデルの構造の境界 面深度を試行錯誤的に修正した。地震動 R/V スペクトル比の推定については、比較的規模 の大きな M_{JMA} 6.0~7.4 の地震を選択し、S 波主要動以降の 163.84 秒のデータについて、 ラディアル成分と上下動成分のスペクトル比を計算した。スペクトルにはバンド幅 0.05 Hz の Parzen Window を適用している。図4に地震動 R/V スペクトル比による地盤モデ ルの修正例を示す。

最後に、微動アレイと地震動 R/V データを用いて推定した層厚の修正量を空間補間し、 富山平野全体の最終モデルとした。図5に本年度に新たに作成した深部地盤構造モデルと 既存の J-SHIS V2 モデルの比較を示す。S 波速度 1.4 km/s の層では富山平野で浅く修正 され、それ以深の速度層については、富山平野・砺波平野で深く修正された。

図 6 に石油公団の反射法地震探査、基礎試錐データとの比較を、図 7~8 に本プロジェ クトで過年度に実施された海陸統合地設構造探査結果 ^{11,12}、図 9 に陸域活構造調査での反 射法地震探査結果 ¹¹⁾ との比較を示す。富山平野では反射法探査の結果に比べ深部でやや 速度が遅く、砺波平野では反射法探査結果と整合的な結果となった。TA-T1 測線では、基 盤深度は海底面からの深度を考慮すると概ね整合的、砺波平野の KT01 測線測線では、基 盤深度は概ね整合的であり、全体として、本プロジェクトで取得したデータを十分に説明 することのできる深部地盤構造モデルを新たに作成することができたと考えている。

図 1 富山平野周辺における微動アレイ探査地点(▲)及び強震観測点(●)。背景の地図 は産業技術総合研究所(2003)による 100 万分の 1 地質図第 3 版 CD-ROM 第 2 版 ¹⁰⁾ に よる。

図2 富山平野周辺における微動アレイ探査結果

図3 位相速度データによるS波速度構造モデル修正例

図4 地震動 R/V スペクトル比による S 波速度構造モデル修正例

図5 J-SHIS V2 モデル(左)と本プロジェクトによるモデル(右)の比較

図5 J-SHIS V2 モデル(左)と本プロジェクトによるモデル(右)の比較(続き)

図 6 石油公団の基礎物理探査及び基礎試錐による深度情報との比較例

図 7 サブサブテーマ 2.3 による地殻構造探査結果(TA-T1 測線)との比較。上段が地殻 構造探査結果、下段が本年度作成した深部地盤構造モデル。速度はそれぞれ P 波速度を 表す。地図中の赤線が測線を表す。

図 8 サブサブテーマ 2.3 による地殻構造探査結果(KT01 測線)との比較。凡例は図 7 に 同じ。

OG2013測線

図 9 サブサブテーマ 2.4 による反射法地震探査結果(音川測線)との比較。凡例は図 7 に同じ。

c) 津軽平野周辺

津軽平野周辺の深部地盤構造モデルを修正するにあたっては、富山平野周辺と同様に、 J-SHIS V2 モデル⁹⁾を初期モデルとした。J-SHIS V2 モデルは堆積層内の速度構造を多 数の層で表現し、地震波速度と密度は層毎に一定の値が与えられ、各層の上面深度が空間 的にモデル化されている。本プロジェクトの調査結果を基に、各層の層厚の修正量を空間 補間・調整することで、最終的な深部地盤構造モデルを得た。対象地域の微動アレイ探査 地点及び単点微動観測地点の地図を図 10 の地質図 ¹⁰⁾上に示す。この図では、産業技術総 合研究所地質調査総合センターによる重力データベース ¹³⁾によるブーゲー重力異常(仮 定密度 2.67 g/cm³)もカラーコンター図で併せて示している(カラースケールは青い側が 負の重力異常、赤い側が正の重力異常)。津軽平野南東部(黒石市周辺)に、重力異常の低 い領域が広がっている。

以下に、深部地盤構造モデルの修正手順を具体的に説明する。

まず、微動アレイ探査結果(図 11)を用いて、J-SHIS V2 モデルを修正した。修正の際 は、津軽平野全体を修正するように、修正量を空間的に補間した。図 12~19 に各速度層 の上面深度データを示す。

次に、修正初期モデルを用いて、単点微動観測による H/V スペクトル比データ(図 10 の〇)を説明できるように、各層の S 波速度を固定し、層厚を修正した。修正の際には遺伝的アルゴリズムを用い、個体数 50、世代数 50 と設定した。初期乱数を 10 回変えて試行し、残差の最も小さいモデルを採用した。層厚を探索する際は、修正初期モデルの層厚±20%に探索範囲を設定した。それでも、観測データを説明できない場合には±50%に探索範囲を拡大し、再度解析を行った。図 13~19 には、微動 H/V スペクトル比を用いた S

波構造モデルの修正事例もいくつか示した。例えば、C08 地点では S 波速度 3.1 km/s の 層の上面深度は約 3.5 km とモデル化された。

最後に、微動アレイと微動 H/V データを用いて推定した層厚の修正量を空間補間し、津 軽平野全体の最終モデルとした。図 20 に本年度に新たに作成した深部地盤構造モデルと 既存の J-SHIS V2 の比較を、各速度層の上面深度について示す。S 波速度が 1.1 km/s、 1.4 km/s、2.1 km/s の層では津軽平野部南部が、既存の J-SHIS V2 モデルよりも深くなる ように修正された。S 波速度が 2.1 km/s の層では海岸沿いも深く修正されている。S 波速 度が 3.1 km/s や 3.3 km/s の層についても津軽平野南部が深く修正されている。

図 21 に、令和 2 年度のサブサブテーマ 2.3 で実施された陸海統合地殻構造探査での屈 折法解析結果との比較を示す。屈折法による基盤深度は微動からモデル化された基盤深度 よりもやや深いが、基盤より上位の層の速度は概ね対応している。

図 10 津軽平野周辺における微動アレイ探査地点(▲)及び単点微動観測地点(●)。背 景の地図は産業技術総合研究所(2003)による 100 万分の1 地質図第3版 CD-ROM 第2 版による。コンターはブーゲー重力異常¹³⁾(仮定密度 2.67 g/cm³、コンター間隔3 mgal)。

図 11 津軽平野周辺における微動アレイ探査結果

図 12 S波速度 0.6 km/s 層上面深度と微動アレイデータによるモデルの修正状況。(左) 微動アレイ(△)及び単点微動(○)観測地点での上面深度をカラースケールで表す。 コンターはブーゲー重力異常¹³⁾(仮定密度 2.67 g/cm³)。(右)位相速度及び H/V スペ クトル比の比較と修正後の S波速度構造モデル。

図 13 S 波速度 1.1 km/s 層上面深度と微動アレイデータによるモデルの修正状況。凡例 は図 12 に同じ。

図 14 S 波速度 1.4 km/s 層上面深度と微動アレイデータによるモデルの修正状況。凡例 は図 12 に同じ。

図 15 S 波速度 1.7 km/s 層上面深度と微動アレイデータによるモデルの修正状況。凡例 は図 12 に同じ。

図 16 S 波速度 2.1 km/s 層上面深度と微動アレイデータによるモデルの修正状況。凡例 は図 12 に同じ。

図 17 S 波速度 2.7 km/s 層上面深度と微動アレイデータによるモデルの修正状況。凡例 は図 12 に同じ。

図 18 S 波速度 3.1 km/s 層上面深度と微動アレイデータによるモデルの修正状況。凡例 は図 12 に同じ。

図 19 S 波速度 3.3 km/s 層上面深度と微動アレイデータによるモデルの修正状況。凡例 は図 12 に同じ。

図 20 J-SHIS V2 モデル(左)と本プロジェクトによるモデル(右)の比較(続き)

図 21 サブサブテーマ 2.3 による屈折法解析結果(上段)と本年度作成した深部地盤構造 モデル(下)の比較。速度はそれぞれ P 波速度を表す。

2) 震源断層モデルに基づく強震動予測

a) 簡便法による強震動予測

平成 31 (令和元)年度にサブサブテーマ 2.5 から提案された北海道南西沖から新潟沖の 日本海沿岸周辺の震源断層モデルを対象に、地震動予測式を用いた方法(簡便法)による 強震動予測を実施した。サブサブテーマ 2.5 からは対象地域の矩形断層モデルのパラメー タ(図 22)が提供された。近接している複数断層の連動を考慮した組み合わせは、サブサ ブテーマ 2.5 及び 3.1 と協議の上で設定した。本年度は、計 33 ケース(図 22 の矩形モデ ルのうち、赤色で着色したもの)を設定し、強震動を試算した。陸域から遠く離れている 海域の断層及び断層長が短い断層については、陸域で大きな震度とならないことから、強 震動予測の対象には含めていない。また、庄内平野の SHN01 及び SHN02 については、 項目 3)で記載の通り、1894年明治庄内地震との関係を議論するために、詳細法(ハイブリ ッド法)を用いた詳細な強震動評価を別途実施しており、簡便法の計算対象には含めてい ない。

