

図 1 ルータを流れるトラフィック量を示したグラフ。上段より 24 時間、1 週間、1 か月 のトラフィックを示している。

図2 関東地方東部および西部の相似地震活動の比較(Kimura et al.,2006 3)を元に編集)。

図3 関東地方東部(茨城県南西部)の相似地震の詳細分布(Kimura et al., 2008)4。

図 4 関東地方西部の相似地震(赤丸,木村,2010)⁸⁾の震央分布。通常の地震(黒)、1923 年 関東地震の震源域、および Hinet 観測点(四角)をあわせて示す。

1/1/2003 - 2/1/2010

図 5 関東地方西部の地震多発帯の高精度震源決定結果。緑色の矩形は 1923 年関東地震の 震源域を示す。

図 6 図 5 に示した枠に沿った鉛直断面。地震発生領域の上限および下限に沿う相似地震 の分布を緑破線で示す。断面 B-B については、相似地震の発震機構解をあわせて示す。 発震機構解は紙面奥の方向に投影して、型別に色分けして示した。

図 7 関東西部における地下構造および相似地震の発生場の模式図(Arai et al., 2009²⁾に加 筆して示した)。

図8関東西部および東部の相似地震の発生様式の模式図。

図 9 茨城県南西部 ~ 神奈川県にかけての北東-南西断面における P 波・S 波速度パーター ベーション・Vp/Vs 構造。濃緑破線は利根川構造線を、青破線は前期中新世(18 ~ 16Ma) の火山フロントの位置を示す。赤点はフィリピン海プレート上面における相似地震の分布 を示す(Kimura et al., 2006)³⁾。

図 10 茨城県南西部 ~ 千葉県中部にかけての北西-南東断面における P 波・S 波速度パー ターベーション・Vp/Vs 構造。濃緑破線は利根川構造線を、青破線は前期中新世(18~ 16Ma)の火山フロントの位置を示す。赤点はフィリピン海プレート上面における相似地震 の分布を示す(Kimura et al., 2006)³⁾。

図 11 茨城県南西部~千葉県北東部にかけての北西-南東断面における P 波・S 波速度パ -ターベーション・Vp/Vs 構造。濃緑破線は利根川構造線を、青破線は前期中新世(18~ 16Ma)の火山フロントの位置を示す。赤点はフィリピン海プレート上面における相似地震 の分布を示す(Kimura et al., 2006)³⁾。

図 12 房総半島周辺のプレート境界および主なプレート境界現象。丸印は相似地震のパッチ(木村、2010)⁸⁾を表す。

図 13 房総沖のフィリピン海プレートの構造、現在活動的なプレート境界(太線)、および底付け作用の模式図(Kimura et al., 2010²⁴⁾ を元に編集)。 相似地震(白丸)および房総沖のプレート境界現象の発生域をあわせて示す。

図 14 MeSO net 房総測線で観測された地震波形例。フィリピン海プレート境界の地 震(左)およびこれより深い地震(右)について上下動成分を示した。観測点は北から南に並べ て示す。震央位置(星印)、Hi net およびF net による発震機構解、および観測点位置(逆 三角,波形を図示した観測点を黒シンボルで示す)を中央の図に示す。太実線は後続位相の 到達時刻を示す。

図 15 MeSo-net 藤岡-九十九里測線で観測された地震波形記録。北から南に並べて示す。 矩形で示した範囲の拡大図を右側に示す。太実線および黒丸は後続位相の到達時刻を、鉛 直線および白丸は VCR 層下面・上面での SP 変換波の理論走時を示す。P 波の到達時刻(鉛 直線)、震央位置(星印)、Hi-net による発震機構解、および観測点位置(逆三角,波形を図 示した観測点を黒シンボルで示す)をあわせて示す。走時差の残差の大きい領域を矢印で示 す。

図 16 P 波と SP 変換波の走時差の残差分布。星印は震央位置を表す。初期モデル(左)お よび、フィリピン海プレートを 45 度傾斜させたモデル(右)をついて示す。

図 17 MeSO net E.DD15 観測点および Hi net 養老観測点(N.YROH)の波形の比較。 観測点位置、波形例を示した地震の震央(星印)、および堆積層基盤の等深線(林他, 2006)²⁸⁾ を上図に示す。

