3) 1894 年庄内地震の震源断層モデルに関する検討

a) はじめに

1894 年庄内地震は明治 27 年 10 月 22 日 17 時 35 分頃に山形県庄内平野北部を震源と して発生した M7.0 の地震である。この地震によって特に酒田を中心とした庄内平野で大 被害を引き起こした。酒田では大火災が発生し、当時の市街地の総戸数の8割が焼失した。 庄内平野東縁断層帯が活動したと考えられてきたが^{例えば 25), 26)}、トレンチ調査では新しい 地層に明瞭な変位は残されておらず、地表地震断層は現れなかったとされている。

本プロジェクトでは平成 31 年度(令和元年度)に、沿岸海域および海陸統合地殻構造調 査として、震源・津波波源断層の形状把握と島弧・背弧海盆の基本的な地殻構造を把握す るために、東北日本弧中部の背弧を構成する新庄盆地東縁から庄内平野に至る約 60 km の 陸上区間とその西方海域の日本海盆にいたる約 350 km の海域区間において、海陸統合地 殻構造探査が行われた。この調査によって庄内平野西部に東下がりの形状を持つ伏在断層 が発見された。この断層は庄内平野の直下に位置することから、活動した場合には庄内平 野全体が強震動に襲われる可能性が高いと考えられる。

一方、歴史史料に基づいた 1894 年庄内地震 (M7.0)の被害分布がとりまとめられている 27)。本項では、「地震被害分布の再現」という、本地震に対する従来の研究とは異なるア プローチにより、この地震の震源断層の推定を試みた。具体的には、前述の探査結果に基 づいて、庄内平野東縁断層帯及び庄内平野西部に位置する震源断層モデルを設定し、それ らを対象として、地震本部で実施されている、「震源断層を特定した地震の強震動予測手 法」の方法に準拠して震源断層モデルパラメータを決めて、地震動シミュレーションを実 施し、地表面震度を算出し、被害に基づく震度分布と比較して、震源断層モデルを検討し た。その際、地下構造モデルには、深部地盤構造モデルとして、国立研究開発法人防災科 学技術研究所が提供している地震ハザードステーション (J-SHIS)の深部地盤モデル V2 (J-SHIS V2 モデル)に微動アレイの位相速度情報、地震記録の R/V スペクトル比を用い て更新したものに、本プロジェクトの反射法探査断面情報を照査したものを利用する。詳 細な揺れの分布に密接に関わると考えられる、浅部地盤構造モデルは、地盤ボーリング情 報に基づいて構築したものを利用することとした。

b) 浅部・深部地盤構造モデル

庄内平野の深部地盤構造モデルについては、国立研究開発法人防災科学技術研究所が提供 している地震ハザードステーション (J-SHIS)の深部地盤モデルの最新版 (J-SHIS V2 モ デル)に、微動アレイ観測によって得られた位相速度情報、及び地震記録の R/V スペクト ル比を利用してモデルの調整を実施した。更新した深部地盤モデルについて、庄内平野で 実施された人工地震探査による断面の比較を図 72 で行った。下段の図面が、反射法地震 探査断面でのP波速度トモグラフィーによって得られた速度プロファイルを反射断面図に 重ね書きしたもので、その速度値の色を上段の深部速度構造断面と同じにしたものを中段 に示している。速度トモグラフィー結果は速度が連続的に変化している一方、上段の深部 速度構造モデルは均一速度の多数の層で構築されている違いがあるが、上段と中段の色の 分布、すなわち速度構造は似ており、深部地盤構造モデルとモデル構築には用いていない 測線の情報は対応していると考えることができる。

浅部地盤構造モデルは、微地形区分情報とボーリングデータを用いた。ボーリングデー タによって 250 m メッシュの地質柱状図を作成し、S 波速度を N 値との経験式(表 5)²⁸⁾ で与え、密度値²⁹⁾ と P 波速度値は S 波速度との関係(V_P=5.099×V_S)²⁹⁾ を用い、工学 的基盤面(Vs 350 m/s 以上)までの速度を与えた。ボーリングがないメッシュは、同じ微 地形区分で最も近いボーリングによる地下構造モデルをあてはめている。図 73 に今回用 いた、ボーリングデータのあるメッシュ位置を示す。酒田市を中心に多くのボーリングが 位置している一方、特に庄内平野南部では空間密度が高くないことがわかる。図 74 に浅 部地盤構造モデルの工学的基盤面深度を示す。平野内の多くの工学的基盤面深度は約 30 m であるが、一部の地域では深度 60 m を超えるメッシュがある。スポット的に見えるのは ボーリング密度が十分にないことに起因するかもしれない。

図 75 に浅部地盤構造モデルの AVS30 を示す。 庄内平野では概ね 200 m/s 以上を示して おり、海岸地域も多くが 250 m/s 以上に見えるが、雄物川河口近くの一部や平野南部にお いて 200 m/s を下回る地域が見られる。

図 72 反射法地震探査結果と深部地盤構造モデルの P 波速度断面の比較。上段:3次元深 部地盤構造モデル。中段及び下段:反射法地震探査結果。

	今回のデータの回帰式
粘性土(沖積・洪積)	$Vs=123.8 \cdot N^{0.2641}$
砂質土(沖積・洪積)	$Vs=90.58 \cdot N^{0.3219}$
礫質土(沖積·洪積)	$Vs=121.9 \cdot N^{0.2635}$

表5 本研究で使用した Vs と N 値の関係式 28)