まず、サブサブテーマ 2.5 から提供された断層モデルパラメータ(基準点座標、上端深 さ、走向、傾斜、すべり角、断層長さ、断層幅)から、断層面積を求めた。そして、入倉・ 三宅(2001)の関係式 ¹⁴⁾を用い、断層面積から地震モーメントを得た。各ケースの断層 パラメータを表 1 にまとめた。全 33 ケースのうち、地震規模が最大のものは MMS01+ MMS02+MMS03+MMS04+MGM01+NTG05+NTG06 の $M_0 = 7.45 \times 10^{20}$ Nm (Mw 7.8)で あった。

次に、以下の手順で簡便法による強震動予測を実施した。司・翠川(1999)の地震動予 測式¹⁵⁾

log₁₀ PGV = −1.29 + 0.58M_w + 0.0038h − log₁₀(X + 0.0028 · 10^{0.5M}_w) − 0.002X を用い、断層最短距離 X とモーメントマグニチュード M_w から工学的基盤での最大速度 (PGV)を求めた。ただし、上式中のhは震源深さである。次に、藤本・翠川(2006)に よる PGV 増幅率 R と AVS30 の関係の経験式 ¹⁶⁾

$\log_{10} R = 2.367 - 0.852 \log_{10} AVS30$

を若松・松岡(2020)による地形・地盤分類 250 m メッシュマップ(2020 年更新版)¹⁷⁾の AVS30に適用し、工学的基盤から地表までの PGV 増幅率を求めた(図 23)。得られた 増幅率を用い、工学的基盤の PGV を地表の PGV に変換した。最後に、藤本・翠川(2005)の PGV と計測震度 *I* の関係の経験式¹⁸⁾

 $I = 2.002 + 2.603 \log_{10} PGV - 0.213 (\log_{10} PGV)^2 \qquad (I \ge 4)$ を用いて、地表での計測震度を計算した。

各ケースの震度分布を図 24~56 に示す。震度は計測震度に対応する気象庁震度階に応じて色分けした。ただし、計測震度 4.0 未満の領域は着色していない。以下に試算結果の概要を述べる。

OS11(図24)は、渡島半島南方に位置する長さ約28kmの東落ちの断層である。青森 県の津軽平野北部で震度6弱と予測された範囲が広がっているほか、北海道の松前町や福 島町など渡島半島南岸の一部でも震度6弱となった。

AKT01(図 25)は、秋田県の能代断層帯及びその延長に相当する。能代平野から八郎潟、 秋田平野にかけて震度6強~7の強い揺れが予測された地域が広く分布している。 AKT08(図 26)は、秋田沖の飛島海盆断層に相当する東落ちの断層である。雄物川河口 周辺を中心に、八郎潟から秋田平野にかけての平野部などで震度 6 弱~7 と予測された。

AKT09(図 27)は、北由利断層帯に相当する。地震規模がAKT08よりもやや小さいものの、震源断層の位置が秋田平野に近いために、AKT08の予測結果に比べて、秋田平野や本荘平野での震度6強~7の範囲が広めになった。

SHN03(図28)は、象潟沖の西落ちの小滝逆断層に相当する。秋田県の本荘平野から山 形県の庄内平野にかけて、震度6強~7の範囲が断層に沿って広がっている。

MMS01+MMS02+MMS03+MMS04+MGM01(図 29)は、1983年日本海中部地震の震 源断層に対応すると考えられている MMS01+MMS04+MGM01 と震源域の北部で上盤側 に発達する西落ちの断層 MMS02 及び MMS03 が連動するケースである。秋田県の能代平 野、八郎潟、青森県の津軽平野などで震度 6 弱との予測結果となった。

MMS01+MMS02+MMS03+MMS04+NTG05+NTG06(図 30)は 1983 年日本海中部地 震の震源断層の北部(MMS01+MMS04)とそれらの上盤側から西津軽海盆西縁にかけて 発達する西落ちの断層 MMS02、MMS03、NTG05、NTG06 が連動するケースである。前 述のケース(図 29)と震度分布は似ているが、NTG05 や NTG06 を加えたことにより、 青森県西岸の艫作崎周辺での震度が大きくなった。

MMS01+MMS02+MMS03+MMS04+MGM01+NTG05+NTG06(図 31)は 1983年日本 海中部地震の震源断層の全体(MMS01+MMS04+MGM01)とそれらの上盤側から西津軽 海盆西縁にかけて発達する西落ちの断層 MMS02、MMS03、NTG05、NTG06 が連動する ケースである。細かい差異はもちろんあるものの、前述のケース MMS01+MMS02+MMS03 +MMS04+NTG05+NTG06(図 30)と震度分布は概ね類似した結果となったが、能代平野 北部の一部で震度 6 強の広がりが見られる。

OK09+OS10+NTG01+NTG03(図 32)は、奥尻海嶺から西津軽海盆にかけて想定した 全長約 185 km の断層であり、OK09 と OS10 が東落ち、NTG01 と NTG03 が西落ちの傾 斜をもっている。断層北端に近い奥尻島で震度 6 弱~6 強と予測されたほか、渡島半島西 岸から八郎潟周辺にかけての沿岸域で震度 6 弱~6 強が広く分布している。

OS04+OK09+OS10+NTG01+NTG03 (図 33)は、OK09+OS10+NTG01+NTG03 に奥尻 島西方沖の OK04 を追加した全長約 236 km の断層である。このケースでも、奥尻島や渡 島半島西岸から八郎潟周辺にかけての沿岸域で震度 6 弱~6 強と予測された領域が分布し ている。

NTG04+NTG07(図34)は、西津軽海盆周辺の東落ちの逆断層である。津軽平野の広い 範囲で震度6強と予測されたほか、青森県の日本海沿岸に沿って震度6強となった。青森 平野や能代平野にも震度6弱がまとまって分布している。

NTG04+NTG07+TGR01(図 35)は、東落ちの NTG04+NTG07と西落ちの TGR01が 連動することを想定したケースである。このケースでも、津軽平野や青森県の日本海沿岸 周辺などで震度 6 弱~6 強となった

MGM05+MGM06+MGM07+MGM10+MGM11+MGM12(図 36)は、モーメントマグニ チュード 7.7 と地震規模は大きいものの、陸域からの距離が比較的遠いこともあり、簡便 法による試算では、秋田県から新潟県の沿岸域での震度は概ね 5 弱~5 強となった。山形 県の飛島でも震度 5 強の予測結果となった。 MGM08+MGM09(図37)も、秋田県の能代平野から秋田平野、山形県の庄内平野など での震度は概ね5強となった。山形県の飛島でも震度5強の予測結果となった。

AKT02+AKT03(図 38)は、秋田県の男鹿半島周辺の東落ちの断層と能代沖の西落ちの 断層が連動することを想定したケースである。能代平野から秋田平野にかけて震度6弱~ 6強が分布し、沿岸部の一部では震度7の予測結果となった。

AKT02+AKT04(図 39)も、秋田県の男鹿半島周辺の東落ちの断層と能代沖の西落ちの 断層が連動することを想定したケースである。AKT02+AKT03と同様、能代平野から秋田 平野にかけて震度 6 弱~6 強が分布している。

AKT05+AKT06(図 40)は、秋田沖の西落ちの断層である。男鹿半島や八郎潟周辺で震度6強となっているほか、能代平野、秋田平野、本荘平野、庄内平野にかけて震度5強~ 6弱との予測結果となった。

AKT02+AKT07(図 41)は、秋田県の男鹿半島周辺の東落ちの断層と秋田沖の西落ちの 断層が連動することを想定したケースである。能代平野から庄内平野にかけて震度 6 弱~ 6 強が広く分布し、八郎潟周辺などでは震度 7 の領域が広がっている。

AKT07+SHN04+SHN06(図 42)は、秋田沖から庄内沖に分布する西落ちの断層群が連動することを想定したケースであり、断層長は約 157 km に達する。能代平野から庄内平野にかけて震度6強が広く分布し、震度7も八郎潟周辺などで広く分布している。内陸の横手盆地周辺でも震度6弱の領域が広がっている。このため、詳細法(統計的グリーン関数法)による強震動予測の対象ケースとして選定した。

MRK09+SD08(図 43)は、村上沖から佐渡島にかけて分布する西落ちの断層である。 震源断層直上に位置する佐渡島の国中平野周辺などでは震度 6 強~7 の強震動が予測された。新潟県の越後平野では概ね震度 5 強~6 弱となった。

SHN06+MRK05+MRK06+SD08(図 44)は、庄内沖から佐渡島にかけて分布する全長約 177 kmの西落ちの断層が連動するケースである。このケースでも、震源断層直上に位置する佐渡島の国中平野周辺などでは震度 6 強~7、佐渡島のほぼ全域で震度 6 弱以上と予測された。山形県の庄内平野や飛島では震度 6 弱~6 強、越後平野では概ね震度 6 弱となった。

SHN06+MRK05+MRK06+SD08+SD06(図45)は、前述のケースに佐渡島北西沖の南 東落ちの断層である SD06 を加えたケースである。震度分布は SHIN06+MRK05+ MRK06+SD08の予測結果と類似している。

SHN06+MRK05+MRK06+SD08+SD06+SD05(図 46)は、前述のケースにさらに佐渡 島西方沖の東落ちの断層である SD05を加えたケースである。地震規模がより大きくなる ことから、庄内平野での震度 6 強の分布が広くなったほか、新潟県内において高田平野な どでも震度 6 弱の地震動が予測されている。

