3.4.5.3 非一様な破壊伝播を考慮した震源モデルの構築とリアルタイム強震動予 測へ向けた基礎的研究

(1) 業務の内容

(a) 業務の目的

・高速な地震動予測手法などの研究を行い、震源断層モデルや強震動予測の高精度化につ なげる。

(b) 平成21年度業務目的

・震源断層モデルや強震動予測の高精度化に資するため、非一様な破壊伝播を考慮した震 源解析などの研究を行う。

(c) 担当者

所属機関	役職	氏名	メールアドレス
九州大学大学院理学研究院	准教授	竹中博士	

(2) 平成21年度の成果

(a) 業務の要約

・震源断層モデルや強震動予測の高精度化に資するため、非一様な破壊伝播を考慮した震 源解析の研究を行った。具体的には、初期破壊と主破壊の断層面が異なる可能性のある 2007年中越沖地震について解析した。

(b) 業務の成果

1) 2007 年新潟県中越沖地震の震源のモデル

これまで P 波波形記録に基づくイメージング法を開発し、近年の被害地震に適用し、リ アルタイム強震動予測に資する破壊開始初期の震源過程情報を抽出してきた(例えば、 Takenaka et al., 2009). その中で 2007 年中越沖地震のように初期破壊と主破壊の断層面 が異なる可能性のあるイベントがあり、さらにS波部分を解析して主破壊過程について明 らかにする必要があった。本研究では中越沖地震について初期破壊面と主破壊面が異なる ことを経験的グリーン関数法によるモデリングによって明らかにした。以下具体的に記す。

0.3Hz から 10Hz までの広帯域の地震記録を対象とした経験的グリーン関数法を用いて 2007 年新潟県中越沖地震の震源モデルの推定を行った。その結果、3 つのアスペリティの うち、最初に破壊した強震動生成域であるアスペリティ1は Takenaka et al. (2009)が同 定した初期破壊と同じく震源を含む北西傾斜面上に位置することが分かった。また,アス ペリティ1の南西側の南東傾斜の断層面上にアスペリティ2 および3 がそれぞれ推定され た(表1、図1)。得られた震源モデルは余震分布(Kato et al., 2008; Shinohara et al., 2008; 真保・他, 2009)や既往の研究結果と比べても調和的であり(図2)、本研究で推定された 震源モデルによって、広域的な地震動を再現することができた。

本研究で推定されたアスペリティの総面積は 92 km² であり、その地震モーメントは 3.64 × 10¹⁸Nm (*M*w6.3) である。F-net から求められた本震の地震モーメント *M*₀=9.30 × 10¹⁸

Nm に対し、Somerville et al. (1999)による地震モーメントを用いると断層面積は 458 km² となるが、この値を用いるとアスペリティの断層面積に占める割合は 20.0%となり、 Somerville et al. (1999)による平均的なアスペリティの総面積と断層面積との比 22%と調 和的な結果となる。また,本研究では,各アスペリティをそれぞれ独立なクラックとして 扱っているが、各アスペリティの応力降下量は,アスペリティ1は 19.5 MPa,アスペリ ティ2は14.8 MPa,アスペリティ3は19.5 MPaとそれぞれ推定される.一方、アスペリ ティモデルに基づくと、本震の断層面積とアスペリティの総面積の比 20%から得られるア スペリティの応力降下量の値は 11.5 MPaとなる。3つのアスペリティの応力降下量がす べて等しいと仮定すると、入倉・三宅(2001)に基づいて、3つのアスペリティを持つアス ペリティモデルと等価なクラックモデルにおける応力降下量は11.5× $\sqrt{3}$ = 19.9 MPa とな る。この値は,上で3つのアスペリティを独立なクラックとみて推定した応力降下量の各 値と同程度である。以上のことは、この地震による応力降下は既往の地震に対して平均的 なものであることを示しているといえる。

[謝辞] 本研究では,防災科学技術研究所の K-NET、KiK-net、F-net、気象庁及びおよび 東京電力柏崎刈羽原子力発電所の地震記録の地震波形記録を使用しました。

(c) 結論ならびに今後の課題

経験的グリーン関数法を用いて2007年新潟県中越沖地震の震源モデルの推定を行った. その結果,最初に破壊した強震動生成域であるアスペリティ1は震源を含む北西傾斜面上 に位置することが分かった。また,アスペリティ1の南西側の南東傾斜の断層面上にアス ペリティ2および3がそれぞれ推定された。推定された各アスペリティの応力降下量から、 この地震による応力降下は既往の地震と比較して平均的であるといえる。本研究で、中越 沖地震について初期破壊面と主破壊面が異なることが明らかになった。破壊の初期ステー ジで断層面が替わるケースを想定した強震動予測のための震源モデル構築が今後の課題と なるであろう。