図 73 浅部地盤構造モデル作成に用いられたボーリングデータのあるメッシュ位置

図 74 浅盤地下構造モデルの工学的基盤面深度とボーリングがあるメッシュ

c) 震源断層モデル

本プロジェクトによって設定された震源断層モデルを図 76 に示す。ここでは庄内平野 西部に位置する伏在活断層の震源断層モデルを SHN01、庄内平野東縁断層帯に対応する 震源断層モデルを SHN02 とする。両者とも東に傾き下がる逆断層で、傾斜角は 45 度を仮 定している。SHN02 の震源断層長さは、活断層情報から与えられている。一方 SHN01 に ついては調査した反射断面上での断層面形状は仮定できるが、断層長さに関する条件はな いことから、SHN01 と震源断層面積がほぼ同じになるように設定した。地震規模(気象庁 マグニチュードに相当) は M 7.5、モーメントマグニチュードは Mw 6.9 となる。なお、地 震本部の主要活断層帯の長期評価によれば、庄内平野東縁断層帯で想定されている地震規 模は M 7.5 である ³⁰。

これらの震源断層面に対して、地震本部で実施されている、「震源断層を特定した地震 の強震動予測手法」の方法 ¹⁹⁾ による標準的な震源断層モデルパラメータを与えたモデル を構築することとした。震源断層面上の強い揺れを生成する「強震動生成領域」(あるい はアスペリティ)の個数や位置設定は当然任意性があるが、個数については、規模から 2 つとして、位置については、被害分布から推定されている高震度領域 ²⁷⁾ が南にやや偏在 していることから、南側のアスペリティを大きいものとして設定し、逆断層タイプの地震 の平均特性として、アスペリティの最下端から破壊が開始するものとした。図 77 と表 6、 7 に SHN01 と SHN02 の震源断層パラメータとアスペリティ位置、破壊開始点などを示 す。なお、後述の波形計算手法に統計的グリーン関数法を用いる時の小断層サイズを 2 km ×2 km にしたため、両モデルの震源断層面の大きさ、形状は同じになっている。図 78 に は、SHN01 および SHN02 の震源断層面の破壊開始点付近での東西断面図を深部地盤モデ ル上にプロットした。

断層面上のすべり角は一覧表にあるように本地域の応力場と震源断層面形状から設定 しているが、強震動計算において各小断層でのすべり方向を同じとすると、ある方位にの み強い波が出される可能性が高い。そこでここでは、最近日本海沿岸で発生した逆断層型 の地震について、強震波形を用いた震源インバージョンの結果から、すべり角のばらつき を求めることとした。一般に強震波形を用いた震源インバージョンでは、小断層のすべり 角は、ダブルカップル震源解などから得られているすべり角を中心にある範囲でのゆらぎ を許してモデル化を行っていることから、結果として小断層でのすべり角にバラつきがあ る。ここでは、2004年新潟県中越地震³¹⁾、2007年能登半島地震³²⁾、2008年岩手・宮城 内陸地震³³⁾のすべり角のばらつきをまとめた。なおすべり角に関してすべり量で重みづ けを行った。3 地震のすべり角の揺らぎの平均は約 20 度となったので、本検討の断層モデ ルにおいては、すべり角について、標準偏差 20 度の正規分布による揺らぎを与えた。

図 76 本プロジェクトによって設定された震源断層モデルの map view。基図は地理院地図による。

					1									1					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1																			
2																			
3																			
4					Sa=	108.0	6km²							Sa=	54.3	km ²			
5					(10)	(m ×	10kn	n)						(8kr	n×6	km)			
6																			
7						_Λ_													
8						ズ													
9																			

Mw6.9 38km×18km, 傾斜角45度東下がり アスペリティ上端深さ 4.8km

Mw6.9 37 km×18km, 傾斜角45度東下がり アスペリティ上端深さ 4.8km

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1																			
2																			
3																			
4					Sa=	105.6	3km²							Sa=	52.8	۲m²			
5					(10	km ×	10kn	n)						(8kr	n×6	km)			
6																			
7																			
8						\mathcal{M}													
9																			

図 77 上:SHN01、下:SHN02 の設定震源断層面と強震動生成領域(アスペリティ)、 破壊開始点の位置。震源断層面サイズやアスペリティサイズの記載面積はモデル計算に よって出てきた数値を書いており、2 km × 2 km の小断層を使ったモデル化において、 端数は合致していない。

表 6	SHN01	の巨視的	•	微視的震源ノ	ぺき	ラメ	ータ
-----	-------	------	---	--------	----	----	----

