
BACKGROUNDSBACKGROUNDS

Two Models of Deformable Body
continuum deformation expressed in terms of field variables
rigid-body spring assembly of rigid-bodies connected by spring

Distinct Element Method (DEM)
simple treatment of failure: breakage of spring
non-rigorous determination of spring constants

deformable body particle modeling DEM analysis

breakage of spring

spring constant need to 
be determined in terms 
of material parameters



MATHEMATICAL INTERPLETATION OF 
RIGID-BODY SPRING MODEL 
MATHEMATICAL INTERPLETATION OF 
RIGID-BODY SPRING MODEL 

Non-Overlapping Functions for Discretization 

smooth but overlapping functions are 
used for discretization

characteristic functions of domain are 
used for discretization

ordinary FEM DEMu1

u2

u1

u2



PARTICLE DISCRETIZATION FOR 
FUNCTION AND DERIVATIVE 
PARTICLE DISCRETIZATION FOR 
FUNCTION AND DERIVATIVE

Discretization of Function f(x) 
in terms of {ϕα (x)}

Discretization of Derivative f,i(x) 
in terms of {ψα (x)}
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form of discretization form of discretization

optimal coefficients for given Voronoi blocks {ϕα}

 

and Delaunay triangles {ψα}

derivative of {ϕα} is not 
bounded but integratable



1-D PARTICLE DISCRETIZATION1-D PARTICLE DISCRETIZATION
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is 
coefficient of characteristic function ϕα

average slope of interval for ψα

 

is coefficient of 
characteristic function ψα

mother points

middle point of neighboring mother points



2-D PARTICLE DISCRETIZATION2-D PARTICLE DISCRETIZATION

Voronoi blocks for function Delaunay triangles for derivative

dual domain decomposition

function and derivative are discretized in terms of sets of non-overlapping 
characteristic functions, such that function and derivative are uniform in 
Voronoi blocks and Delaunay triangles,



COMPARISON OF PARTICLE DISCRETIZATION 
WITH ORDINARY DISCRETIZATION 
COMPARISON OF PARTICLE DISCRETIZATION 
WITH ORDINARY DISCRETIZATION

x2 x3
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f 2
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f 3

derivative of particle discretization coincides with 
slope of plane which is formed by linearly 
connecting Voronoi mother points

+ + =
f 1 f 2 f 3

f 1 f 2 f 3

+ + =

ordinary discretization with linear function

particle discretization

particle discretization of derivative



PARTICLE DISCRETIZATION TO 
CONTINUUM MECHANICS PROBLEM 
PARTICLE DISCRETIZATION TO 
CONTINUUM MECHANICS PROBLEM

Conjugate Functional

FEM-β: FEM with Particle Discretization
stiffness matrix of FEM-β coincides with stiffness matrix of FEM with uniform 
triangular element
including rigid-body-rotation, FEM-β gives accurate and efficient computation for 
field with singularity
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Delaunay for stress: 
coefficients are analytically obtained by stationarizing J



FAILURE ANALYSIS OF FEM-βFAILURE ANALYSIS OF FEM-β
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for indirect interaction 

stiffness matrix of FEM-β strain energy due to relative deformation of 
Ω1 and Ω2 through movement of Ω3

cut two springs of direct and indirect interaction together or 
separately, according to certain failure criterion of continuum



FAILURE MODELING BY BREAKING SPRINGSFAILURE MODELING BY BREAKING SPRINGS
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EXAMPLE PROBLEMEXAMPLE PROBLEM
Simulation of Crack Growth

Check of Convergence
displacement
strain/strain energy

Pattern of Crack Growth
can small difference in initial 
configuration cause large 
difference in crack growth?

uniform tension



CONVERGENCE OF SOLUTIONCONVERGENCE OF SOLUTION
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CHECK OF CRACK GROWTHCHECK OF CRACK GROWTH

εyy

evolution of normal strain distribution

pattern of crack growth



EXAMPLE: PLATE WITH 3 HOLESEXAMPLE: PLATE WITH 3 HOLES

slight difference in location of 3rd hole

simulation of crack growth: crack stems from holes

case a case b



DIFFERENCE IN CRACK GROWTH: 
DISTRIBUTION OF NORMAL STRAIN 
DIFFERENCE IN CRACK GROWTH: 
DISTRIBUTION OF NORMAL STRAIN

case a

case b



SIMULATION OF BRAZILIAN TESTSIMULATION OF BRAZILIAN TEST

Brazilian test



SIMULATION OF FOUR POINT BENDING TESTSIMULATION OF FOUR POINT BENDING TEST
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FOUR POINT BENDING WITH 
IDEARLY HOMOGENEOUS MATERIALS 
FOUR POINT BENDING WITH 
IDEARLY HOMOGENEOUS MATERIALS
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puts two source of local heterogeneity, 1) mesh quality for particle  discretization and 2) 
crack path along Voronoi boundary. An ideally homogeneous material which is modeled with best 
mesh quality sometimes fail to simulate crack propagation.



CONCLUDING REMARKSCONCLUDING REMARKS

Particle Discretization
discretization scheme using set of non-overlapping characteristic functions

Continuum Mechanics Problem
essentially same accuracy as FEM with uniform strain
applicable to non-linear plasticity

Failure Analysis
simple but robust treatment of failure
Monte-Carlo simulation for studying local heterogeneity effects on failure
- candidates of failure patterns are pre-determined by spatial discretization 
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