(d) 引用文献

- 1)入倉孝次郎・三宅弘恵,シナリオ地震の強震動予測,地学雑誌,特集号「地震災害を考える る 予測と対策」,110,849-875,2001.
- 2) Kato, A., S. Sakai, E. Kurashimo, T. Igarashi, T. Iidaka, N. Hirata, T. Iwasaki, T. Kanazawa and Group for the aftershock observations of the 2007 Niigataken Chuetsu-oki Earthquake, Imaging heterogeneous velocity structures and complex aftershock distributions in the source region of the 2007 Niigataken Chuetsu-oki Earthquake by a dense seismic observation, Earth Planets Space, 60, 1111-1116, 2008.
- 3) 真保 敬,他8名,海底地震観測網を用いた2007年中越沖地震の余震分布,日本地震学 会2009年度秋季大会, P3-82.
- 4) Shinohara, M., T. Kanazawa, T. Yamada, K. Nahigashi, S. Sakai, R. Hino, Y. Murai,

A. Yamazaki, K. Obana, Y. Ito, K. Iwakiri, R. Miura, Y. Machida, K. Mochizuki, K. Uehira, M. Tahara, A. Kuwano, S. Amamiya, S. Kodaira, T. Takanami, Y. Kaneda, and T. Iwasaki, Precise aftershock distribution of the 2007 Chuetsu-oki Earthquake obtained by using an ocean bottom seismometer network, Earth Planets Space, 60, 1121-1126, 2009.

- 5) Somerville, P. G., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, A. Kowada, Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seism. Res. Lett., 70, 59-80, 1999.
- 6) Takenaka, H., Y. Yamamoto and H. Yamasaki,: Rupture process at the beginning of the 2007 Chuetsu-oki, Earth, Planets and Space, 61(2), 279-283, 2009.

(e) 学会等発表実績

学会等における口頭・ポスター発表

発表成果(発表題目、口	発表者氏名	発表場所	発表時期	国際・国
頭・ポスター発表の別)		(学会等名)		内の別
2000年鳥取県西部地震の	小野浩介・山本	日本地球惑星科学	2009 年 5	国内
初期破壊過程に関する研	容維・大島光	連合2009年大会	月	
究、ポスター発表	貴・竹中博士			
2005年福岡県西方沖地震	大島光貴・竹中	日本地球惑星科学	2009 年 5	国内
の高精度すべり時空間分	博士	連合2009年大会	月	
布の推定、ポスター発表				
Novel FDTD approach for	竹中博士・岡元	American	2009年12	国際
seismic response of	太郎・中村武史	Geophysical Union,	月	
three-dimensionally		Fall Meeting		
heterogeneous model to an				
oblique plane-wave				
incidence、ポスター発表				
Finite-difference simulation	中村武史・	American	2009年12	国際
of strong motion from a	竹中博士・	Geophysical Union,	月	
sub-oceanic earthquake:	岡元太郎・	Fall Meeting		
modeling effects of land	金田義行			
and ocean-bottom				
topographies、ポスター発				
表				

学会誌・雑誌等における論文掲載

掲載論文(論文題目)	発表者氏名	発表場所	発表時期	国際・国
------------	-------	------	------	------

		(雑誌等名)		内の別
経験的グリーン関数法	山本容維・竹中	地震 第2輯	2010 年 8	国内
を用いた2007年新潟県	博士		月	
中越沖地震の震源のモ				
デル化				

マスコミ等における報道・掲載

なし

- (f) 特許出願,ソフトウエア開発,仕様・標準等の策定
 - 1)特許出願

なし

2)ソフトウエア開発

なし

- 3) 仕様・標準等の策定
 - なし

(3) 平成22年度業務計画案

・2007年中越沖地震や2009年駿河地震のように破壊の初期ステージで断層面が替わる(別の断層面に移る)イベントが存在することが分かってきた。これは、ごく最近の稠密な観測により明らかになった現象である。このようなケースに対応するため、(断層面を仮定しない)3次元のイメージングに基づく破壊過程のイメージング法を開発する。

	Asperity 1	Asperity 2	Asperity 3
Length (km)	4.5	6.0	6.0
Width (km)	4.5	6.0	6.0
Seismic moment (Nm)	7.03×10^{17}	1.27×10^{18}	1.67×10^{18}
Stress drop (MPa)	19.5	14.8	19.5
Rupture velocity (km/s)	2.7	2.8	2.8
Rise time (s)	0.3	0.5	0.5
Ruprute time (s)	0.0	2.3	5.9

表 1. Estimated source parameters of the three-asperity model.

 \boxtimes 1. Geometrical configuration of asperities. Asperity 1 is located on the NW-dipping plane including the hypocenter, while Asperities 2 and 3 are both located on the SE-dipping plane.

 \boxtimes 2. Comparison between our estimated source model and the aftershock distribution that was determined by Kato et al. (2008). The red star is the epicenter of the main shock, and the rectangles are asperities estimated in this study [modified from Kato et al. (2008)].