表 1	解析に使用した地震。	灰色で示した地震は、	今年度の解析で新たに追加した地震	ŧ
表す。				

震源時刻		震源位置			ᆕ ᆂ Hutt		
(日本時間)	緯度	経度	深さ	MW	辰犬地域		
2008/05/12 15:28:01	31.00°N	103.32°E	19 km	7.9	中国 の川省東部		
2008/11/17 02:02:33	1.27°N	122.09°E	30 km	7.4	インドネシア スラベシ		
2008/11/24 18:02:58	54.20°N	154.32°E	492 km	7.3	オホーツク海		
2009/01/04 04:43:51	0.41°S	132.88°E	17 km	7.6	インドネシア パプア北岸付近		
2009/01/16 02:49:39	46.86°N	155.15°E	36 km	7.4	千島列島東部		
2009/02/12 02:34:52	3.88°N	126.40°E	22 km	7.2	インドネシア タラウド諸島付近		
2009/03/20 03:17:41	23.05°S	174.66°W	34 km	7.6	トンガ周辺		
2009/07/15 18:22:29	45.76°S	166.56°E	12 km	7.8	ニュージーランド 南島西方沖		
2009/09/30 02:48:11	15.51°S	172.03°W	18 km	8.0	サモア諸島周辺		
2009/09/30 19:16:09	0.73°S	99.86°E	81 km	7.6	インドネシア 南スマトラ		
2009/10/08 07:03:15	13.05°S	166.19°E	35 km	7.6	バヌアツ		
2010/04/05 07:40:42	32.30°N	115.28°W	4 km	7.3	メキシコ バハ カリフォルニア		
2010/04/07 07:15:02	2.38°N	97.05°E	31 km	7.9	インドネシア 北スマトラ		
2010/06/13 04:26:50	7.88°N	91.94°E	35 km	7.5	インド ニコバル諸島		
2010/07/24 07:51:11	6.72°N	123.41°E	607 km	7.3	フィリピン ミンダナオ島モロ湾		
2010/10/25 23:42:22	3.49°S	100.08°E	20 km	7.8	インドネシア ムンタワイ諸島		
2010/12/22 02:19:40	26.90°N	143.69°E	14 km	7.5	小笠原諸島		