巨視的震源パラメータ		設定方法	設定	値
断層長さL	4		37.8	km
マグニチェ	$\square - \nvDash M$	$M = (\log L + 2.9) / 0.6$	7.5	
走向 θ			4	0
傾斜角 δ			45	0
すべり角	l		78	0
断層モデノ	レ上端深さ		2	km
断層モデノ	レ下端深さ		15	km
断層幅 W			18.4	km
断層面積。	S		694.9	km ²
断層モデノ	レ幅 W _{model}		18	km
断層モデノ	レ長さ L model		38	km
断層モデノ	レ長さ S _{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	684	km ²
地震モース	$\checkmark \succ \vdash M_0$	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$ (入倉・三宅(2001))	2.69E+19	Nm
モーメン	トマグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.9	
剛性率 μ		地殻内の平均値	3.12E+10	N/m ²
静的応力隊	奉下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot (M_0 / R^3), R = (S_{\text{model}} / \pi)^{1/2}$	3.6	MPa
平均すべり量 D		$D = M_0 / (\mu \cdot S)$	1.2	m
短周期レイ	ベル A	$A = 2.46 \cdot 10^{17} \times M_0^{1/3}$	1.59E+19	Nm/s ²
r		1		
微視的震测	原パラメータ	設定方法	設定	値
微視的震測		設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0}/(A \cdot R) \cdot \beta^{2}$	設定 162.9	値 km ²
微視的震波 ア テス	原パラメータ 面積 <i>S</i> _a 平均すべり量 <i>D</i> _a	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0}/(A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$	設定 162.9 2.5	値 km ² m
微視的震測アテスイペ	 原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$	設定 162.9 2.5 15.2	値 km ² m MPa
 微視的震波 ア テス ィペ リ 	 原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D}=2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$	設定 162.9 2.5 15.2 1.27E+19	値 km ² m MPa Nm
 微視的震波 ア テスペリ 第 	 原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{al} 	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$	設定1 162.9 2.5 15.2 1.27E+19 108.6	値 km ² m MPa Nm km ²
 微視的震波 ア テスペリ 第 1 	原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{al} 実効応力 σ_{al}	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0}/(A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D}=2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0}/(r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$ $S_{al}=S_{a} \cdot (2/3) または S_{al}=S_{a}$ $\sigma_{al}=\sigma_{a}$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2	値 km ² m MPa Nm km ² MPa
 微視的 ディーリ ディーリ 第1アマ 	 原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_l / \Sigma \gamma_i^3) \cdot D_a$ または $D_{al} = D_a$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8	値 m MPa Nm km ² MPa m
 微視的 ディペリ 第1アスペリ ディペリ 	原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{al} 実効応力 σ_{al} 平均すべり量 D_{al} 地震モーメント M_{0al}	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$ または $D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18	値 km ² MPa Nm km ² MPa m Nm
 微視的 ディーリ 第1アスペリ ディーリ 	原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$ $S_{al} = S_{a} \cdot (2/3) \pm \hbar k \pm S_{al} = S_{a}$ $\sigma_{al} = \sigma_{a}$ $D_{al} = (\gamma_{l} / \Sigma \gamma_{i}^{3}) \cdot D_{a} \pm \hbar k \pm D_{al} = D_{a}$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2km \neq \gamma \ge 2 \pm \ell 4 \vec{X}$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100	値 km ² MPa Nm km ² MPa m Nm km ²
微視的 アスペリ 第1アスペリ 第	原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{al} 実効応力 σ_{al} 平均すべり量 D_{al} 地震モーメント M_{0al} 計算用面積 面積 S_{a2}	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D}=2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$ $S_{al}=S_{a} \cdot (2/3) \pm \hbar t S_{al}=S_{a}$ $\sigma_{al}=\sigma_{a}$ $D_{al}=(\gamma_{1}/\Sigma\gamma_{i}^{3}) \cdot D_{a} \pm \hbar t t D_{al}=D_{a}$ $M_{0al}=\mu \cdot D_{al} \cdot S_{al}$ $2km \neq \gamma \Rightarrow 2 \pm 7 \neq 7$ $S_{a2}=S_{a} \cdot (1/3) \pm \hbar t t \lceil t_{a} \mid t_{a} $	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3	値 km ² MPa Nm km ² MPa MPa Nm km ² km ²
 微視的震波 ディーリ 第1アスペリ 第2 	 	設定方法 $S_a = \pi r^2, r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}, \gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a \cdot (2/3) \pm \hbar t \pm S_{a1} = S_a$ $\sigma_{a1} = \sigma_a$ $D_{a1} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_a \pm \hbar t \pm D_{a1} = D_a$ $M_{0a1} = \mu \cdot D_{a1} \cdot S_{a1}$ $2 \text{km} \neq \gamma \Rightarrow 2 \pm \gamma + \vec{\chi}$ $S_{a2} = S_a \cdot (1/3) \pm \hbar t \pm \tau \pm \tau$ $\sigma_{a2} = \sigma_a \pm \hbar t \pm \tau \pm \tau$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2	値 km ² MPa Nm km ² MPa m km ² km ² Km ²
微視 ティ ディ	原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2}	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$ または $D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \gamma \Rightarrow 2 \text{th} f \times S_{al}$ $z \text{km} \neq \gamma \Rightarrow 2 \text{th} f \times \zeta$ $\sigma_{a2} = \sigma_a$ または「なし」 $D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$ または「なし」	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2 2.0	値 km ² MPa Nm km ² MPa m km ² km ² MPa m
