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Motivation

Deformation Failure

Solution for
/ Homogeneous body

UZ(Xa)

U (X,

Phenomenon = Behavior of Homogeneous body IPhenomenon # Behavior of Homogeneous bodyI

Accurate solution for homogeneous body with expensive discretization

Utter Significance ‘Almost Meaningless‘




Things: to, Discuss; o Analysis; of Failure. Behavior

@ Effect of local heterogeneity
® Behavior of ideally homogeneous body # What really happens
(extensive, expensive analysis on ideally homogeneous body ==+ ?)
® Convergence in local sense needed?
(Failure phenomena do not converge in local sense)
® Methods with wide variety of failure patterns depending on local heterogeneity
(Which could be called mesh dependence )

@ Number of DOF

® “ Fine Mesh = High Accuracy “ does not always hold
® Proper order of discretization depending on the scale of local heterogeneity



Objectives

@ Numerical analysis on failure behavior of bodies with
local heterogeneity

@ See the difference between the failure behavior of ideally
homogeneous body and that of locally heterogeneous
bodies

@ Examine the applicability of Particle Discretization
Scheme (FEM-3) to analysis of failure behavior of bodies
with local heterogeneity



Example: Problem

uniform tension
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Ideally Homogeneous; Body
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Kamaya and Totsuka, Corrosion Science, 2002

The only one pair of crack path is obtained




Body, with, Local Heteregeneity --- What: we expect
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Stochastic Treatment

Brute force:
Monte-Carlo simulation using models with
different distribution of material properties (stiffness, strength etc.)

but... | Meshless related methods: sophisticated discretization requires
relatively high computational cost
Adaptive mesh: re-mesh at each step costs a lot

We need | a method with i) less computational cost
i) simple treatment of failure
li)) no change in configuration




Easy, Treatment: of Failure. im FEM:b

stiffness matrix of FEM-B
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Spring properties are rigorously determined
with material properties; E and v

for direct interaction

for indirect interaction
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a suitable failure criterion

Appropriately change the components of stiffness matrix/spring constants, according to J




Monte-Carlo, Simulation, ofCrack Propagation
In, Locally, Heterogeneous; Body

uniform tension
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You.ng’s modu.lus 1.0 1000 models with different
Poisson’s rafio 0.%5 distribution of material strength
Disp. B.C. 0.1 (vertical)




Example. of Crack Path

Let's have a look at animations



Example. of Crack Path
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Example. of Crack: Path




Example. of Crack: Path
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Source of the. Difference




Qualitative. Comparison between
Ideally, Homogeneous. and|LLocally Heterogeneous; bodies

|deally Homogeneous Body Locally Heterogeneous Bodies
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Significant variance in crack paths
due to local heterogeneity




Quantitative discussion
\We.are: going;to, look at; PDF of-crack paths

o . 02




Probability, Density; Function, of Crack: Path
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Summary

@ Importance of local heterogeneity in analysis of failure
phenomena

@ Monte-Carlo simulation of crack propagation in
heterogeneous bodies with different distribution of
material strength

@ Easy treatment of failure is needed --- FEM-3
@ Wide variety of crack paths, PDF for crack paths



Gains and/ LLosses: of FEM-b

@ What we got...rigorous formulation + easy treatment of failure
® Simple treatment of failure like DEM (Strength of Material)
® No change in Geometry/Configuration
® Particle physics type simulation = suitable for parallel, massive computation
® Easy treatment of local heterogeneity

€ What we sacrifice...fracture mechanics, local convergence
® Candidate for crack path is pre-determined when a mesh is made
® (Crack surface=Cavity) = Blunt Crack

® Solution does not converge to the exact solution for the problem of crack growth
In ideally homogeneous body
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