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GPS NETWORK AND ITS DATAGPS NETWORK AND ITS DATA
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NEED FOR LOCAL STRESS PREDICTIONNEED FOR LOCAL STRESS PREDICTION
Material Test of Next 
Generation

Earthquake Prediction
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IS STRESS INVERSION POSSIBLE?IS STRESS INVERSION POSSIBLE?

3D State Most Difficult

2D State Possible?

3 UNKNOWNS

σ11
σ22
σ12

2 EQUATIONS

equilibrium in x1 -direction
equilibrium in x2 -direction

STRAIN
1 CONDITION
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STRESS INVERSIONSTRESS INVERSION
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EXTENSION TO OTHER DEFORMATION STATEEXTENSION TO OTHER DEFORMATION STATE

Dynamic State

Finite Deformation State: 
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NUMERICAL SIMULATIONNUMERICAL SIMULATION

Conditions
– elasto-plastic material with unknown yield function
– prediction of stress and stress-strain relation

2.0

1.0

distributed force

FEM computation with
20x48 elements

displacement field is 
used as input data
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RESULTS OF INVERSIONRESULTS OF INVERSION

distribution of σ12

principle stress- 
plastic strain rate

exact predicted
yield locus

σ1 −σ3

σ12

σ2 −σ3

exact predictedsample surface

σ12

σ1 −σ3

σ2 −σ3

good  agreement



9

MODEL EXPERIMENTMODEL EXPERIMENT

Riedel shears

Torsional Shearing

CCD camera

servomotor

video recorder

8cm

7c
m

examples of image

max. shear strain
Experiment Apparatus
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OVERALL STRESS-STRAIN RELATIONOVERALL STRESS-STRAIN RELATION
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LOCAL STRESS-STRAIN RELATIONSLOCAL STRESS-STRAIN RELATIONS

normal stress-strain
2

0

20

40

0 1

A D

ε11

σ11 [kPa]

-10

0

10

20

-0.5 0

A

D

ε12

σ12 [kPa]

shear stress-strain

A: far from crack

D: near crack
no common relations?



12

common elasto-plastic relations?

RESULTS OF INVERSIONRESULTS OF INVERSION
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APPLICATION TO GPS ARRYA DATAAPPLICATION TO GPS ARRYA DATA

verification of numerical analysis method
– check numerical stability of solving boundary value problem
– check dependency of parameters

application of stress inversion method
– geophysical interpretation of analysis results
– critical examination of assumption of plane state

development of crust deformation monitor
– automatic processing of GPS array data
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CONVERGENCECONVERGENCE

σ
(hydrostatic stress)

Δ: resolution of strain distribution (degree)
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EFFECT OF REFERENCEEFFECT OF REFERENCE

τ
(max. shear stress)
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COMPARISON OF STRESS WITH STRAINCOMPARISON OF STRESS WITH STRAIN

σ
 

(hydrostatic stress) τ
 

(max. shear stress)

ε
(vol. strain)

γ
 (max. shear strain)
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REGIONAL CONSTITUTIVE RELATIONSREGIONAL CONSTITUTIVE RELATIONS

τ/γ φ−θ

regional stiffness
(τ, γ: max. shear stress and strain)

regional anisotropy
(φ, γ: principle stress and strain)

regional heterogeneity and anisotropy
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CHANGE IN INVARIANTCHANGE IN INVARIANT

1st invariant 2nd invariant
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CHANGE IN REGIONAL STATECHANGE IN REGIONAL STATE
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REGIONAL STRESS AND STRAINREGIONAL STRESS AND STRAIN
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GPS DATA DURING 1998-1999GPS DATA DURING 1998-1999

GPS Data
– no spatial filtering to get rid of measurement noise
– linear interpolation between two GPS station

More Sophisticated Treatment of BVP
– FEM with triangle element
– weak form
– regionally averaged field quantities 
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APPLICATION TO GPS NETWORK DATAAPPLICATION TO GPS NETWORK DATA

BVP in Rate Form and Weak Form

Computation of Average Quantities
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GPS NETWORK AND ITS DATAGPS NETWORK AND ITS DATA
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REGIONAL STRAIN RATEREGIONAL STRAIN RATE
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REGIONAL STRESS RATEREGIONAL STRESS RATE
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COMPARISON WITH SEISMIC EVENTS?COMPARISON WITH SEISMIC EVENTS?
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REGIONAL CONSTITUTIVE RELATIONSREGIONAL CONSTITUTIVE RELATIONS
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DRAWBACKS OF STRESS INVERSIONDRAWBACKS OF STRESS INVERSION
Need to Know One Constitutive Relation
– bulk stress and bulk strain
– isotropy assumption