微視 ティー 第1アスペリ 第2アスペリ ディー	原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2}	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a \cdot (2/3)$ または $S_{a1} = S_a$ $\sigma_{a1} = \sigma_a$ $D_{a1} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_a$ または $D_{a1} = D_a$ $M_{0a1} = \mu \cdot D_{a1} \cdot S_{a1}$ $2 \text{km} \neq \gamma \diamond \gamma \Rightarrow \Rightarrow \forall \neq \forall \neq$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2 2.0 3.32E+18	値 km ² MPa Nm km ² MPa m MPa m Nm
微 ティ ディ ティ ティ ティ ディ ディ ディ アスペリ 第1アスペリ 第2アスペリ	原パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$ または $D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \gamma \Rightarrow 2 \text{th} f \neq \lambda$ $\sigma_{a2} = \sigma_a$ または「なし」 $D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$ または「なし」 $M_{0a2} = \mu \cdot D_{a2} \cdot S_{a2}$ または「なし」 $2 \text{km} \neq \gamma \Rightarrow 2 \text{th} f \neq \lambda$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2 2.0 3.32E+18 48	値 km ² MPa Nm km ² MPa m km ² km ² MPa m Nm Nm km ²
微視 ティー 第1アスペリ 第2アスペリ 背震派	雨パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0}/(A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0}/(r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$ $S_{a1} = S_{a} \cdot (2/3) \pm \hbar t S_{a1} = S_{a}$ $\sigma_{a1} = \sigma_{a}$ $D_{a1} = (\gamma_{1}/\Sigma\gamma_{i}^{3}) \cdot D_{a} \pm \hbar t \pm D_{a1} = D_{a}$ $M_{0a1} = \mu \cdot D_{a1} \cdot S_{a1}$ $2 \text{km} \neq \forall \forall \forall \Rightarrow \Rightarrow \forall \forall$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2 2.0 3.32E+18 48 521.1	値 km ² MPa Nm km ² MPa m km ² km ² MPa m Nm km ² km ² km ²
微 ティ ティ ティ ティ 背景 アスペリ 第1アスペリ 第2アスペリ 背景	順パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b 実効応力 σ_b	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D}=2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$ $S_{al}=S_{a} \cdot (2/3) \pm \hbar t S_{al}=S_{a}$ $\sigma_{al}=\sigma_{a}$ $D_{al}=(\gamma_{1}/\Sigma\gamma_{i}^{3}) \cdot D_{a} \pm \hbar t t D_{al}=D_{a}$ $M_{0al}=\mu \cdot D_{al} \cdot S_{al}$ $2km \neq \gamma \neq 2 \pm \gamma \neq \vec{X}$ $S_{a2}=S_{a} \cdot (1/3) \pm \hbar t t \lceil \Delta t \rfloor$ $D_{a2}=(\gamma_{2}/\Sigma\gamma_{i}^{3}) \cdot D_{a} \pm \hbar t t \lceil \Delta t \rfloor$ $M_{0a2}=\mu \cdot D_{a2} \cdot S_{a2} \pm \hbar t t \lceil \Delta t \rfloor$ $M_{0a2}=\mu \cdot D_{a2} \cdot S_{a2} \pm \hbar t t \lceil \Delta t \rfloor$ $2km \neq \gamma \neq 2 \pm \gamma \neq \vec{X}$ $S_{b} = S_{model} - S_{a}$ $\sigma_{b} = (D_{b} / W_{b}) \cdot (\pi^{1/2} / D_{a}) \cdot r \cdot \Sigma\gamma_{i}^{3} \cdot \sigma_{a}$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2 2.0 3.32E+18 48 521.1 2.9	値 km ² MPa Nm km ² MPa m Nm km ² Km ² MPa m km ² km ²
微 ティ ディ ティ ティ 背景領12000 1000 1000 1000 1000 1000 1000 100	雨パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b 実効応力 σ_b	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$ または $D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \gamma \ge \neg \forall \forall$	設定4 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2 2.0 3.32E+18 48 521.1 2.9 0.9	植 km ² MPa Nm km ² MPa m MPa m Nm km ² km ² MPa m Rm
微 ティ ティ ティ ティ 背景領域的 アスペリ 第1アスペリ 第2アスペリ 背景領域震	順 パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b 実効応力 σ_b 平均すべり量 D_b 地震モーメント M_{0b}	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$ $S_{al} = S_{a} \cdot (2/3) \pm \hbar t S_{al} = S_{a}$ $\sigma_{al} = \sigma_{a}$ $D_{al} = (\gamma_{1} / \Sigma \gamma_{i}^{3}) \cdot D_{a} \pm \hbar t t D_{al} = D_{a}$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \gamma \neq 2 \pm 7 \neq 7$ $S_{a2} = S_{a} \cdot (1/3) \pm \hbar t t \lceil \Delta t \rfloor$ $D_{a2} = (\gamma_{2} / \Sigma \gamma_{i}^{3}) \cdot D_{a} \pm \hbar t t \lceil \Delta t \rfloor$ $M_{0a2} = \mu \cdot D_{a2} \cdot S_{a2} \pm \hbar t t \lceil \Delta t \rfloor$ $2 \text{km} \neq \gamma \neq 2 \pm 7 \neq 7$ $S_{b} = S_{model} - S_{a}$ $\sigma_{b} = (D_{b} / W_{b}) \cdot (\pi^{1/2} / D_{a}) \cdot r \cdot \Sigma \gamma_{i}^{3} \cdot \sigma_{a}$ $D_{b} = M_{0b} / (\mu \cdot S_{b})$	設定1 162.9 2.5 15.2 1.27E+19 108.6 15.2 2.8 9.39E+18 100 54.3 15.2 2.0 3.32E+18 48 521.1 2.9 0.9 1.42E+19	値 km ² MPa Nm km ² MPa m Nm km ² MPa m km ² km ² km ² km ²