SHN08+MRK03+ECG04 (図 47) は、庄内沖から新潟沖にかけて分布する全長約 70 km の北西落ちの断層が連動するケースである。このケースでも、庄内平野及び越後平野の広 い範囲で震度 6 強となっているほか、佐渡島の国中平野の一部でも震度 6 強と予測された。 新潟県の粟島でも震度 6 弱と予測された。

SHN08+MRK03+ECG04+SD07(図 48)は、前述のケースに佐渡島の SD07 を加えた ケースである。佐渡島の国中平野で震度 7、越後平野や庄内平野の広い範囲で震度 6 強と なっている。

SHN08+MRK03+ECG04+SD04+SD02(図 49)は、庄内沖から佐渡南方沖にかけて分 布する全長約 111 kmの北西落ちの断層が連動するケースである。庄内平野、越後平野、 高田平野、国中平野で震度 6 強となっている。

SHN08+MRK03+ECG04+SD04+SD02+SD07(図 50)は、前述のケースに佐渡島の SD07 を加えたケースである。このケースでも、佐渡島の国中平野で震度 7、越後平野や庄内平 野の広い範囲で震度 6 強という予測結果となった。

SHN08+MRK03+ECG04+SD04+SD02+SD07+SD11(図 51)は、前述のケースにさら に佐渡北東沖の北西落ちの断層である SD11を加えたケースである。このケースでも、佐 渡島の国中平野で震度 7、庄内平野、越後平野の広い範囲に加え、高田平野の一部などで 震度 6 強という予測結果となった。

SHN09+MRK01+ECG03(図 52)は、庄内沖の東落ちの断層 SHN09と村上沖の西落ちの断層 MRK03、新潟沖の西落ちの断層 ECG03 が連動するケースである。越後平野の沿岸付近の一部で震度7となっているほか、越後平野の広い範囲や庄内平野南部で震度6強と 予測された。震源断層直上の粟島では震度6弱との予測になった。

MRK01+ECG03+ECG05(図 53)は、村上沖から越後平野にかけての西落ちの断層が 連動するケースで、全長は約 71 km ある。信濃川や阿賀野川の河口周辺を中心として、越 後平野の広い範囲で震度 7 と予測された。

SHN09+MRK01+ECG03+ECG05(図 54)は、前述のケースに庄内沖の SHN09 を加 えたケースである。全長は約 100 km となる。このケースでも、越後平野の広い範囲で震 度7と予測されたほか、庄内平野でも震度6弱~6強となった。このため、詳細法(統計 的グリーン関数法)による強震動予測の対象ケースとして選定した。

SHN11+MRK02(図 55)は、庄内沖から村上沖にかけての海岸近くに位置する南東落ちの断層である。庄内平野から越後平野にかけて震度6弱~6強が広く分布しているほか、 庄内平野南部や越後平野北部の一部では震度7が予測された。

SHN11+MRK02+ECG01 (図 56)は、庄内沖から越後平野にかけての海岸近くに位置す る南東落ちの断層であり、想定震源断層の全長は約 87 km である。このケースでも、庄内 平野から越後平野にかけて震度 6 弱~6 強が広く分布しているほか、庄内平野南部の一部 と越後平野の広い領域で震度 7 が予測されたため、詳細法(統計的グリーン関数法)によ る強震動予測の対象ケースとして選定した。

以上の試算結果を踏まえ、秋田沖から庄内沖にかけてのAKT07+SHN04+SHN06、庄内 沖から越後平野にかけてのSHN09+MRK01+ECG03+ECG05、同じく庄内沖から越後平野 東部にかけてのSHN11+MRK02+ECG01の計3ケースを、統計的グリーン関数法を用い た詳細法による検討対象に選定した。

表 1	簡便法によ	こる	強震動予	·測の	ための	断層パ	ラ	メー	タ
-----	-------	----	------	-----	-----	-----	---	----	---

-		(i i i i i i i i i i i i i i i i i i i									
No	ケース名	断層名	始点緯度	始点経度	上端深さ	走向	傾斜	長さ	幅	Mo	Mw
	7 7.4	WINE L	(北緯.度)	(東経,度)	(km, TP-)	(度)	(度)	(km)	(km)	(Nm)	
1	OS11	OS11	41.1099	140.1104	0.5	8	45	28.3	20.5	1.872E+19	6.78
2	AKT01	AKT01	39.9501	139.9565	0.0	12	40	41.3	26.4	6.631E+19	7.15
3	AKT08	AKT08	39.3380	139.8027	0.1	17	30	43.5	33.8	1.202E+20	7.32
4	AKT09	AKT09	39,3393	140.0103	0.1	1	40	36.4	26.3	5 104E+19	7.07
5	SHN03	SHN03	39.3137	139,9656	0.3	195	50	32.9	19.2	2 218E+19	6.83
-	511105	MMS01	40 7663	139 2065	29	334	25	53.2	33.4	2.2102.15	0.05
	COMPANY AND	MMASO2	41 3014	139 3833	3.3	220	40	40.6	18.2		
G	MMS01+MMS02+MMS03+MMS	NANACO2	41.3014	120 4901	3.5	205	40	20.7	10.2	E E 70E 1 20	7 76
0	04+MGM01	IVIIVI303	41.1900	139.4091	2.5	205	45	23.7	22.1	5.5702+20	1.70
	District Control of Co	101101504	40.6502	138.9880	3.0	21	25	21.0	35.1		
		MGM01	40.1821	138.7927	2.7	26	25	53.2	33.8		
		MMS01	40.7663	139.2065	2.9	334	25	53.2	33.4		
		MMS02	41.3014	139.3833	3.3	220	40	40.6	18.2		
7	MMS01+MMS02+MMS03+MMS	MMS03	41.1966	139.4891	2.3	205	45	29.7	18.0	5 647E+20	7 77
ľ ^	04+NTG05+NTG06	MMS04	40.6502	138.9880	3.0	21	25	21.8	33.1	5.0472+20	1.11
		NTG05	41.2905	139.5548	1.6	184	45	65.0	21.8		
		NTG06	40.7058	139.5134	1.8	162	55	24.8	18.6		
		MMS01	40.7663	139.2065	2.9	334	25	53.2	33.4		
		MMS02	41.3014	139,3833	3.3	220	40	40.6	18.2	t	
		MMS03	41,1966	139,4891	2.3	205	45	29.7	18.0		
0	MMS01+MMS02+MMS03+MMS	MMS04	40 6502	138 9880	3.0	205	25	21.8	33.1	7 446E+20	7 85
°.	04+MGM01+NTG05+NTG06	MCM01	40.1821	138 7927	27	26	25	53.2	33.2	7.4402120	7.05
		NTCOL	40.1021	130.7527	1.6	104	25	55.2	33.0		
		NTGUS	41.2905	139.5548	1.0	164	45	05.0	21.0		
-		NIGUE	40.7058	139.5134	1.8	162	55	24.8	18.0		
	OK09+OS10+NTG01+NTG03	OK09	41.53//	139.5239	2.0	346	30	60.0	30.0		
9		OS10	41.2429	139.4882	1.5	360	30	30.6	27.0	4.749E+20	7.72
1.20		NTG01	41.2949	139.7669	2.0	192	40	43.1	23.3		
		NTG03	40.8959	139.6669	1.5	165	45	51.0	21.9		
		OK04	41.9701	139.2838	3.0	344	45	50.9	19.8		7.77
		OK09	41.5377	139.5239	2.0	346	30	60.0	30.0		
10	02	OS10	41.2429	139.4882	1.5	360	30	30.6	27.0	5.756E+20	
	03	NTG01	41.2949	139.7669	2.0	192	40	43.1	23.3		
		NTG03	40.8959	139.6669	1.5	165	45	51.0	21.9		
		NTG04	40.6747	139.7472	0.9	5	25	40.5	33.4		Long Dr.
11	NTG04+NTG07	NTG07	41.0487	139.8218	0.9	3	30	32.9	28.2	2.279E+20	7.51
		NTG04	40.6747	139,7472	0.9	5	25	40.5	33.4		
12	NTG04+NTG07+TGR01	NTG07	41 0487	139 8218	0.9	3	30	32.9	28.2	2 953E+20	7 58
12	11004111007110101	TCR01	41.0273	140 0603	0.0	173	45	32.7	20.2	2.5552120	7.50
\vdash		MACMADE	41.0275	122 0002	2.4	224	4J 50	26.0	10.1		
		IVIGIVIUS	40.0373	130.3330	2.4	100	30	20.9	21.2		7.72
	MCMOE MICHAGE MICHAGE	IVIGIVIUB	39.0390	130.7039	2.0	100	45	52.0	21.2		
13	WGW05+WGW06+WGW07+WG	MGM07	39.4760	138.3241	2.2	29	40	54.3	23.0	4.763E+20	
	M10+MGM11+MGM12	MGM10	39.5279	138.7836	0.9	204	45	34.8	22.8		
		MGM11	39.4838	138.5924	0.9	188	45	26.5	22.8		
		MGM12	39.2451	138.5916	1.0	192	45	40.1	22.6		
14	MGM08+MGM09	MGM08	39.6230	139.2621	0.8	219	40	39.3	25.2	2 257E+20	7 50
1.4	WGW00TWGW05	MGM09	39.6744	138.9925	0.5	187	50	58.7	21.5	2.2372720	7.50
15	AKTO2: AKTO2	AKT02	39.7696	139.7109	0.0	346	51	30.5	19.3	8 5075-10	7 7 7
13	AKTUZTAKTUS	AKT03	40.2861	139.8916	0.1	190	60	33.2	19.5	0.3072+19	1.22
10	44703-44704	AKT02	39.7696	139.7109	0.0	346	51	30.5	19.3	1.0525.20	7 30
16	AKTUZ+AKTU4	AKT04	40.3618	139.7371	0.1	174	55	38.2	20.6	1.053E+20	7.28
1		AKT05	39.9560	139.6498	0.8	209	50	38.4	21.1		1000000
17	AKT05+AKT06	AKT06	39.8183	139.5870	0.3	184	45	45.3	23.6	1.881E+20	7.45
		AKT02	39 7696	139 7109	0.0	346	51	30.5	193	+ +	
18	AKT02+AKT07	AKT02	39 9012	139 9367	0.0	200	45	52.5	22.0	1.868E+20	7.45
		AKT07	39 0012	139 0267	0.1	200	45	52.5	22.0	.9	7.64
10	AKTOZ CUNOA CUNOC	CUNO4	20 4204	120 7057	0.1	200	43	53.5	23.9	3.596E+20	
19	AKTU/+3HN04+3HN00	SHNU4	39.4281	139.7057	0.4	200	50	51.9	21.7		
-		SHINUG	38.9935	139.3964	0.6	243	45	51.4	23.2		
20	MRK09+SD08	MRK09	38.6478	138.8332	1.0	195	45	31.6	22.6	1.924F+20	7.46
1-0		SD08	38,4166	1138.6880	0.4	216	45	51.5	23.5		