Need to Know Boundary Traction/Resultant Force
– assumption of uniform stress
– fast decrease of non-uniform boundary traction

Difficulty in Understanding Plane-Stress-State Model

another analysis method needed?
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DRAWBACKS OF ELASTICITY INVERSIONDRAWBACKS OF ELASTICITY INVERSION

Sensitive to Displacement Error
– need to make fine discretization of target body
– need to have some strong modes of deformation

Why is it so?
no mistakes in mathematics
poor understanding of physics
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PHYSICAL PROCESS AND MEASUREMENTPHYSICAL PROCESS AND MEASUREMENT

response source

data

characteristics

physical process

m
easurem

ent unknown mechanical property

unknown plate slip/
underground deformation

GIS data

crust deformation

inverse analysis

May not be good to pose an inverse problem from data 
to characteristics, because a path from characteristics 
to data has physical process and measurement

X
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characteristics

ESTIMATION AND INVERSIONESTIMATION AND INVERSION

response source

data

physical process

estim
ation

m
easurem

ent

inversion

estimation: from data to response, i.e.,
estimate function for displacement from data which are 
measured discretely
inversion: from response to characteristics, i.e.,
find most suitable characteristics for physical process 
even though source is not known
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BLOCK IN CONTINUUMBLOCK IN CONTINUUM
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IDENTIFICATION OF DISPLACEMENT MODEIDENTIFICATION OF DISPLACEMENT MODE

material sample test

node

concentrated force

material sample

hexagonal blockblock 1

block 2 block 3

apply several BC’s, and measure displacement at nodes of a hexagonal block.
1. identify displacement modes (a characteristic set of nodal displacement)
2. identify local elasticity
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IDENTIFICATION OF DISPLACEMENT MODEIDENTIFICATION OF DISPLACEMENT MODE
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ELASTICITY INVERSION METHODELASTICITY INVERSION METHOD

1. use displacement data to determine Tayler series 
expansion coefficients of displacement

2. use equilibrium equation to estimate elastic 
parameters by expanding stress in Talker series

BASIC PROCEDURES OF INVERSION

nodes at which displacement is measured

body B

block Ω

uniform Poisson's ratio is assumed

local field variables allows 
Taylor series expansion
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DETERMINATION OF DISPLACEMENT COEFFICIENTDETERMINATION OF DISPLACEMENT COEFFICIENT

1. Taylor Expansion:

2. Displacement Data: 
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1. Elasticity Tensor Expressed in Terms of Poisson Ratio

2. Equation of Equilibrium and Its Taylor Expansion

3. Coefficient of Expansion: bip =0 for 0th Order (p=1)

ESTIMATION OF POISSON RATIO νESTIMATION OF POISSON RATIO ν
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NUMERICAL SIMULATION (1)NUMERICAL SIMULATION (1)
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1. Measurement Error:

2. Find ν
 

such that 

NUMERICAL SIMULATION (2)NUMERICAL SIMULATION (2)
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APPLICATION OF LOCAL GPS DATAAPPLICATION OF LOCAL GPS DATA

2000 Western Tottori Earthquake (MJMA =7.3)
examine change in deformation and elasticity 
before and after this earthquake
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Velocity field
Post-Tottori Earthquake
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53 GPS observation points
82 triangular elements
GPS data obtained from 1997 to 2002
annual and biannual sinusoidal variations 
excluded

GPS array

pre-WTE

post-WTE
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STRAIN RATESTRAIN RATE
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STRESS RATESTRESS RATE
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PRINICPLE AXISPRINICPLE AXIS
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POISSON RATIOPOISSON RATIO
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has been reduced near the source 
faults. The comparison with other 
analyses are being made. 
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CONCLUDING REMARKSCONCLUDING REMARKS

Two inverse analysis methods
– stress inversion 

find Airy’s stress function by solving Poisson’s equation
– elasticity inversion 

find elastic parameters by estimating displacement expansion 
coefficients

Development of new inversion is needed for geophysics 
where experiments cannot be made. 

Application
– small material samples used for bio-mechanics
– geomaterials
– new image analysis with higher spatial resolution 
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