表 7	SHN02の巨袖	現的・	微視的震源パ	『ラ	メ	ータ
-----	----------	-----	--------	----	---	----

巨視的震源パラメータ		設定方法	設定	値
断層長さL			36.6	km
マグニチェ	$\mu - \nvDash M$	$M = (\log L + 2.9) / 0.6$	7.4	
走向 θ			359	0
傾斜角 δ			45	0
すべり角	l		74	0
断層モデノ	レ上端深さ		2	km
断層モデノ	レ下端深さ		15	km
断層幅 W			18.4	km
断層面積。	5		672.9	km ²
断層モデノ	レ幅 W _{model}		18	km
断層モデバ	レ長さ L _{model}		38	km
断層モデノ	レ長さ S _{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	684	km ²
地震モーン	$\checkmark \succ \vdash M_0$	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$ (入倉・三宅(2001))	2.52E+19	Nm
モーメン	トマグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.9	
剛性率 μ		地殻内の平均値	3.12E+10	N/m ²
静的応力隊	奉下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot (M_0 / R^3), R = (S_{\text{model}} / \pi)^{1/2}$	3.5	MPa
平均すべり)量D	$D = M_0 / (\mu \cdot S)$	1.2	m
短周期レイ	ベル A	$A = 2.46 \cdot 10^{17} \times M_0^{1/3}$	1.55E+19	Nm/s ²
		-		
微視的震测	亰パラメータ	設定方法	設定	値
微視的震测	京パラメータ 面積 S _a	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	設定 158.4	値 km ²
微視的震测 ア テス	 京パラメータ 面積 S_a 平均すべり量 D_a 	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$	設定 158.4 2.4	値 km ² m
微視的震测 ア テス イペ	 	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$	設定 158.4 2.4 15.0	値 km ² m MPa
微視的震波 ア テス イペ リ	 京パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 	設定方法 $S_{a} = \pi r^{2}, r = 7\pi/4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$ $D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0} / (r^{2} \cdot R)$ $M_{0a} = \mu \cdot D_{a} \cdot S_{a}$	設定 158.4 2.4 15.0 1.19E+19	値 km ² m MPa Nm
 微視的震源 ア デスペリ 第 	 マンティータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$	設定 158.4 2.4 15.0 1.19E+19 105.6	値 km ² m MPa Nm km ²
 微視的震源 ア デスペリ 第 1 	京パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1}	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0	値 km ² m MPa Nm km ² MPa
微視的震源 ティーリーディ ディリー第1アス ディーシーディー	京パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1}	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) または S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1/\Sigma\gamma_i^3) \cdot D_a または D_{al} = D_a$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0 2.7	値 km ² m MPa Nm km ² MPa m
微視的震源 ディーリー 第1アスペリー ディー	京パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1}	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) または S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a または D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18	値 km ² MPa Nm km ² MPa m Nm
微視 ティー 第1アスペリ 第1アスペリ	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) または S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a または D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \gamma \ge \neg \pm \forall \prec \varkappa$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100	値 km ² MPa Nm km ² MPa MPa Nm km ²
微視的 ディイリ 第1 アスペリ 第	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2}	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) \pm \hbar t \pm S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar t \pm D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \gamma \Rightarrow \Rightarrow \forall \neq \forall \neq$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8	値 km ² MPa Nm km ² MPa m Nm km ² km ²
微視 ティー 第1アスペリ 第2 1	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2}	設定方法 $S_a = \pi r^2, r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}, \gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) \pm \hbar c t \leq S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar c t \Delta D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \forall \forall \Rightarrow \pm \forall \neq A \neq$ $S_{a2} = S_a \cdot (1/3) \pm \hbar c t \leq \pi L \leq \pi$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0	値 km ² MPa Nm km ² MPa Mm km ² km ² MPa
微視 ティ ディ	 ・パラメータ 面積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$ または $D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \gamma \Rightarrow \Rightarrow \forall \neq \forall \neq$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0 1.9	植 km ² MPa Nm km ² MPa m km ² km ² km ² MPa m
微視 ティ ディ ティ ディ	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2}	設定方法 $S_a = \pi r^2, r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}, \gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) \pm \hbar c t \leq S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar c t \Delta D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \psi \geq \pm \psi + \pi \neq \infty$ $S_{a2} = S_a \cdot (1/3) \pm \hbar c t \leq \pi \delta \cup \int$ $\sigma_{a2} = \sigma_a \pm \hbar c t \leq \pi \delta \cup \int$ $M_{0al} = \mu \cdot D_{a2} \cdot S_{a2} \pm \hbar c t \leq \pi \delta \cup \int$	設定 158.4 2.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0 1.9 3.10E+18	植 km ² MPa Nm km ² MPa Mm km ² Km ² MPa M
微視 ティ ティ ティ ティ ディ ディ ディ ディ ディ ディ ディ アスペリ 第2アスペリ 震変	示パラメータ 面積 S _a 平均すべり量 D _a 実効応力 σ _a 地震モーメント M _{0a} 面積 S _{a1} 実効応力 σ _{a1} 平均すべり量 D _{a1} 地震モーメント M _{0a1} 計算用面積 面積 S _{a2} 実効応力 σ _{a2} 平均すべり量 D _{a2} 地震モーメント M _{0a2} 計算用面積	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3)$ または $S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$ または $D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq y \Rightarrow = y + 1 \neq \chi$ $S_{a2} = S_a \cdot (1/3)$ または「なし」 $\sigma_{a2} = \sigma_a$ または「なし」 $D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$ または「なし」 $M_{0a2} = \mu \cdot D_{a2} \cdot S_{a2}$ または「なし」 $2 \text{km} \neq y \Rightarrow = y + 1 \neq \chi$	設定 158.4 158.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0 1.9 3.10E+18 48	植 km ² MPa Nm km ² MPa m MPa m Nm km ²
微 ティ ティ ティ ディ サ かん ディー ディー ディー ディー ディー ディー むり ちょう かんしょう ちょうしょう しょう しょう しょう しょう しょう しょう しょう しょう しょ	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) \pm \hbar c t \pm S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar c t \pm D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \psi \Rightarrow \pm \psi \neq \chi$ $S_{a2} = S_a \cdot (1/3) \pm \hbar c t \pm \lceil t_a \downarrow \rfloor$ $\sigma_{a2} = \sigma_a \pm \hbar c t \pm \lceil t_a \downarrow \rfloor$ $M_{0a2} = \mu \cdot D_{a2} \cdot S_{a2} \pm \hbar c t \pm \lceil t_a \downarrow \rfloor$ $2 \text{km} \neq \psi \Rightarrow \pm \psi \neq \chi$	設定 158.4 158.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0 1.9 3.10E+18 48 525.6	i植 km ² MPa Nm km ² MPa m km ² MPa m Nm km ² km ²
微 ティ ティ ティ ティ 背景的 アスペリ 第1アスペリ 第2アスペリ 背景	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b 実効応力 σ_b	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) \pm \hbar t t S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar t t D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \psi \Rightarrow \pm \psi + \chi \neq \chi$ $S_{a2} = S_a \cdot (1/3) \pm \hbar t t \tau t J$ $\sigma_{a2} = \sigma_a \pm \hbar t t \tau t J$ $D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar t t \tau t J$ $2 \text{km} \neq \psi \Rightarrow \pm \psi + \chi \neq \chi$ $S_{b} = S_{model} - S_a$ $\sigma_b = (D_b / W_b) \cdot (\pi^{1/2} / D_a) \cdot r \cdot \Sigma \gamma_i^3 \cdot \sigma_a$	設定 158.4 158.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0 1.9 3.10E+18 48 525.6 2.6	値 km² MPa Nm km² MPa m km² MPa m km² MPa m km² MPa m Nm km² MPa m Nm km² MPa MPa MPa
微 ティ ティ ティ ティ 背景領は的 アスペリ 第1アスペリ 第2アスペリ 背景領は震	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b 実効応力 σ_b 平均すべり量 D_b	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) \pm \hbar t \pm S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar t \pm D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \psi \Rightarrow \pm \psi \neq \chi$ $S_{a2} = S_a \cdot (1/3) \pm \hbar t \pm \lceil \hbar \xi \rfloor \rfloor$ $\sigma_{a2} = \sigma_a \pm \hbar t \pm \lceil \hbar \xi \rfloor \rfloor$ $D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar t \pm \lceil \hbar \xi \rfloor \rfloor$ $M_{0a2} = \mu \cdot D_{a2} \cdot S_{a2} \pm \hbar t \pm \lceil \hbar \xi \rfloor \rfloor$ $2 \text{km} \neq \psi \Rightarrow \pm \psi \neq \chi$ $S_b = S_{model} - S_a$ $\sigma_b = (D_b / W_b) \cdot (\pi^{1/2} / D_a) \cdot r \cdot \Sigma \gamma_i^3 \cdot \sigma_a$ $D_b = M_{0b} / (\mu \cdot S_b)$	設定 158.4 158.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0 1.9 3.10E+18 48 525.6 2.6 0.8	ite km ² m MPa Nm km ² MPa m Nm km ² MPa m km ² km ²
微 ティ ティ ティ ティ 背景領域的 アスペリ 第1アスペリ 第2アスペリ 背景領域震	配積 S_a 平均すべり量 D_a 実効応力 σ_a 地震モーメント M_{0a} 面積 S_{a1} 実効応力 σ_{a1} 平均すべり量 D_{a1} 地震モーメント M_{0a1} 計算用面積 面積 S_{a2} 実効応力 σ_{a2} 平均すべり量 D_{a2} 地震モーメント M_{0a2} 計算用面積 面積 S_b 実効応力 σ_b 平均すべり量 D_b	設定方法 $S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$ $D_a = \gamma_D \cdot D_{model}$, $\gamma_D = 2.0$ $\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$ $M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{al} = S_a \cdot (2/3) \pm \hbar t \pm S_{al} = S_a$ $\sigma_{al} = \sigma_a$ $D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a \pm \hbar t \pm D_{al} = D_a$ $M_{0al} = \mu \cdot D_{al} \cdot S_{al}$ $2 \text{km} \neq \psi \Rightarrow \pm \psi + \chi \neq \chi$ $S_{a2} = S_a \cdot (1/3) \pm \hbar t \pm \tau \pm$	設定 158.4 158.4 158.4 15.0 1.19E+19 105.6 15.0 2.7 8.76E+18 100 52.8 15.0 1.9 3.10E+18 48 525.6 2.6 0.8 1.33E+19	ite in the section of the section o