		1									
No	5-7名	新聞名	始点緯度	始点経度	上端深さ	走向	傾斜	長さ	幅	Mo	Max
140.	7-24	周1宿10	(北緯,度)	(東経,度)	(km, TP-)	(度)	(度)	(km)	(km)	(Nm)	IVIV
		SHN06	38.9935	139.3964	0.6	243	45	51.4	23.2		
		MRK05	38.7963	138.8301	0.6	199	45	40.7	23.2	10/10/2012/02/2012	1000000000
21	SHN06+MRK05+MRK06+SD08	MRK06	38.9478	138.9190	0.6	218	45	29.5	23.2	4.029E+20	7.67
		5008	38,4166	138,6880	0.4	216	45	51.5	23.5	t I	
		SHNOG	38 9935	139 3964	0.6	243	45	51.4	23.2		
		MPKOS	38 7963	138 8301	0.6	199	45	40.7	23.2	1	
22	SHN06+MRK05+MRK06+SD08+S D06	MPKOG	20 0470	120 0100	0.0	210	45	20.5	23.2	4 6795+20	7 71
22		IVIKKU0	30.3470	130.9190	0.0	210	45	29.5	23.2	4.0766+20	1./1
		5008	38.4100	130.0000	0.4	210	45	22.0	23.5	-	
-		SD06	38.0925	138.0729	1.4	38	45	33.8	19.2		
		SHN06	38.9935	139.3964	0.6	243	45	51.4	23.2		
		MRK05	38.7963	138.8301	0.6	199	45	40.7	23.2		
23	SHN06+MRK05+MRK06+SD08+S	MRK06	38.9478	138.9190	0.6	218	45	29.5	23.2	5 426E+20	7.76
25	D06+SD05	SD08	38.4166	138.6880	0.4	216	45	51.5	23.5	5.4202720	1.10
		SD06	38.0925	138.0729	1.4	38	45	33.8	19.2		
-		SD05	37.7101	138.0259	2.6	4	45	42.7	17.5		
		SHN08	38.8955	139.5032	0.5	228	45	34.2	23.3		1
24	SHN08+MRK03+ECG04	MRK03	38.6836	139.2177	0.6	201	45	40.1	23.2	2.965E+20	7.58
201		FCG04	38.3175	139.0591	0.4	220	45	52.7	23.5		1000
-		SHN08	38,8955	139,5032	0.5	228	45	34.2	23.3		-
		MPKO2	38 6836	139 2177	0.6	201	45	40.1	23.2	1	7.65
25	SHN08+MRK03+ECG04+SD07	ECC04	38 3175	130.0501	0.0	201	45	52.7	23.2	3.762E+20	
		ECG04	30.31/3	139.0391	0.4	220	43	32.7	23.3		
<u> </u>		SD07	37.8999	138.2538	0.0	44	45	37.0	21.2		
	SHN08+MRK03+ECG04+SD04+S D02	SHN08	38.8955	139.5032	0.5	228	45	34.2	23.3	3.913E+20	7.66
1.202		MRK03	38.6836	139.2177	0.6	201	45	40.1	23.2		
26		ECG04	38.3175	139.0591	0.4	220	45	52.7	23.5		
		SD04	37.9853	138.6489	2.0	212	50	34.2	17.0		
		SD02	37.7301	138.4346	2.0	177	42	15.4	23.9		
		SHN08	38.8955	139.5032	0.5	228	45	34.2	23.3		
		MRK03	38.6836	139.2177	0.6	201	45	40.1	23.2		
27	SHN08+MRK03+ECG04+SD04+S	ECG04	38.3175	139.0591	0.4	220	45	52.7	23.5	1 7105.00	
21	D02+SD07	SD04	37.9853	138.6489	2.0	212	50	34.2	17.0	4.710E+20	1.12
	12/12/12/12/12/12	SD02	37.7301	138.4346	2.0	177	42	15.4	23.9	1	
		SD07	37,8999	138,2538	0.0	44	45	37.6	21.2	t l	
		SHN08	38,8955	139 5032	0.5	228	45	34.2	23.3		
		MRK03	38 6836	139 2177	0.6	201	45	40.1	23.0		
	COLUMN TO MENT	ECCOA	39 3175	130.0501	0.0	2201	45	52.7	22.5	1	
20	SHN08+MRK03+ECG04+SD04+S	6004	30.3173	139.0391	0.4	220	45	34.7	17.0	F 2055.20	7.75
28	D02+SD07+SD11	SD04	37.9853	138.6489	2.0	212	50	34.2	17.0	5.365E+20	
		SD02	37.7301	138.4346	2.0	1//	42	15.4	23.9	-	
		SD07	37.8999	138.2538	0.0	44	45	37.6	21.2	4	
		SD11	38.2287	138.7915	0.5	220	45	28.1	23.3		
		SHN09	38.5650	139.1967	0.3	33	40	25.1	26.0		
29	SHN09+MRK01+ECG03	MRK01	38.5490	139.4038	0.3	206	45	34.3	23.6	2.033E+20	7.47
		ECG03	38.2674	139.2410	0.1	192	45	23.9	23.9		
		MRK01	38.5490	139.4038	0.3	206	45	34.3	23.6	1.772E+20	
30	MRK01+ECG03+ECG05	ECG03	38.2674	139.2410	0.1	192	45	23.9	23.9		7.43
		ECG05	37.9986	139.1920	0.1	203	45	16.8	23.9	1	
		SHN09	38.5650	139.1967	0.3	33	40	25.1	26.0		
		MRK01	38,5490	139,4038	0.3	206	45	34.3	23.6	2.436E+20	
31	SHN09+MRK01+ECG03+ECG05	ECG02	38,2674	139 2410	0.1	192	45	23.9	23.9		7.52
		ECCOF	37 9986	139 1920	01	203	45	16.8	23.9		
	La de contrata de contrata de contrata de la contra	CUNIT	38 1096	130 4507	0.1	205	30	27.6	20.0		
32	SHN11+MRK02	SHIVII	30.4980	139.4387	0.1	24	30	27.0	23.8	1.918E+20	7.46
-	respondents and a set of the second second second	IVIRKU2	38.2132	139.3292	0.1	25	30	32.4	33.8	33.8	
-		SHN11	38.4986	139.4587	0.1	24	30	27.6	29.8		
33	SHN11+MRK02+ECG01	MRK02	38.2132	139.3292	0.1	25	30	32.4	33.8	2.4/9E+20	1.53
		ECG01	37.9888	139.2995	0.0	33	40	24.0	23.3		

表1 簡便法による強震動予測のための断層パラメータ(続き)

図22 強震動予測の検討対象とした北海道南西沖~新潟沖周辺の矩形断層モデル(赤: 簡便法の検討対象とした断層、青:平成31(令和元)年度以前に検討済の断層、黒: その他の断層、実線が断層上端を表す)

図 23 若松・松岡(2020)¹⁷⁾の地形・地盤分類 250 m メッシュマップに基づく地盤増幅率

図 24 簡便法による地表の震度分布(OS11 断層)

図 25 簡便法による地表の震度分布(AKT01 断層)

図 27 簡便法による地表の震度分布(AKT09 断層)

図 28 簡便法による地表の震度分布 (SHN03 断層)

図 29 簡便法による地表の震度分布 (MMS01+MMS02+MMS03+MMS04+MGM01 断層)

図 31 簡便法による地表の震度分布 (MMS01+MMS02+MMS03+MMS04+MGM01+NTG05+NTG06 断層)

図 32 簡便法による地表の震度分布 (OK09+OS10+NTG01+NTG03 断層)

図 33 簡便法による地表の震度分布(OK04+OK09+OS10+NTG01+NTG03 断層)

図 34 簡便法による地表の震度分布 (NTG04+NTG07 断層)

図 35 簡便法による地表の震度分布 (NTG04+NTG07+TGR01 断層)

