Problems in Solid Mechanics
A Symposium in Honor of H.D. Bui
Symi, Greece, July 23-28, 2006

INVERSE ANALYSIS:METHODS, OF

IDENTIEYING, CRUSTAL CHARACTERISTICS
USING: GRS ARRYA DATA

M. HORI (Earthquake Research Institute, University of Tokyo)

Contents

1. Stress inversion method: find equilibrating stress using
measured strain and partial information on stress-strain relation

2. Elasticity inversion method: find local elasticity using densely
measured displacement



GRS NETWORK AND)ITS DATA
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NEED FOR LOCAL STRESS PREDICTION

& Material Test of Next € Earthquake Prediction
Generation
W GPS data
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IS STRESS, INVERSION POSSIBLE?

& 3D State

& 2D State

3 UNKNOWNS

Most Difficult

Possible?

<=

2 EQUATIONS

equilibrium in x,-direction
equilibrium in x,-direction

1 CONDITION \C

STRAI

>
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STRESS; INVERSION

\_& /
self-equilibrating stress

- partial information: c,;, + o, =f(g;) ™

Gy =@ 5 f(e;) =x(ey +€x)
1022 =28y U
G, =~y G, +0,, =K(€, +¢,,)
- 11 T O2 11 T €2
\_ \ J

2D bulk modulus?

B.V.P. | ‘
measured strain

/

Poisson equation —(5«

.

4 )
G.E. djtay, = k(e +€5)

B.C. na,+n,a,=—nr,+n,n
X\ J

\— resultant forces




EXTENSION| TO OTHER DEFORMATION| STATE

€ Dynamic State

Oy 1Oy, =pPUy

N

O, T 0y, =pPU,

011 70 = f(e)

& Finite Deformation State:
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L (Gij =06;(X), X; = Xi(X))
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NUMERICAL SIMULATION
& Conditions

— elasto-plastic material with unknown yield function
— prediction of stress and stress-strain relation

I I I I distributed force

displacement field is
used as input data

FEM computation with
20x48 elements




RESULTS OF INVERSION

O12
distribution of 5,

principle stress-
plastic strain rate

sample surface
exact

good agreement

predicted

Gl _63 ]

G, —G3

predicted



MODEL EXPERIMENT

Riedel shears

Torsional Shearing

video recorder

CCD camera

servomotor

Experiment Apparatus

examples of image

W 18-2

H1.6-1.8

M14-16
1.2-14
1-1.2

s = (= 4 0.8-1
,-fyij = mo06-08
&~ 0.4-0.6

0.2-0.4

max. shear strain 0-0.2




OVERALL STRESS-STRAIN RELATION

stress (kgf/m?®)

rotation (radian)
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[ will be different from local relations? ]
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LOCAL STRESS-STRAIN/ RELATIONS

G, [kPa]
40 | | ,,;1',
i D
20|
ol
0 1 €

normal stress-strain

A: far from crack

D: near crack

o, [kPa]

20}

10}

-10

-0.5 0

shear stress-strain

[ no common relations? ]
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max. shear stress (kPa)

30| — A —0D
_ — B — E
20t — ¢

yielding

10

0 0.1 0.2 0.3 0.4
max. shear strain

[ common elasto-plastic relations? ]
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APRLICATION, TO GRS ARRYA DATA

& verification of numerical analysis method
— check numerical stability of solving boundary value problem
— check dependency of parameters

@ application of stress inversion method
— geophysical interpretation of analysis results
— critical examination of assumption of plane state

@ development of crust deformation monitor
— automatic processing of GPS array data
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CONVERGENCE

3 | 1 1
130 135 140 145

¢) A=0.125

0}
(hydrostatic stress)

] | 1 1
130 135 140 145

A: resolution of strain distribution (degree)
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EFEECT OF REFERENCE

(max. shear stress)

c)v=0.3 (1)

d)v=0.4 (1)
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COMPARISON OF STRESS, WITH, STRAIN

H 20
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- 0.5
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REGIONAL CONSTITUTIVE RELATIONS

0o | ]
130 135 140 145
»—0
regional stiffness regional anisotropy
(t, v: max. shear stress and strain) (¢, v: principle stress and strain)

[ regional heterogeneity and anisotropy ]
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CHANGE IN/ INVARIANT

18t invariant 2nd invariant

48/12/04 98/12/04




CHANGE IN/REGIONAL STATE

[ 18t invariant ]
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REGIONAL STRESS AND) STRAIN
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GRS DATA DURING; 1998-1999