図 78 (上) SHN01、(下) SHN02の設定震源断層面を深部地下構造モデル断面(破壊 開始点を通る北緯 38.799 度の東西断面)に書き入れたもの。縦横比は 1:1 である。黒線 が震源断層面で、マゼンタ色線がアスペリティ、赤点が破壊開始点位置を示している。

d) 強震動計算

強震動計算は、深部地盤構造モデルを用いて工学的基盤面における広帯域地震動を求め、 浅部地盤構造モデルを用いた等価線形解析により地表面波形を計算して、地表震度を計測 震度の計算法を用いて求めた。工学的基盤面における広帯域地震動は、3次元有限差分法 と統計的グリーン関数法のハイブリッド法(接続周期は1秒)により求めた。

1 秒以上の長周期帯域の地震動は、3 次元有限差分法により計算を行った。S 波速度が 350 m/s の層の上面を解放基盤面として計算を行った。差分法の計算の基本となる差分ス キームは、速度一応力スタッガードグリッド³⁴⁾であり、時間方向に 2 次、空間方向に 4 次 の精度³⁵⁾で計算を行っている。速度一応力スタガード・グリッドに対する震源の導入には、 モーメントテンソルを等価な体積力として表現する方法³⁶⁾を用いた。吸収境界³⁷⁾は、20 格子分確保した。粘弾性条件はメモリバリアブルによる方法³⁸⁾を使い、基準周期を 4 秒 とした。基準とする Q 値は、J-SHIS V2 モデルの各層に与えられている Qs 値を Q 値とし て用いた³⁹⁾。

計算領域は東西 120 km、南北 120 km、深さ 26.9 km で、水平グリッドサイズは 50 m、 差分の時間ステップ間隔は 0.0025 秒で、総ステップ数は 65,600、計算時間は 164 秒とし た。鉛直方向は速度構造に合わせてグリッドサイズを 4 段階に変更している(表 8)。な お、地震基盤以深の構造は、全国一次地下構造モデル(暫定版)の 15 層以下の構造を接続 し、物性値についても全国一次地下構造モデル(暫定版)400 の値を用いた。