(MGM05+MGM06+MGM07+MGM10+MGM11+MGM12 断層)

図 37 簡便法による地表の震度分布(MGM08+MGM09 断層)

図 38 簡便法による地表の震度分布 (AKT02+AKT03 断層)

図 39 簡便法による地表の震度分布 (AKT02+AKT04 断層)

図 40 簡便法による地表の震度分布(AKT05+AKT06 断層)

図 41 簡便法による地表の震度分布(AKT02+AKT07 断層)

図 42 簡便法による地表の震度分布 (AKT07+SHN04+SHN06 断層)

図 43 簡便法による地表の震度分布(MRK09+SD08 断層)

図 44 簡便法による地表の震度分布 (SHN06+MRK05+MRK06+SD08 断層)

図 45 簡便法による地表の震度分布(SHN06+MRK05+MRK06+SD08+SD06 断層)

図 47 簡便法による地表の震度分布(SHN08+MRK03+ECG04 断層)

図 48 簡便法による地表の震度分布 (SHN08+MRK03+ECG04+SD07 断層)

図 49 節便法による地表の震度分布 (SHN08+MRK03+ECG04+SD04+SD02 断層)

図 52 簡便法による地表の震度分布 (SHN09+MRK01+ECG03 断層)

図 53 簡便法による地表の震度分布 (MRK01+ECG03+ECG05 断層)

図 54 節便法による地表の震度分布 (SHN09+MRK01+ECG03+ECG05 断層)

図 55 簡便法による地表の震度分布 (SHN11+MRK02 断層)

図 56 簡便法による地表の震度分布 (SHN11+MRK02+ECG01 断層)

b) 詳細法による強震動予測のための震源モデルの設定

簡便法による強震動予測結果も踏まえ、秋田沖から庄内沖にかけての AKT07+SHN04+ SHN06 断層、庄内沖から越後平野にかけての SHN09+MRK01+ECG03+ECG05 断層、同 じく庄内沖から越後平野東部にかけての SHN11+MRK02+ECG01 断層を対象に、統計的 グリーン関数法を用いた詳細法による強震動予測を実施した。簡便法と同様に、矩形断層 の位置、形状については、サブサブテーマ 2.5 の成果(本プロジェクト平成 31(令和元) 年度成果報告書)に従った。サブサブテーマ 2.5 からは矩形断層モデルが提供されている ため、これを基に、地震調査研究推進本部の「震源断層を特定した地震の強震動予測手法 (レシピ)」¹⁹⁾を参考にして、強震動生成域(アスペリティ)及び背景領域のパラメータ 設定を行った。3 ケースとも、地震モーメントが 1.0×10²⁰ Nm を超えているため、地震モ ーメントと断層面積の関係はステージ3の式200を使用している。それぞれの断層に対し て、破壊様式の違いによる強震動予測結果の違いを把握するため、破壊開始点の異なる 2 ケースのシナリオを想定した。それらの震源断層破壊シナリオに基づいて統計的グリーン 関数法による波形合成を行い、地表面での最大速度及び震度分布を推定した。3 断層モデ ルに対して各2ケースの破壊シナリオを設定したため、詳細法の計算ケース数は6である。 表 2~4 に各断層で設定したパラメータの一覧をまとめた。ここでの震源断層パラメータ 設定は、強震動の試算を目的としているため、サブサブテーマ 2.5 から提供された震源断 層の矩形モデルのうち地震基盤よりも上にある部分(図 57~59 の太実線より浅い部分) については、地震発生層の外であるとして、特性化震源モデルの背景領域として含めてい ない。この点は、サブサブテーマ 3.1 で行われている津波予測のための震源モデルとは異 なる設定となっている。

AKT07+SHN04+SHN06 断層に対しては、各断層に 3 つずつの強震動生成域を配置した。AKT07 断層の最も北に位置する強震動生成域の下端中央から破壊開始するケース (ケース 1) と、SHN06 断層の最も南西に位置する強震動生成域の下端中央から破壊開始するケース (ケース 2) の 2 つの破壊シナリオを想定した。図 57 には強震動生成域 (Asp.)の配置及び破壊時刻分布を示している。破壊時刻分布の図面では、白抜きの☆印が震源断層破壊シナリオ全体の破壊開始点を表す。黒色の★印は、異なる断層間で破壊が乗り移る際の、各断層の破壊開始位置を示している。以下、他のケースにおいても同様である。

SHN09+MRK01+ECG03+ECG05 断層に対しては、SHN09、MRK01、ECG03 の各断層に2つ、ECG05 断層に1つの強震動生成域を配置した。SHN09 断層の北寄りに位置する強震動生成域の下端中央から破壊開始するケース(ケース1)と、ECG05 断層の強震動生成域の下端中央から破壊開始するケース(ケース2)の2つの破壊シナリオを想定した。図 58 には強震動生成域の配置及び破壊時刻分布を示している。

SHN11+MRK02+ECG01 断層に対しては、各断層に 2 つずつの強震動生成域を配置した。ECG01 断層の最も南寄りに位置する強震動生成域の下端中央から破壊開始するケース(ケース 1) と、SHN11 断層の北寄りに位置する強震動生成域の下端中央から破壊開始するケース(ケース 2) の 2 つの破壊シナリオを想定した。図 59 には強震動生成域の配置及び破壊時刻分布を示している。

527

- 138.5° 139° 139.5° 140° 140.5° 141° 40.5° + 40.5° Depth (km) 10 20 0 40° 40° AKT07 Asp1 D Asp1-Asp1-39.5° 39.5° Asp2-SHN04 Asp2-2 Asp2-3 Asp3-39° 39° Asp3-2 Asp3-3 SHN06 20 km 38.5° 38.5° 138.5° 139° 139.5° 140° 140.5° 141°
- (a) 震源断層モデルと強震動生成域の配置

(b) ケース1破壊時刻分布

(c) ケース2破壊時刻分布

図 57 設定した震源モデルの模式図(AKT07+SHN04+SHN06 断層)