& GPS Data

— no spatial filtering to get rid of measurement noise
— linear interpolation between two GPS station

@ More Sophisticated Treatment of BVP
— FEM with triangle element
— weak form
— regionally averaged field quantities

21



APPLICATION TO GRS NETWORK DATA

€ BVP in Rate Form and Weak Form
R
G.E. ay,+a,, =& +£,)
B.C. na,+na,=-—"nf,+n,

strain rate

[ J.(P,la,l +¢,d , — K((p,lul + (P,zuf)ds =0 ]

\— displacement rate

€ Computation of Average Quantities

4 1 )
< 11> - a 60 n,u,dL — average stress rate computed by
/ using 15*-order derivative
1
<Gll> = a 0 nza ZdL
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GRS NETWORK AND)ITS DATA
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REGIONAL STRAIN/RATE

130E 140E 130E 140E

24



REGIONAL STRESS RATE

volumetric o ¢ max. shear

130E 140E 130E 140E
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COMPARISON WITH SEISMIC EVENTS?

130E 140E 130E 140E
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REGIONAL CONSTITUTIVE RELATIONS

" findic(x) s.t

- HX) =k(X)7(x)

t,Y maximum shear
K regional stiffness

K is originally used to relate ¢ & €
through o =x €.

geological structure

[ not too far from known ]

130 140




DRAWBACKS OF STRESS, INVERSION

& Need to Know One Constitutive Relation
— bulk stress and bulk strain
— Isotropy assumption

€ Need to Know Boundary Traction/Resultant Force
— assumption of uniform stress
— fast decrease of non-uniform boundary traction

@ Difficulty in Understanding Plane-Stress-State Model

[ another analysis method needed? ]
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DRAWBACKS, OF ELASTICITY INVERSION

& Sensitive to Displacement Error
— need to make fine discretization of target body
— need to have some strong modes of deformation

Why Is It S0?
€ no mistakes in mathematics
@ poor understanding of physics
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PHYSICAL PROCESS AND MEASUREMENT,

GIS data

o)

JusWwalnseaw

[ response ]

crust deformation

€ May not be good to pose an inverse problem from data
/04 to characteristics, because a path from characteristics
Q& to data has physical process and measurement
(0

unknown mechanical property

[ characteristics ]

« [ source ]

physical process

unknown plate slip/
underground deformation
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ESTIMATION AND) INVERSION

@ estimation: from data to response, i.e.,
[ data ] estimate function for displacement from data which are
measured discretely
@ inversion: from response to characteristics, i.e.,
/\ find most suitable characteristics for physical process

a 5 even though source is not known
= 3
s 3
o c
S o)
3
D
=
.(\qe‘é\o(\ [ characteristics ]
\
[ response < [ source ]

physical process
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BLOCK INJCONTINUUM

nodes at which displacement is measured

— —
__
___
— | S—

iInner node

boundary node
X2

displacement at all nodes given

Ak, . .
— = no need to consider interaction
L ) of S with outside region

A4
>
N

AN
>
'—\
N4
N
>
N
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IDENFIFICATION OF-DISPLACEMEN I MODE

node

concentrated force %
—_— -
block 1 / hexagonal block

%/

block 2 block 3

material sample

material sample test

apply several BC's, and measure displacement at nodes of a hexagonal block.
1. identify displacement modes (a characteristic set of nodal displacement)
2. identify local elasticity
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IDENFIFICATION OF-DISPLACEMEN I MODE

displacement mode

6 unconstraint
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ELASTICITY INVERSION METHOD

body B

local field variables allows
Taylor series expansion

k Q

) blo
ent is measureé:\
Q@

nodes at which displace

BASIC PROCEDURES OF INVERSION
~ ™

1. use displacement data to determine Tayler series
expansion coefficients of displacement

2. use equilibrium equation to estimate elastic ° o

\_ parameters by expanding stress in Talker series Yy, uniform Poisson's ratio is assumed
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DETERMINATION OFDISPLACEMEN T COERRICIENT
1. Taylor Expansion: {a;, }

P
ui(x) - Z;aipfp(x) {aip}:{ui’ui,l’ui,Z’%ui,Z’ui,ll’%uiJZ’ui,22’”'}
p=

{f.3={Lx,,%,, X2, X, X,, X3, }

2. Displacement Data:{U; }

P

—n

ui — fpnaip
p:

-

3. Solution of Matrix Equation f, =f_ (x")

- 1 n o o = a o a
A, - z}b—(zu 0" jwp Sevl ot s,

fully determined undetermined




ESTIMATION OF-POISSON RATIOV

1. Elasticity Tensor Expressed in Terms of Poisson Ratio

0 1
Ciii = Cijr T VGCij

2. Equation of Equilibrium and Its Taylor Expansion
b; (X) = (Cijkluk,l (X)),j = Z bipfp (x)=0
P

3. Coefficient of Expansion: b;,=0 for 0t Order (p=1)

linear equation of v is derived

|
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NUMERICAL SIMULATION, (1)

0.010
error
——2nd order
——3rd order
0005
0.000 v
00 0.1 0.2 0.3 04 0b
-0.005
-0.010
v=0.25
W v=0.25 frequency

error

0.010
—2nd order
—23rd order
0.005
/
0.000 : :
0,0 0.1 0.2 0.3 0.4 05
-0.005
-0.010
v=0.35
measurement 200

expansion of displacement 3" order

expansion of equilibrium 0t or 1t order

38



NUMERICAL SIMULATION(2)

1. Measurement Error: {&'}

P
—N n
u' = E fpnaip +e
p=1

2. Find v such that

minimize  |e[*=) (e])°
subjectedto b, (v)=0

measurement
expansion of displacement

expansion of equilibrium

200
3" order

0t or 18t order

0012

Oth

0008 |

0004 |

3.586920

1st
3586915 |

le]

3586910 |

3.586905

0.00 0.10 0.20 0.30 040 0.50
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APPLICATION OFLOCAL GPS DATA

GPS Network

35E!

34.5E!

34F}

GPS array

2000 Western Tottori Earthquake (M;,,,=7.3)
examine change in deformation and elasticity
before and after this earthquake

¢ 53 GPS observation points

< 82 triangular elements

¢ GPS data obtained from 1997 to 2002

¢ annual and biannual sinusoidal variations
excluded

\Velocity field
pl’e-WTE Pre-Tottori Earthquake
35.57

Velocity field
pOSt'WTE Post-Tott)éri Earthquake
35.5]
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STRAIN/RATE

pre-WTE

dilatational

shear

Dilatational strain rate .
97.05.24 -- 00.08.06 N

Maximum shear strain rate ,
97.05.24 -- 00.08.06

post-WTE

Elatational strain rate

00.11.04 -- 02.07.27

Maximum shear strain rate
00.11.04 -- 02.07.27
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STRESS;RATE

pre-WTE

dilatational

shear

35.57

3571

34.57

347

Dilatational stress increment
97.05.24 -- 00.08.06 -

Maximum shear stress increment
97.05.24 - oo.os.oe

post-WTE

35.5F

35

34.5

347

Dilatational stress increment °.

00.11.04 -- 02.07.27

Maximum shear stress increment ° .
00.11.04 -- 02.07.27 N

42



PRINICRLE AXIS

pre-WTE

97.05.24 -- 00.08.06

strain .

34,57

347

Principal axes of strain rate

— (extensional)
— (contractional)

0.5 [Micro Strain/Year]

1325 133

134 1345

stress

34.5

347

[Principal axes of stress rate
97.05.24 - 00.08.06

—— (extensional)
— (contractional)
100 [KPa/Year]

1325 133

134 1345

post-WTE

35.57

357

34.57

Principal axes of strain rate
00.11.04 -- 02.07.27

— (extensional)
— (contractional)
0.5 [Micro Strain/Year]

134 134.5

Principal axes of stress rate
00.11.04 -- 02.07.27

34.57
349 — (extensional)
— (contractional)
100 [KPa/Year]
1325 133 1335 134 134.5
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POISSON RATIO

pre-WTE

35.57

357

difference

34.57

Poisson’s ratio
Pre-Tottori Earthquake

post-WTE

aange of Poisson’s ratio

Naka-Umi’
e

341 U

Mt. Daisen

o

20

Poisson’s ratio
Post-Tottori Earthquake

35.5]

357

r0.4

-
v has been reduced near the source

faults. The comparison with other

kanalyses are being made.
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CONCLUDING: REMARKS

€ Two inverse analysis methods

— stress inversion
find Airy’s stress function by solving Poisson’s equation

— elasticity inversion
find elastic parameters by estimating displacement expansion
coefficients

€ Development of new inversion is needed for geophysics
where experiments cannot be made.

@ Application
— small material samples used for bio-mechanics
— geomaterials
— new image analysis with higher spatial resolution
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