表 2 本解析にて得られた地震計 N 成分の設置方位と推定誤差

観測点コード	N方位	誤差	Ν	観測点コード	N方位	誤差	N	観測点コード	N方位	誤差	N
E.HNOM	-1	1.9	28	E.SBCM	-7	2.6	9	E.TAKM	-13	1.3	6
E.BKKM	-11	2.2	22	E.HYHM	-7	2.2	11	E.KZMM	-12	2.0	14
E.MZPM	- 2	2.3	12	E.HGCM	- 6	2.3	9	E.TTOM	-14	2.6	8
E.JDJM	2	1.9	22	E.NSMM	-14	2.5	11	E.KKSM	- 8	2.2	21
E.SNHM	- 6	1.7	35	E.YNMM	-13	2.4	11	E.KH2M	-13	3.4	4
E.UNMM	-11	1.9	29	E.SDMM	-10	2.1	14	E.FTPM	- 8	3.4	5
E KMKM	-13	2.0	27	E TKNM	-14	2.1	17	E NS.TM	-17	2 3	20
E MKGM	-6	1.0	32	E KOHM		2.1	23	E KSCM	_ 12	2.5	20
E.MKSM	-0	1.9	21	E.ROAM	-11	2.1	23	E.KBOM	-12	2.1	1 2
E.GRSM	-1	1.9	31	E.SECM	-0	2.0	21	E.KRPM	-13	2.7	1.5
E.OMRM	-14	2.0	32	E.MDHM	-2	2.3	11	E.KHDM	13	2.3	15
E.KDKM	-13	1.8	27	E.KSCM	-11	2.7	.7	E.SKPM	- 4	4.4	4
E.ENZM	- 8	1.9	31	E.TYNM	-11	2.2	16	E.SKHM	- 2	2.5	15
E.HSUM	-6	2.0	19	E.STHM	-15	2.3	18	E.AYHM	- 5	2.3	20
E.TKMM	-19	2.2	10	E.NNTM	-12	2.1	16	E.TWDM	21	2.4	17
E.SBAM	- 4	2.8	10	E.KMRM	-16	2.4	18	E.OA5M	-11	2.3	15
E.GNZM	- 5	2.7	10	E.KRCM	-20	2.1	21	E.SIBM	-16	2.4	13
E.SKMM	150	1.5	6	E.FUNM	- 6	2.2	21	E.MSOM	- 3	2.0	28
E.RYGM	-26	2.1	14	E.MNKM	-17	1.9	8	E.KYDM	4	2.1	16
E.YKKM	- 9	1.9	25	E.RKGM	- 8	1.9	14	E.MNAM	1	2.1	29
E.MKJM	-139	2.4	25	E.HRGM	- 4	2.3	12	E.SYOM	- 5	2.1	20
E.RYNM	-12	2.0	23	E.KUDM	-13	2.5	8	E.FJSM	-5	2.1	23
E KCBM	-21	1.8	30	E TSCM	-5	3 1	7	E DGRM	-12	2 0	20
E OVTM	_10	1.0	26	E NKNM	_12	2.2	, 12	E KMUM	- 6	2.0	20
E.OIIM	-19	1.0		E.NKNM	-13	2.5	14	E. KMHM	-0	1.0	20
E.MZMM	- 3	1.8	38	E.SRIM	-9	2.5	14	E.SMGM	-17	1.8	23
E.MBSM	-8	2.3	19	E.HSDM	- /	2.2	10	E.HTTM	-1/	2.2	26
E.YKSM	-11	2.4	15	E.TK2M	- 2	2.3	16	E.KSOM	-12	2.2	16
E.KGKM	0	1.7	31	E.NKMM	2	2.0	14	E.SFHM	-10	2.4	15
E.NGSM	6	1.8	30	E.IIDM	- 5	1.8	6	E.IKCM	-11	2.2	19
E.KWHM	-11	1.8	36	E.SSHM	-11	1.8	16	E.DSCM	-10	1.5	70
E.TNKM	- 4	2.0	31	E.TBKM	- 3	2.1	24	E.HGSM	0	1.7	36
E.KUYM	- 4	1.8	47	E.TYHM	- 6	1.8	28	E.YNCM	- 2	1.6	40
E.IN3M	-13	1.6	42	E.DICM	- 9	1.8	32	E.KZTM	- 7	2.2	14
E.INAM	-15	1.7	33	E.YSSM	-18	1.8	16	E.UHRM	- 9	2.0	10
E.KBRM	- 8	1.7	36	E.SNJM	-16	1.9	6	OK.NHMM	- 8	1.7	54
E.GSJM	-5	1.3	42	E.OJCM	- 6	2.5	7	OK . NKYM	-16	1.9	47
E TKKM	- 1	1 9	30	E HYDM	-5	2 3	14	OK TKCM	-12	1 9	54
E YTBM	165	1.6	60	E MNMM	-7	2.3	14	OK AONM	-11	1.6	80
E TOPM		1.0	65	E MOKM	2	1 9	21	OK AOCM	_ 17	1.0	70
E. TORM	16	1.7		E. CNCM	12	2.0	21	OIC. AOCH	17	1.0	/0
E.IKZM	-10	1.5	04	E.SNSM	-13	2.0	24				÷ .
E.RMSM	-9	1.4	94	E.MDIM	0	2.0	10	Nは用いた	地震 - 観測点	の組の数を	表す
E.GHGM	-5	1.8	38	E.TACM	-2	2.0	14				
E.NARM	0	1.6	52	E.TKWM	-10	1.9	27				
E.HKBM	6	1.8	31	E.YMKM	-9	2.1	21				
E.TKSM	0	2.2	17	E.YT2M	- 4	3.1	5				
E.YYIM	- 4	2.0	24	E.OMNM	- 4	2.7	7				
OK.HRDM	-12	2.1	26	E.OMKM	- 4	2.5	6				
E.HNPM	-11	2.0	40	E.KKHM	-1	2.3	16				
E.YKBM	-19	1.9	30	E.NDOM	-7	2.0	16				
E.MZUM	- 3	3.0	6	E.ABHM	-21	2.4	16				
E.SICM	- 3	2.8	10	E.TGNM	-7	2.2	24				
E.SSMM	-13	2.2	11	E.SR2M	0	2.2	24				
E.MRTM	-5	2.5	14	E.SSPM	- 32	1.8	18				
E.NSUM	-9	2.8	.9	E.SYPM	-11	2.4	14				
E YSDM	- 3	2.2	20	E YMMM	-27	2. 2	12				
E NKGM	_5	2.2	20	E INOM	1	2.2	21				
E NNCM		2.1	10	E CODM	г 	2.1	21				
E MYTIM	- 5	2.0	19		- 8	2.1 0.1	24				
E.MITHM	-	2.0	28	E.IGHM	-19	2.1	24				
E.MRJM	- 5	2.0	25	E.MSRM	-8	1.9	21				
E.SGWM	-20	2.0	24	E.YSOM	-12	2.7	8				
E.TOKM	-15	2.7	11	E.SSNM	-20	2.6	7				
E.THCM	-9	1.8	35	E.SRIM	-14	2.5	8				
E.KSRM	-19	2.3	28	E.NOBM	-14	2.4	14				
E.OKDM	- 8	1.9	28	E.TOCM	- 9	2.5	7				
E.FKCM	-10	2.7	15	E.OACM	-15	2.3	12				
E.NISM	-10	2.1	25	E.MHKM	- 9	2.3	14				
E.FMNM	- 7	2.3	25	E.FKOM	-1	2.3	14				
E.FMHM	- 8	2.5	18	E.MSKM	- 6	2.3	14				
E.OKCM	0	2.2	18	E.SRKM	-10	2.3	10				
E.DAIM	-1	2.1	21	E.TYUM	-20	2.5	12				
E.SRCM	- 3	2.7	11	E.SRSM	24	2.5	14				

図 18 推定された MeSO-net 地中地震計 N 成分の設置方位を矢印の向きで表す。白い菱 形と黒点は、それぞれ、防災科研 F-net/Hi-net 観測点および MeSO-net 観測点の位置を 表す。矢印が表示されていない MeSO-net 観測点では、設置方位が推定出来ていない。

図 19 本解析により推定された MeSO-net 地中地震計設置方位と汐見他(2009)³⁰⁾によ る推定値の差分の頻度分布。