短周期帯域(1秒以下)の強震動計算には、加速度振幅スペクトル⁴¹)および包絡関数⁴² を用いて地震基盤面における要素波(統計的グリーン関数)を SV 波、SH 波それぞれにつ いて作成し、地震基盤面から工学的基盤面までの地盤増幅は、SV 波、SH 波それぞれ地震 基盤面への斜め入射により評価し、座標回転により NS 成分、EW 成分、UD 成分の 3 成 分の波形を計算した。なお、理論ラディエーション係数を算出するための射出角および非 弾性減衰を算出するための走時については、球殻モデルによる計算値を用いた。以下に要 素波の作成方法、波形合成の計算方法等について示す。

まず、地震基盤面における要素波の周波数 *f* [Hz]に関する加速度振幅スペクトル *A*(*f*) を 設定する。

$$A(f) = \frac{R_{\theta\phi}(f)}{4\pi\rho\beta^3} \cdot \frac{M_0 \cdot (2\pi f)^2}{1 + \left(\frac{f}{f_c}\right)^2} \cdot \frac{1}{\left[1 + (f/f_{\max})^{2s}\right]^{\frac{1}{2}}} \cdot \frac{\exp(-\pi f t_t/Q)}{R} \cdot \sqrt{\frac{\rho\beta}{\rho_b\beta_b}}$$

ここで、 $R_{\theta\phi}$ はラディエーション係数、 ρ [kg/m³] および β は震源における密度および S 波速度を表す。 M_0 [N·m] は地震モーメント、 f_c [Hz] はコーナー周波数であり、 f_{max} [Hz] は 高周波数遮断フィルターの遮断周波数を表し、係数sはフィルターの次数を表す。Qはみ かけの減衰定数、 t_t [s] およびR [km] はそれぞれ、震源からサイト直下の地震基盤までの走 時および距離を表す。また、 $\rho_b \ge \beta_b$ はそれぞれ、地震基盤における密度および S 波速度で ある。Q 値は $Q = 110.3f^{0.69} \ge lct^{43}$ 。高周波数遮断周波数 f_{max} は 6 Hz に設定し、次数sは 2 を用いた。また、コーナー周波数 f_c は、次式⁴⁴) で算出した。

$f_c = 4.9 \times 10^6 \beta (\Delta \sigma / M_0)^{1/3}$

なお、ここではA(f)の振幅に一様乱数で位相を与え、包絡関数 42) を考慮して、地震基盤 における要素波を作成した。 次に、ラディエーション係数 $R_{\theta\phi}(f)$ について、周波数では理論放射係数 $R_{\theta\phi0}$ 、高周波数では平均化された放射係数 $R_{\theta\phim}$ となるように、次式 45)を用いた。

$$R_{\theta\phi} = \frac{(\log(f_2) - \log(f))R_{\theta\phi0} + (\log(f) - \log(f_1))R_{\theta\phim}}{\log(f_2) - \log(f_1)}$$

ここでは $f_1 = 0.25$ Hz、 $f_2 = 2$ Hz とし、高周波数での平均化された $R_{\theta\phi m}$ を算出した⁴⁶⁾。 震源からサイト直下の地震基盤までの走時 t_t および射出角については、球殻モデル⁴⁷⁾により算出される値を用いた。球殻モデルのS 波構造は、モホ面深さ M を 32 km、地表からの深さを H [km]として以下のように設定した。

$$Vs = 3.1 \times \left(\frac{R_0 - H}{R_0}\right)^{-60} \qquad H < M$$
$$Vs = 4.475 \times \left(\frac{R_0 - H}{R_0 - M}\right)^{-3} \qquad H \ge M$$

なお、球殻モデルの半径 R₀は 6371 km とした。以上を基に、積分による変位波形がベル型となるという条件を満たす波形 ⁴⁶⁾を地震基盤における要素波として採用した。

工学的基盤面での波形合成では、SV 波、SH 波それぞれに、サイト直下の地盤構造を用いた斜め入射による地盤増幅係数を乗じ、Radial および Transverse 成分から NS、EW および UD 成分への座標回転を考慮した後、補正関数 48) を用い波形合成を行った。

$$U(f) = \sum_{m}^{N_L} \sum_{n}^{N_W} e^{-i2\pi f t_{mn}} \left\{ 1 + \frac{1}{n'(1-e^{-1})} \sum_{k=1}^{(N_D-1)n'} e^{-\frac{k-1}{(N_D-1)n'}} e^{-i2\pi f \frac{(k-1)\tau}{(N_D-1)n'}} \right\} u_{mn}(f)$$

ここで、U(f)は波形合成後のサイトの加速度フーリエスペクトルであり、 $u_{mn}(f)$ は要素 断層によるサイトの加速度フーリエスペクトルである。 t_{mn} は破壊開始時刻からサイトに 到達するまでの時間であり、球殻モデルによる走時と破壊開始点から要素断層までの破壊 伝播時間の和で表される。 N_L 、 N_W 、 N_D はそれぞれ長さ方向、幅方向、すべり方向の分割 数であり、 τ [s]はライズタイム、n'は重ね合わせによる人工的な周期特性を有効周波数よ り高い周波数側に移動させる再分割数である。

これらのようにして作成した工学的基盤面での統計的グリーン関数法による短周期地 震動と3次元有限差分法による長周期地震動波形を、1秒をマッチングフィルターとする フィルターを施したのちに時間領域で足し合わせる。この際、地震基盤面以深の速度構造 モデルが統計的グリーン関数法と差分法では厳密には同じではないことから、統計的グリ ーン関数の初動走時は球殻モデルのそれから、3次元有限差分法による初動走時は地盤構 造モデルを縦横深さ方向に1,000 mのグリッドモデルに変換し、3次元レイトレーシング により計算し、それらが一致するように波形を時間シフトして足し合わせた。