パラメータ	記号		設定值						単位	設定根拠		
其 進占統府(冊思測研究)			20 0007			20 4220			29.0104		the	正式知られたい、産成単雄生またもし、大変該ついた
新建市部市区(区部市市市) 新建市部市(研究)	-		120 0055		-	120 6946			120 2040		104	平成3111年2月中央成末報日音255元平東防で放定 並出911金和志祥市産は単雄先またたい・大衆政当時空
加生成(位)(加七元/			2.9			27			27		km	王成明行和元件受成未報日報ともとに平来特に設定
金中原体で			200			200			243		197	王成31(金和平)在唐波里報告書
植斜			45			50			45		18	平成31(会和デ)在廣設果報告書
すべり角			98		-	97			119		度	平成31(会和元)年度成果報告書
新帰長さ(走向方向)	L		54			52			51		km	形成31(会和元)化度成果報告書
(全体)断層長さ(走向方向)	L					157					km	$L = \Sigma L$
地震発生層上端深さ	Н.		2.9		1	2.7			2.7		km	平成31(合和元)年度成果報告書をもとに本業務で設定
地震発生層下端深さ	HA		17.0			17.0			17.0		km	平成31(令和元)年度成果報告書をもとに本業務で設定
地震発生層の厚さ	Τ.		14.1			14.3			14.3		km	$T_s = H_d - H_s$
断層幅(傾斜方向)	W,		20			19			20		km	平成31(令和元)年度成果報告書をもとに本業務で設定
断層面積	S,		1080		988 1020 1					km ²	$S_i = L_i \times W_i$	
(全体)断層面積	S					3088					km ²	$S = \Sigma S_1$
(AH) HERE - 0.1						0.005-00						S×10 ¹⁷
(主体)地震モーメント	M ₀					3.09E+20						(Murotani et al., 2015)
(全体)チーメントマグニチュード	M.					7.6						$(\log_{10}M_0 - 9.1) / 1.5$
												(Hanks and Kanamori, 1979)
(全体)断層全体の平均すべり量					r	3.1					m	$D = M_0/\mu S$
地震モーメント	M _{0i}		1.11E+20			9.67E+19		1.01E+20				$M_{0i} = (S_i^{+\omega} / \Sigma S_i^{+\omega}) M_0$
断層全体の評的心力降下重	10 D		3.1			3.1		3.1				Fujii and Matsuura (2000) $D = M_c/uS$
前席主体の干約9759重	11		3.2			10		3.1				10 - 3467 µ5
小断庸我已(龙向方向)	AW					1.0						予約で以上 未高路つ時定
アスペリティ約面積の第価単級	R		87			8.3		85				$P = (S / \sigma)^{1/2}$
アスペリティの設置時	S		227.6			217.4			224.4		lun2	S = 0.22S
アスベリティの設示請(計算用)	S'		2430		1	216.0			216.0		Km Im ²	大會該中時常
	~ *				-	210.0			210.0		NIII	$D_{2} = 2.0D_{1}$
アスペリティの平均すべり量	D.,	6.4			6.2			6.3			m	(Somerville et al., 1999; 石井·他, 2001)
アスペリティの総地震モーメント	Man	4.87E+19			4.26E+19			4.47E+19			Nm	$M_{0s} = \mu D_s S_s$
アスペリティ面積/断層面積比	S./S	0.22			0.22			0.22				
アスペリティの実効応力	Δσ.		14.1			14.1		14.1		MPa	$\Delta \sigma_{a} = (S_{J}/S_{a}) \Delta \sigma$ (Madariaga, 1979)	
各アスペリティの番号		Asp.1-1	Asp.1-2	Asp.1-3	Asp.2-1	Asp.2-2	Asp.2-3	Asp.3-1	Asp.3-2	Asp.3-3		
各アスペリティ面積の等価半径	Rai	5.0	5.0	5.0	4.8	4.8	4.8	4.9	4.9	4.9	km	面積比を1:1:1とした
各アスペリティの等価半径の比率	71	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58		$\gamma_J = R_{sl} / R_s$
各アスペリティの面積	Sai	79.2	79.2	79.2	72.5	72.5	72.5	74.8	74.8	74.8	km ²	$S_{st} = \pi R_{st}^2$
各アスペリティの画積(計算用)	S' al	81.0	81.0	81.0	72.0	72.0	72.0	72.0	72.0	72.0	km ²	$L_{a}^{*} \times W_{a}^{*}$
各アスペリティの平均すべり量	D_{si}	6.4	6.4	6.4	6.2	6.2	6.2	6.3	6.3	6.3	m	$D_{st} = (\gamma_t / \Sigma \gamma_t^3) D_s$
各アスペリティの地震モーメント	Mou	1.62E+19	1.62E+19	1.62E+19	1.42E+19	1.42E+19	1.42E+19	1.49E+19	1.49E+19	1.49E+19	Nm	$M_{0ac} = \mu D_{ac} S_{ac}$
各アスペリティの実効応力	$\sigma_{\rm al}$	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	MPa	Δσ。に等しいと仮定
各アスペリティの長さ(走向方向)(計算用)	L_s	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	km	本業務で設定
各アスペリティの幅(傾斜方向)(計算用)	W"_a	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	km	本業務で設定
各アスペリティのライズタイム	Tr _s	1.8	1.8	1.8	1.6	1.6	1.6	1.6	1.6	1.6	8	$Tr_{a} = 0.5W_{a}^{*}/V_{s}$
背景領域の総地震モーメント	M ₀₀ .		6.19E+19 5.42E+19 5.68E+19						Nm	$M_{0b} = M_{0i} - M_{0a}$		
背景領域の総面積	Sb.		842.4			770.6			795.6		km ²	$S_{b} = S - S_{a}$
背景領域の総面積(計算用)	S'6	837.0			772.0			804.0			km ²	本業務で設定
背景領域の平均すべり量	Db	2.3			2.2			22			m	$D_{\rm b} = M_{0b} / \mu S_{\rm b}$
背景領域の実効応力	σ _b		2.3 2.3 2.2					MPa	$\sigma_{b} = (D_{b} / W) \times (\pi^{1/2} / D_{s}) \times r \times \Sigma_{7}^{s} \times \sigma_{b}$			
各背景領域のライズタイム	Tr_b		4.1			3.9		4.1			8	$Tr_b = 0.5W / V_r$ (Dav. 1982)
S波速度	β		3.4			3.4			3.4		km/s	J-SHIS 深部地盤モデルV2
密度	P		2.75			2.75			2.75			J-SHIS 深部地盤モデルV2
剛性率	μ		31.8		31.8			31.8			GPa	$\mu = \rho \beta^2$
破壊伝播速度	F_{i}		2.4			2.4			2.4		km/s	$V_{i} = 0.72\beta$ (Geller, 1976)
破壊様式			同心円破壊			同心円破壊	à la chi		同心円破壊			本業務で設定
高周波数遮断フィルター	fna				V	9.4					Hz	Tsurugi et al. (2020)
フィルター形状			1/(1+(f/9.4) ¹⁶⁸) ^{1/2}									Tsurugi et al. (2020)

表 2 AKT07+SHN04+SHN06 断層の震源断層パラメータ

図 58 設定した震源モデルの模式図 (SHN09+MRK01+ECG03+ECG05 断層)

パラメータ	記号	設定值							単位	設定根拠
		SH	N09	MR	K01	EC	G03	ECG05		
基準点緯度(世界測地系)		38.5	5/4	38.5	1547	38.2	2/56	38.0138	度	平成31(令和元)牛皮成朱報告書をもとに本業榜で設定
基準点程度(世界測地系)		139.3	2114	139.	3893	139.	1936	139.1477	度	平成31(令和元)年度成果報告書をもとに本業務で設定
基準点深さ		1.	6	1	.7	4	.3	4.3	km	平成31(令和元)年度成果報告書をもとに本業務で設定
走向		3	3	20	06	19	92	203	度	平成31(令和元)年度成果報告書
傾斜		4	0	4	5	4	5	45	度	平成31(令和元)年度成果報告書
すべり角		9	5	10	03	9	3	91	度	平成31(令和元)年度成果報告書
断層長さ(走向方向)	L_i	2	5	3	4	2	4	17	km	平成31(令和元)年度成果報告書
(全体)断層長さ(走向方向)	L				100				km	$L = \Sigma L_i$
地震発生層上端深さ	H_{i}	1.6 1.7		.7	4.3		4.3	km	平成31(令和元)年度成果報告書をもとに本業務で設定	
地震発生層下端深さ	H_{d}	17	17.0 17.0		15	5.0	15.0	km	平成31(令和元)年度成果報告書をもとに本業務で設定	
地震発生層の厚さ	T _a	15	.4	15.3 10.7		0.7	10.7	km	$T_{s} = H_{d} - H_{s}$	
断層幅(傾斜方向)	W,	24 22		2	1	8	18	km	平成31(令和元)年度成果報告書をもとに本業務で設定	
断層面積	S_i	600		74	48	4:	32	306	km ²	$S_i = L_i \times W_i$
(全体)断層面積	S				2086				km ²	$S = \Sigma S_{i}$
(会体)地震エーかん	M.				2 00E+20				Nm	S×10 ¹⁷
(主体)必要モーアンド	M ₀				2.032.120	1500	(Murotani et al., 2015)			
(全体)モーメントマグニチュード	$M_{\rm w}$	7.5								$(\log_{10}M_0 - 9.1) / 1.5$
										(Hanks and Kanamori, 1979)
(全体)断層全体の平均すべり量					3.1				m	$D = M_0 / \mu S$
地震モーメント	Mov	6.20	E+19	8.62	E+19	3.78	E+19	2.26E+19	Nm	$M_{0i} = (S_i^{N_2} / \Sigma S_i^{N_2}) M_0$
断層全体の静的応力降下量	Δσ	3.	1	3	.1	3	.1	3.1	MPa	Fujii and Matsu'ura (2000)
断層全体の平均すべり量	Di	3.	2	3	.6	2	.8	2.3	m	$D = M_0 / \mu S$
小断層長さ(走向方向)	dL				1.0				km	本業務で設定
小断層幅(傾斜方向)	dW				1.0				km	本業務で設定
アスペリティ総面積の等価半径	R _a	6.	5	7	2	5	.5	4.6	km	$R_{s} = (S_{s} / \pi)^{1/2}$
アスペリティの総面積	S _a	13	2.0	16	4.6	95	5.0	67.3	km ²	$S_{a} = 0.22S_{i}$
アスペリティの総面積(計算用)	S'	13	6.0	16	3.0	89).0	64.0	km ²	本業務で設定
アスペリティの平均すべり量	D_{a}	6.5		7.3		5.5		4.6	m	$D_s = 2.0D_i$ (Somerville et al. 1999: 77 $\# \cdot \oplus 2001$)
アスペリティの総地震モーメント	Mon	2.73E+19		3.79E+19		1.67E+19		9.93E+18	Nm	$M_{\rm fbs} = \mu D_{\rm s} S_{\rm s}$
アスペリティ面積/断層面積比	5.15	0.22		0.22		0.22		0.22		
								$\Delta \sigma_s = (S_s / S_s) \Delta \sigma$		
アスペリティの実効応力	$\Delta \sigma_{s}$	14	.1	14	L1	14	1.1	14.1	MPa	(Madariaga, 1979)
各アスペリティの香号		Asp.1-1	Asp.1-2	Asp.2-1	Asp.2-2	Asp.3-1	Asp.3-2	Asp.4-1	1000	TRANS A CONTRACT OF A STATE AND A
各アスペリティ面積の等価半径	Rai	5.5	3.4	6.2	3.8	4.7	2.9	4.6	km	面積比を16:6とした(人倉・三宅, 2001)
各アスペリティの等価半径の比率	71	0.85	0.52	0.85	0.52	0.85	0.52	1.00		$\gamma_I = R_{ai} / R_{a}$
各アスペリティの面積	S _{ai}	96.0	36.0	119.7	44.9	69.1	25.9	67.3	km*	$S_{st} = \pi R_{st}$
各アスペリティの面積(計算用)	S'ai	100.0	36.0	121.0	42.0	64.0	25.0	64.0	km	$L'_{a} \times W'_{a}$
各アスペリティの平均すべり量	D ai	7.3	4.4	8.1	5.0	6.2	3.8	4.6	m	$D_{si} = (\gamma_1 / \Sigma \gamma_1^{-s}) D_s$
各アスペリティの地震モーメント	M _{0ai}	2.22E+19	5.09E+18	3.09E+19	7.09E+18	1.35E+19	3.11E+18	9.93E+18	Nm	$M_{0\omega} = \mu D_{\omega} S_{\omega}$
各アスペリティの実効応力	$\sigma_{n!}$	14.1	14.1	14.1	14.1	14.1	14.1	14.1	MPa	Δσ。に等しいと仮定
各アスペリティの長さ(走向方向)(計算用)	L'a	10.0	6.0	11.0	7.0	8.0	5.0	8.0	km	本業務で設定
各アスペリティの幅(傾斜方向)(計算用)	₩.	10.0	6.0	11.0	6.0	8.0	5.0	8.0	km	本業務で設定
各アスペリティのライズタイム	Tra	2.0	1.2	2.2	1.2	1.6	1.0	1.6	8	$Tr_s = 0.5W'_s / V_r$
背景領域の総地震モーメント	M 06	3.47	E+19	4.83	E+19	2.12	E+19	1.26E+19	Nm	$M_{0b} = M_{0t} - M_{0s}$
背景領域の総面積	Sb	46	B.O	58	3.4	33	7.0	238.7	km ²	$S_b = S - S_a$
背景領域の総面積(計算用)	S' b	46	4.0	58	5.0	34	3.0	242.0	km ²	本業務で設定
背景領域の平均すべり量	Db	2.	3	2	.6	2	.0	1.7	m	$D_{\rm b} = M_{\rm 0b} / \mu S_{\rm b}$
背景領域の実効応力	$\sigma_{\rm b}$	1.	8	2	2	2	.1	2.2	MPa	$\sigma_b = (D_b / W) \times (\pi^{1/2} / D_a) \times r \times \Sigma \gamma^3 \times \sigma_a$
各背景領域のライズタイム	Trb	4.9		4.5		3.7		3.7	s	$Tr_{b} = 0.5W / V_{r}$ (Day 1982)
S波速度	β	3.4 3.4		3	3.4		km/s	J-SHIS 深部地盤モデルV2		
密度	P	2	75	2.75		2.75		2.75	g/cm3	J-SHIS 深部地盤モデルV2
剛性率	μ	31	.8	31.8		31.8		31.8	GPa	$\mu = \alpha R^2$
	E.						~ ~	1.	$V_s = 0.72\beta$	
皈珉伝播速度	P _R	2.	4	2	.4	2	.4	2.4	km/s	(Geller, 1976)
破壊様式		同心F	同心円破壊 同心円破壊			同心円破壊 同心円破				本業務で設定
高周波数遮断フィルター	fmar	1			9.4				Hz	Tsurugi et al. (2020)
フィルター形状		1/(1+(f/9.4) ^{1.68}) ^{1/2}								Tsurugi et al. (2020)

