The Collaboratory for the Study of Earthquake Predictability: Perspectives on Evaluation & Testing for Seismic Hazard

D. Schorlemmer, D. D. Jackson, J. D. Zechar, T. H. Jordan
The fundamental principle of science, the definition almost, is this: the sole test of the validity of any idea is experiment.

Richard P. Feynman
Why Evaluation & Testing?

- Scientific best practice
- Increase acceptance of models and concepts
- Surprises (e.g. Seismic Gap Hypothesis)
- Explore validity of common concepts
- Reduce epistemic uncertainty (Disregard models)
- Extension of the peer-review concept
Evaluation & Testing

What can be tested?

- Model output

CALIFORNIA AREA EARTHQUAKE PROBABILITIES

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>30-Year Probability *</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>>99%</td>
</tr>
<tr>
<td>7.0</td>
<td>94%</td>
</tr>
<tr>
<td>7.5</td>
<td>46%</td>
</tr>
<tr>
<td>8.0</td>
<td>4%</td>
</tr>
</tbody>
</table>

* Probabilities do not include the Cascadia Subduction Zone.
Evaluation & Testing

Uniform California Earthquake Rupture Forecast UCERF2

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>30-Year Probability *</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>>99%</td>
</tr>
<tr>
<td>7.0</td>
<td>94%</td>
</tr>
<tr>
<td>7.5</td>
<td>46%</td>
</tr>
<tr>
<td>8.0</td>
<td>4%</td>
</tr>
</tbody>
</table>

* Probabilities do not include the Cascadia Subduction Zone.

- Ingredients that cause the bulge cannot readily be identified
- No constraints on what went wrong
Evaluation & Testing

What can be tested?

- Model output
- Outputs of components
 - Fault model
 - Deformation model
 - Earthquake-rate model
 - Probability model
Evaluation & Testing

What can be tested?

– Model output
– Outputs of components
 – Fault model
 – Deformation model
 – Earthquake-rate model
 – Probability model
– Scientific hypotheses
 – Magnitude-area (-fault length) relationships
 – Frequency-magnitude distribution
 – ...
Evaluation & Testing

What can be tested?

- Model output
- Outputs of components
 - Fault model
 - Deformation model
 - Earthquake-rate model
 - Probability model
- Scientific hypotheses
 - Magnitude-area (-fault length) relationships
 - Frequency-magnitude distribution
 - ...

- Make the model as testable as possible
Scientific Process

What does Evaluation & Testing do differently than the process of peer reviewed publications?

- Standardization & Formalization
- Nomenclature
- Agreement between scientists
- Rigor
- Reproducibility

- Tests involve researchers but are conducted independently
What Evaluation & Testing is NOT

- Testing software codes
- Evaluating input data and their generation (catalogs, various databases, etc.)
- Evaluation & testing targets scientific not technical problems
Status Quo
In Progress

– Earthquake Early Warning testing center
In Progress

- Earthquake Early Warning testing center
- Source Inversion Validation project with testing center

from database of M. Mai
In Progress

- Earthquake Early Warning testing center
- Source Inversion Validation project with testing center
- Reference models for all CSEP testing centers
In Progress

- Earthquake Early Warning testing center
- Source Inversion Validation project with testing center
- Reference models for all CSEP testing centers

- Scientific hypotheses:
 - Characteristic Earthquake
 - Predictive power of Coulomb stress
 - Maximum magnitude per fault
In Progress

- Earthquake Early Warning testing center
- Source Inversion Validation project with testing center
- Reference models for all CSEP testing centers

- Scientific hypotheses:
 - Characteristic Earthquake
 - Predictive power of Coulomb stress
 - Maximum magnitude per fault

- Evaluation and Testing for
 - Global Earthquake Model (GEM)
 - UCERF3
GEM & UCERF3

First testing targets discussed for GEM & UCERF3:

– Maximum magnitude per fault in the fault model
First testing targets discussed for GEM & UCERF3:

- Maximum magnitude per fault in the global fault model
- Moment balance
First testing targets discussed for GEM & UCERF3:

- Maximum magnitude per fault in the global fault model
- Moment balance
- Ground-motion prediction equations
GEM & UCERF3

First testing targets discussed for GEM & UCERF3:

- Maximum magnitude per fault in the global fault model
- Moment balance
- Ground-motion prediction equations
- Number of fatalities/injured

Courtesy of M. Wyss
GEM & UCERF3

First testing targets discussed for GEM & UCERF3:

- Maximum magnitude per fault in the global fault model
- Moment balance
- Ground-motion prediction equations
- Number of fatalities/injured
GEM & UCERF3

First testing targets discussed for GEM & UCERF3:

- Maximum magnitude per fault in the global fault model
- Moment balance
- Ground-motion prediction equations
- Number of fatalities/injured

Making the model testable:

- Ground-motion intensities should always be expressed in MMI to be tested against “Did You Feel It?” data with each earthquake
Long-term Goals

- Make GEM & UCERF3 as testable as possible
- Test as many ingredients to the models as possible
- Explore the uncertainties and the validity of ingredients
- Create simple reference models to test GEM & UCERF3 and selected ingredients against
- Employ methods of the Collaboratory for the Study of Earthquake Predictability (CSEP)
Thank You!

If you're doing an experiment, you should report everything that you think might make it invalid — not only what you think is right about it... Details that could throw doubt on your interpretation must be given, if you know them.

Richard P. Feynman