地表面地震動の計算は、前述で作成した工学的基盤面波形に、浅部地盤構造モデルを用いて水平成分については等価線形解析を行って地表面波形を求めた。等価線形解析の主な 条件は SHAKE⁴⁹⁾ に準じた。SHAKE では、有効ひずみ γ_{eff} を次式で定義し、 γ_{eff} に対応する剛性率 *G* および減衰定数 *h* を用いた一次元重複反射理論による周波数領域の応答解析を行う。これを反復計算し、設定した収束条件を満足した場合、反復計算が終了となる。

$$\gamma_{eff} = \alpha \gamma_{max}$$

ここで、 α は補正係数であり、 γ_{max} は最大ひずみである。補正係数 α には標準的に用 いられる 0.65 を採用した。また、収束条件についても標準的に用いられる「すべての層に おいて G および h の前回計算との誤差が 5%以内」とした。主な計算手法の設定内容を 表 9に示す。等価線形解析に用いる動的変形特性曲線は、粘性土層に対しては土研式の沖 積粘性土の動的変形特性曲線を、それ以外に対しては土研式の沖積砂質土の動的変形特性 曲線を適用した。図 79 に適用した動的変形特性曲線を示す。一方、上下成分は、浅部地盤 モデルの、P 波伝播として取り扱い、地表面上下成分を求めた。このようにして得られた 3 成分の地表面地震動から、計測震度 500 の算出を行った。

	える 上方はての頃間の前方前方							
Layer	Vs min.	Vs max	Vp min.	Vp max	Depth	Dz (m)	Min.	
	(km/s)	(km/s)	(km/s)	(km/s)	range		Preiod	
					(km)		(s)	
1	0.35	3.2	1.6	5.5	0.0-1.0	50	0.71	
2	0.6	3.2	2.0	5.5	1.0-4.5	100	0.83	
3	1.4	3.4	3.0	5.8	4.5-8.9	200	0.71	
4	3.1	4.5	5.5	7.5	8.9-26.9	300	0.48	

表8 差分法での鉛直方向の計算緒元

表9 等価線形解析の設定内容

使用プログラム	DYNEQ ⁵¹⁾
解析手法	SHAKE ⁴⁹⁾ に進じる
複素剛性の計算手法	$G^* = G(1 - 2h^2 + 2ih\sqrt{(1 - h^2)})$
イタレーション終了の誤差判	5%
定值	
有効ひずみの設定	$\gamma_{eff} = \alpha \gamma_{max} (\alpha = 0.65)$
動的変形特性曲線の与え方	<i>G</i> <i>G</i> ₀ ~γ、 <i>h</i> ~γを表形式で与える
動的変形特性曲線	土木研究所 52)
ひずみが動的変形特性曲線の	最大ひずみと同じ
範囲外に達した時の補間方法	
散乱の減衰	考慮しない
入力地震波	解放基盤波(2E)として入力

②粘性土(土研式 沖積粘性土)

図 79 動的変形特性曲線

e) SHN01 及び SHN02 モデルによる震度の比較と記録との対応

これまで説明してきた、震源断層モデル及び浅部・深部地盤構造モデルに基づき、ハイ ブリッド法による広帯域地震動計算を実施し、地表面での算出地震動計算結果から、計測 震度分布をもとめた。図 80 に SHN01 及び SHN02 それぞれの震源モデルに対する計測震 度分布図を示す。震源断層面が庄内平野の直下にある SHN01 震源断層モデルでは、庄内 平野南部を中心に高震度領域が広がっている。一方、SHN02 震源断層モデルでは、庄内平 野南部で高震度領域が広がっているが、平野と丘陵境界から丘陵地域においても高震度が 分布していることがわかる。

明治庄内地震の被害分布から求めた震度値の分布²⁷⁾ とそれぞれの計測震度分布の重ね 書きを図 81 に示す。なお、被害分布(倒壊率)から求めた震度と計測震度は1:1対応す るものではないことに注意する必要がある。これらの図の比較からは、震度データにおけ る高震度の領域の対応は、SHN01の方がSHN02のそれよりよいように見える。庄内平野 内の震度データの高震度域は、SHN01の計測震度分布から大体包含されている一方、 SHN02の方は、平野東部の丘陵地との境界及び周辺域や、平野中央部の震度データの高震 度域の説明性が悪いようにみえる。

図 82 に、震度データと、地震動シミュレーションに基づく計測震度の相関を、震度デー タの得られている地点で比較した。〇が個々の比較を表し、平均値及び標準偏差をつけて いる。震度データ地点における計測震度のバラつきが多いものの、SHN01 の相関の方が SHN02 の相関よりややよいように見える。震度データに対して計測震度のバラつきが大 きい、特に、この中で震度データが低い震度 4.5 や5 において非常に広くなってしまって いるのは、震度データが、狭いサイズの村の建物被害から想定されているのに対して、地 盤条件は 250 m メッシュで与えており、ボーリングデータがないところは、微地形区分で 設定していることから、局所的な状況を正確にはとらえることができていないからと考え る。この時代を考えると、治水工事などは極めて限定的と考えられるため、庄内平野内に おいては、集落は自然堤防といった微高地にあったであろうから、そういった局所的な情 報がこのような分析には必要と考える。

1894 年庄内地震では、地表地震断層が明確には現れていないが、活構造としての庄内平 野東縁断層帯が活動して被害を引き起こしたと考えられてきたが、本研究の結果からは、 今回本プロジェクトで見つかった庄内平野西部に見られる活構造の活動の可能性も指摘で きた。

561

図 80 地表震度分布の比較。(上) SHN01 震源断層モデル、(下) SHN02 震源断層モデル。

図 81 地表震度分布と、明治庄内地震の被害に基づく震度分布 ²⁷⁾の比較。(上) SHN01 震源断層モデル、(下) SHN02 震源断層モデル。

図 82 震度データと計測震度の相関。(上) SHN01 震源断層モデル、(下) SHN02 震源断 層モデル。