表 3 SHN09+MRK01+ECG03+ECG05 断層の震源断層パラメータ

(a) 震源断層モデルと強震動生成域の配置

図 59 設定した震源モデルの模式図 (SHN11+MRK02+ECG01 断層)

パラメータ	紀長	設定値							設定規模
(株)株 と (株)株 (単) (株) (本) (本)	114.7	ECG01		MRK02		SHN11			The board of the "A branched by the state of
泰华点料度(世界测地系) 林佛上结束(世界测地系)		37.9774		38.2065		38.4921		度	平成31(令和元)平度成朱報告書をもとに本条務で設定
基準点栓度(世界測地系)		139,3213		139.3470		139.4768		度	平成31(令和元)年度成果報告書をもとに本業務で設定
基準点深さ		1.9		1.1		1.1		km	平成31(令和元)牛皮成朱報告書をもとに本業物で設定
走向		33		25		24		度	半成31(令和元)年度成果報告書
傾料		40		30		30		度	平成31(令和元)年度成果報告書
すべり角	1.00	95		87		86		度	半成31(令和元)年度成果報告書
断層長さ(走向方向)	Li	24		32		28		km	半成31(令和元)年度成果報告書
(全体)断層長さ(走向方向)	L			84				km	$L = \Sigma L_i$
地震発生層上端深さ	H_{s}	1.	9	1,1		1,1		km	平成31(令和元)年度成果報告書をもとに本業務で設定
地震発生層下端深さ	H _d	15	.0	17.0		15.0		km	平成31(令和元)年度成果報告書をもとに本業務で設定
地震発生層の厚さ	Τ,	13.1		15.9		13.9		km	$T_s = H_d - H_s$
断層幅(傾斜方向)	W_{I}	2	0	32		28		km	平成31(令和元)年度成果報告書をもとに本業務で設定
断層面積	S _i	48	0	1024		784		km ²	$S_i = L_i \times W_i$
(全体)断層面積	S			22	88			km ²	$S = \Sigma S_i$
(全体)地震モーメント	M_0			2.29	E+20			Nm	$S \times 10^{17}$ (Murotani et al. 2015)
(合体)エーベルフバーエーード		75							$(\log_{10}M_0 - 9.1) / 1.5$
(エローテントマシーテユート	102 W			× /.					(Hanks and Kanamori, 1979)
(全体)断層全体の平均すべり量				3.	1		101-111-111-11-11-11-11-11-11-11-11-11-1	m	$D = M_0 / \mu S$
地震モーメント	M_{0i}	3.69	E+19	1.15	E+20	7.70	E+19	Nm	$M_{0i} = (S_i^{3/2} / \Sigma S_i^{3/2}) M_0$
断層全体の静的応力降下量	Δσ	3.	1	3.	1	3.1		MPa	Fujii and Matsu'ura (2000)
断層全体の平均すべり量	D_{i}	2.	2.4		3.5		3.1		$D = M_0 / \mu S$
小断層長さ(走向方向)	dL			1.0		8. 		km	本業務で設定
小断層幅(傾斜方向)	dW			1.	0			km	本業務で設定
アスペリティ総面積の等価半径	R _a	5.	8	8.5		7.4		km	$R_{\mu} = (S_{\mu} / \pi)^{1/2}$
アスペリティの総面積	S.	105.6		225.3		172.5		km ²	$S_{a} = 0.22S_{f}$
アスペリティの総面積(計算用)	S'a	102.0		225.0		169.0		km ²	本業務で設定
アスペリティの平均すべり量	D_{a}	4.8		7.1		6.2		m	$D_a = 2.0D_f$
アスペリティの殺地震モーメント	М.	1.62E+19		5.06E+19		3 39E+19		Nm	(Somervine et al., 1999, 4149 \pm 2001) $M_{\pi} = \mu D S$
アスペリティ面積/断層面積比	5./5	0.22		0.22		0.22		- rom	
アスペリティの実効広力	Δσ	14.1		14,1		14.1		MPa	$\Delta \sigma_{\rm s} = (S_{\rm f}/S_{\rm a}) \Delta \sigma$
277 JUE 078 P	All A							Mita	(Madariaga, 1979)
合 アスペリティの 金写	D	Asp.1-1	Asp.1-2	Asp.2-1	Asp.z-z	Asp.3-1	Asp.3-2	- Inne	(20年期時代10.01.1 かく3 か、ごだ 20001)
谷アスペリティ面積の寺価牛住	-R st	4,9	3.0	1.2	4,4	0.3	3.9	ĸm	面積比を16:6とした(人君・三宅, 2001)
合アスヘリティの寺価半住の比率	71	0.85	0.52	0.85	0.52	0.85	0.52		$\gamma_i = R_{ai} / R_a$
各アスペリティの面積	S.M.	76.8	28.8	163.8	61.4	125.4	47.0	km*	$S_{al} = \pi R_{al}$
各アスペリティの面積(計算用)	S'ai	72.0	30.0	169.0	56.0	120.0	49.0	km*	$L'_{k} \times W'_{k}$
各アスペリティの半均すべり量	Dai	5.4	3.3	7.9	4.8	6.9	4.2	m	$D_{ai} = (\gamma_i / \Sigma \gamma_i) D_{a}$
各アスペリティの地震モーメント	M _{0ai}	1.32E+19	3.03E+18	4.11E+19	9.44E+18	2.75E+19	6.33E+18	Nm	$M_{0ai} = \mu D_{ai} S_{ai}$
各アスペリティの実効応力	σ _{ni}	14.1	14.1	14.1	14.1	14.1	14.1	MPa	Δσ_εに等しいと仮定
各アスペリティの長さ(走向方向)(計算用)	L'a	9.0	6.0	13.0	8.0	12.0	7.0	km	本業務で設定
各アスペリティの幅(傾斜方向)(計算用)	W.a	8.0	5.0	13.0	7.0	10.0	7.0	km	本業務で設定
各アスヘリティのフィスタイム	1r _a	1.6	1.0	2.7	1.4	2.0	1.4	8	$Ir_{s} = 0.5W_{s}/V_{r}$
背景領域の総地震モーメント	M _{0b}	2.07E+19		0.44E+19		4.31E+19		Nm	$M_{0b} = M_{0y} - M_{0y}$
背景領域の総面積	36	374	374.4 798.7 611.5		1.5	km*	$S_b = S - S_a$		
背景領域の総面積(計算用)	Sh	378.0 799.0 615.0		5.0	km*	本業務で設定			
背景領域の平均すべり量	D_{b}	1.7		2.5		2.2		m	$D_{\rm b} = M_{\rm 0b} / \mu S_{\rm b}$
背景領域の実効応力	σ_b	2.0		1.8		1.8		MPa	$\boldsymbol{\sigma}_{b} = (\boldsymbol{D}_{b} / \boldsymbol{W}) \times (\boldsymbol{\pi}^{v_{a}} / \boldsymbol{D}_{a}) \times \boldsymbol{r} \times \boldsymbol{\Sigma} \boldsymbol{\gamma}^{s} \times \boldsymbol{\sigma}_{a}$
各背景領域のライズタイム	Tr_{b}	4.1 6.5		5.7		8	$Tr_b = 0.5W/V_r$ (Day, 1982)		
S波速度	β 3.4		3.	4	3.4		km/s	J-SHIS 深部地盤モデルV2	
密度	ρ	2.75		2.75		2.75		g/cm3	J-SHIS 深部地盤モデルV2
剛性率	μ	31.8		31.8		31.8		GPa	$\mu = \rho \beta^2$
破壊伝播速度	<i>V.</i>	2	2.4		2.4		2.4		$V_x = 0.72\beta$
·····································		同心口時時		同心口球性		同心口动物			(Geller, 1976)
「収壊体み」	7	(D)/(D)	JHK 收	IN/UPI	1 HX - 收入	1版表 同心円破壊			や米伤 V 取止 Tanged et al. (2020)
商商波致運動フィルター	J max			9.	*			HZ	Tsurugi et al. (2020)
ノイルダー形状				1/(1+(f/9	1.4))				i surugi et al. (2020)

表 4 SHN11+MRK02+ECG01 断層の震源断層パラメータ

c) 統計的グリーン関数法による予測地震動の計算

地震動計算手法には統計的グリーン関数法を用いた。ω² 則に従うスペクトルモデル (Boore、1983)²¹⁾を用いて統計的グリーン関数を作成し、これを要素地震として入倉 (1994)の手法²²⁾を用いて波形合成を行った。破壊伝播速度には、乱数による一定のば らつきを与えている。高周波数遮断フィルターの遮断周波数*f*_{max}は、Tsurugi et al. (2020)²³⁾ による 9.4 Hz を用いた。フィルター形状は表 2~4 に記載している。統計的グリーン関数 法のサブ断層サイズは 1 km×1 km とした。統計的グリーン関数法の計算出力地点は、J-SHIS の深部地盤モデル V2 のメッシュ中心点とした。J-SHIS 深部地盤モデル V2 では、 旧日本測地系の第 3 次メッシュコード毎に各層境界の深さが与えられており、そのメッシ ュ間隔は約 1 km (緯度方向の間隔 30 秒、経度方向の間隔 45 秒)である。計算地点毎に 直下の深部地盤構造のパラメータ(P及び S 波速度、密度、Q 値)をJ-SHIS 深部地盤モ デル V2 から抽出することにより、水平成層構造として与えた。地震基盤から深部地盤に 入射した地震動の応答は、Haskell matrix 法²⁴⁾により評価し、工学的基盤(ここでは Vs = 600 m/s 層の上面) での予測波形を得た。

次に、若松・松岡(2020)による地形・地盤分類250 mメッシュマップ(2020年更新版)10 に登載されている表層地盤のAVS30のデータを用い、工学的基盤でのPGVを藤本・翠川(2006)によるAVS30とPGV増幅率の経験式16)を用いて換算し、地表のPGVを求めた。最後に、藤本・翠川(2005)の地表PGVと計測震度の経験式18)を用いて、地表の計測震度 JMAを得た。これらの経験式は、前述の簡便法で記載したものと同じである。このとき、表層地盤のAVS30のデータは世界測地系(日本測地系2000)の4分の1地域メッシュコード(約250 m 間隔)に対して与えられているため、以下の手続きで計算した。まず、地形・地盤分類250 m メッシュマップの各メッシュの4分の1地域メッシュコードに対応する緯度・経度を旧日本測地系に変換した後、旧日本測地系の4分の1地域メッシュコードに対応する緯度・経度を旧日本測地系4分の1地域メッシュコードに対応する工学的基盤での予測波形に、AVS30データによる地盤増幅率を適用し、約250 m 間隔での予測震度分布を得た。地図などへの作図に際しては、再度測地系を世界測地系に戻す作業を行った。

AKT07+SHN04+SHN06 断層の地震を想定した強震動予測結果を図 60~63 に示す。各 ケースについて、工学的基盤上での最大速度(ケース 1:図 60、ケース 2:図 62)、地表 での震度(ケース 1:図 61、ケース 2:図 63)の分布を掲載する。同様に、SHN09+MRK01 +ECG03+ECG05 断層の地震を想定した結果を図 64~67、SHN11+MRK02+ECG01 断層 の地震を想定した結果を図 68~71 に示す。

秋田沖から庄内沖のAKT07+SHN04+SHN06 断層の強震動予測結果(図 60~63)では、 ケース1、2 ともに八郎潟周辺や秋田平野、能代平野などで震度 6 強以上の強い地震動が 試算された。特にケース1では、震度7の領域が男鹿半島から秋田平野にかけて広がって いる。簡便法の結果(図 42)は両者の中間くらいになっている。庄内平野や本荘平野周辺 の地震動は、ケース1ではほぼ震度5強であるのに対し、ケース2では震度6弱、地盤増 幅率の高いエリアでは震度6強となっている。これは、SHN06の南西寄りから始まった 破壊が、庄内平野の方向に向かって進展することによると解釈でき、破壊シナリオによっ ては、地震動の強さは震度階で1~2程度変わることを示している。このように、詳細法で は強震動生成域や破壊様式を考慮していることが、地点毎の予測地震動の差異に現れてい る。また、やや遠方の内陸部に位置する横手盆地周辺では、詳細法による震度は震度 5 強 程度であり、簡便法による予測よりも少し小さい。これは、本検討では震源断層に近いエ リアでの震度を予測することを主目的として、主として S 波の波形合成を行う統計的グリ ーン関数法を計算手法として選択しているのに対して、遠方では表面波の寄与が相対的に 大きくなるためである。予測地震動を利用する際は、そういった点にも注意する必要があ る。

庄内沖から新潟沖の SHN09+MRK01+ECG03+ECG05 断層の強震動予測結果(図 64~ 67)では、ケース1、2ともに震源断層の一部が陸域にかかっている越後平野で震度6強 ~7の強震動が広い範囲に分布している。特に、ECG05の強震動生成域が深部から地表に 向けて up-dip 方向に破壊伝播するケース2で、震度がより大きくなっている。庄内平野 においても、震度5強~6弱、地点によっては6強と強い地震動が予測された。今回の検 討では、北の SHN09 断層からの破壊伝播と南の ECG05 断層からの破壊伝播の2ケース を試算したため、震源断層のほぼ中央部付近(MRK01 断層の直上)に位置する粟島での 予測震度は両ケースで同程度であったが、震源断層全体の破壊シナリオによってはより大 きくなる可能性もあることにも注意が必要である。全体的な震度分布は簡便法による予測 結果(図 54)ともほぼ対応している。

庄内沖から越後平野の海岸沿いに分布する SHN11+MRK02+ECG01 断層の強震動予測 結果(図 68~71)でも、越後平野をはじめ新潟県と山形県の広い範囲で震度 6 弱~7 とな った。深部地盤構造を構成する堆積層がとても厚い越後平野では、ECG01 の強震動生成域 が深部から地表に向けて up-dip 方向に破壊伝播するケース 2 で、震度 7 の領域が特に広 範囲に広がっている。庄内平野での予測地震動もケース 1 よりもケース 2 が大きい。全般 的に見ても、SHN09+MRK01+ECG03+ECG05 に比べて、震源断層が陸域に近い分、予測 震度はこちらのシナリオ地震の方が大きめになっている。

今回の試算では、工学的基盤の地震動から地表の地震動を求める際の地盤増幅率と地表 PGVの間に、地盤の非線形効果が経験的に含まれてはいるものの、非線形応答を時刻歴で 再現するような詳細な応答解析は実施していない。S波速度の遅い沖積層が広域に広がっ ている越後平野などで極めて大きな強震動に見舞われるような場合には、地盤の非線形応 答のモデル化によっても予測地震動が変わり得る。さらに詳細な地震動分布や液状化可能 性を検討するためには、きめ細かな浅部地盤モデルの構築とそれに基づく非線形地震応答 計算も必要になると考えられる。なお、断層に近い領域の地震動レベルは、強震動生成域 (アスペリティ)の深さや位置など、仮定する特性化震源モデルやその破壊シナリオによ っても生成される地震動に違いが生じ得ることに留意しながら成果を利活用していく必要 がある。

535

(AKT07+SHN04+SHN06 断層ケース 2、★:破壊開始点)

図64 統計的グリーン関数法による工学的基盤上でのPGV分布 (SHN09+MRK01+ECG03+ECG05断層ケース1、★:破壊開始点)

図65 統計的グリーン関数法による地表での震度分布 (SHN09+MRK01+ECG03+ECG05断層ケース1、★:破壊開始点)

図66 統計的グリーン関数法による工学的基盤上でのPGV分布 (SHN09+MRK01+ECG03+ECG05断層ケース2、★:破壊開始点)

図68 統計的グリーン関数法による工学的基盤上でのPGV分布 (SHN11+MRK02+ECG01断層ケース1、★:破壊開始点)

(SHN11+MRK02+ECG01断層ケース1、★:破壊開始点)

図70 統計的グリーン関数法による工学的基盤上でのPGV分布 (SHN11+MRK02+ECG01断層ケース2、★:破壊開始点)

(SHN11+MRK02+ECG01断層ケース2、★:破壊開始点)